Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Nature ; 613(7945): 751-758, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631608

RESUMEN

Cognate tRNAs deliver specific amino acids to translating ribosomes according to the standard genetic code, and three codons with no cognate tRNAs serve as stop codons. Some protists have reassigned all stop codons as sense codons, neglecting this fundamental principle1-4. Here we analyse the in-frame stop codons in 7,259 predicted protein-coding genes of a previously undescribed trypanosomatid, Blastocrithidia nonstop. We reveal that in this species in-frame stop codons are underrepresented in genes expressed at high levels and that UAA serves as the only termination codon. Whereas new tRNAsGlu fully cognate to UAG and UAA evolved to reassign these stop codons, the UGA reassignment followed a different path through shortening the anticodon stem of tRNATrpCCA from five to four base pairs (bp). The canonical 5-bp tRNATrp recognizes UGG as dictated by the genetic code, whereas its shortened 4-bp variant incorporates tryptophan also into in-frame UGA. Mimicking this evolutionary twist by engineering both variants from B. nonstop, Trypanosoma brucei and Saccharomyces cerevisiae and expressing them in the last two species, we recorded a significantly higher readthrough for all 4-bp variants. Furthermore, a gene encoding B. nonstop release factor 1 acquired a mutation that specifically restricts UGA recognition, robustly potentiating the UGA reassignment. Virtually the same strategy has been adopted by the ciliate Condylostoma magnum. Hence, we describe a previously unknown, universal mechanism that has been exploited in unrelated eukaryotes with reassigned stop codons.


Asunto(s)
Anticodón , Codón de Terminación , Células Eucariotas , Código Genético , Mutación , Factores de Terminación de Péptidos , ARN de Transferencia , Anticodón/química , Anticodón/genética , Anticodón/metabolismo , Cilióforos/genética , Codón de Terminación/genética , Código Genético/genética , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN de Transferencia de Triptófano/genética , Saccharomyces cerevisiae/genética , ARN de Transferencia de Ácido Glutámico/genética , Trypanosoma brucei brucei/genética
2.
J Med Genet ; 59(1): 79-87, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33208382

RESUMEN

BACKGROUND: Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episode (MELAS) is a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA. The causative mutations of MELAS have drawn much attention, among them, mutations in mitochondrial tRNA genes possessing prominent status. However, the detailed molecular pathogenesis of these tRNA gene mutations remains unclear and there are very few effective therapies available to date. METHODS: We performed muscle histochemistry, genetic analysis, molecular dynamic stimulation and measurement of oxygen consumption rate and respiratory chain complex activities to demonstrate the molecular pathomechanisms of m.5541C>T mutation. Moreover, we use cybrid cells to investigate the potential of taurine to rescue mitochondrial dysfunction caused by this mutation. RESULTS: We found a pathogenic m.5541C>T mutation in the tRNATrp gene in a large MELAS family. This mutation first affected the maturation and stability of tRNATrp and impaired mitochondrial respiratory chain complex activities, followed by remarkable mitochondrial dysfunction. Surprisingly, we identified that the supplementation of taurine almost completely restored mitochondrial tRNATrp levels and mitochondrial respiration deficiency at the in vitro cell level. CONCLUSION: The m.5541C>T mutation disturbed the translation machinery of mitochondrial tRNATrp and taurine supplementation may be a potential treatment for patients with m.5541C>T mutation. Further studies are needed to explore the full potential of taurine supplementation as therapy for patients with this mutation.


Asunto(s)
Genoma Mitocondrial , Síndrome MELAS/genética , Mitocondrias/metabolismo , Mutación , ARN de Transferencia de Triptófano/genética , Adulto , Línea Celular , ADN Mitocondrial , Femenino , Humanos , Simulación de Dinámica Molecular
3.
Nucleic Acids Res ; 49(9): 5202-5215, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34009360

RESUMEN

Regulation of translation via stop codon readthrough (SC-RT) expands not only tissue-specific but also viral proteomes in humans and, therefore, represents an important subject of study. Understanding this mechanism and all involved players is critical also from a point of view of prospective medical therapies of hereditary diseases caused by a premature termination codon. tRNAs were considered for a long time to be just passive players delivering amino acid residues according to the genetic code to ribosomes without any active regulatory roles. In contrast, our recent yeast work identified several endogenous tRNAs implicated in the regulation of SC-RT. Swiftly emerging studies of human tRNA-ome also advocate that tRNAs have unprecedented regulatory potential. Here, we developed a universal U6 promotor-based system expressing various human endogenous tRNA iso-decoders to study consequences of their increased dosage on SC-RT employing various reporter systems in vivo. This system combined with siRNA-mediated downregulations of selected aminoacyl-tRNA synthetases demonstrated that changing levels of human tryptophan and tyrosine tRNAs do modulate efficiency of SC-RT. Overall, our results suggest that tissue-to-tissue specific levels of selected near-cognate tRNAs may have a vital potential to fine-tune the final landscape of the human proteome, as well as that of its viral pathogens.


Asunto(s)
Codón de Terminación , Biosíntesis de Proteínas , ARN de Transferencia de Triptófano/metabolismo , ARN de Transferencia de Tirosina/metabolismo , Línea Celular , Genes Reporteros , Humanos , Mutación , Plásmidos/genética , Regiones Promotoras Genéticas , Proteínas/genética , ARN Nuclear Pequeño/genética , ARN de Transferencia de Triptófano/genética , ARN de Transferencia de Tirosina/genética , Triptófano-ARNt Ligasa/genética , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/genética , Tirosina-ARNt Ligasa/genética , Proteínas Virales/genética
4.
RNA ; 27(1): 66-79, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33023933

RESUMEN

Most mammalian cytoplasmic tRNAs contain ribothymidine (T) and pseudouridine (Ψ) at positions 54 and 55, respectively. However, some tRNAs contain Ψ at both positions. Several Ψ54-containing tRNAs function as primers in retroviral DNA synthesis. The Ψ54 of these tRNAs is produced by PUS10, which can also synthesize Ψ55. Two other enzymes, TRUB1 and TRUB2, can also produce Ψ55. By nearest-neighbor analyses of tRNAs treated with recombinant proteins and subcellular extracts of wild-type and specific Ψ55 synthase knockdown cells, we determined that while TRUB1, PUS10, and TRUB2 all have tRNA Ψ55 synthase activities, they have different tRNA structural requirements. Moreover, these activities are primarily present in the nucleus, cytoplasm, and mitochondria, respectively, suggesting a compartmentalization of Ψ55 synthase activity. TRUB1 produces the Ψ55 of most elongator tRNAs, but cytoplasmic PUS10 produces both Ψs of the tRNAs with Ψ54Ψ55. The nuclear isoform of PUS10 is catalytically inactive and specifically binds the unmodified U54U55 versions of Ψ54Ψ55-containing tRNAs, as well as the A54U55-containing tRNAiMet This binding inhibits TRUB1-mediated U55 to Ψ55 conversion in the nucleus. Consequently, the U54U55 of Ψ54Ψ55-containing tRNAs are modified by the cytoplasmic PUS10. Nuclear PUS10 does not bind the U55 versions of T54Ψ55- and A54Ψ55-containing elongator tRNAs. Therefore, TRUB1 is able to produce Ψ55 in these tRNAs. In summary, the tRNA Ψ55 synthase activities of TRUB1 and PUS10 are not redundant but rather are compartmentalized and act on different sets of tRNAs. The significance of this compartmentalization needs further study.


Asunto(s)
Núcleo Celular/genética , Citoplasma/genética , Hidroliasas/genética , Mitocondrias/genética , Seudouridina/metabolismo , ARN de Transferencia de Alanina/genética , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Triptófano/genética , Animales , Sitios de Unión , Compartimento Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Expresión Génica , Células HEK293 , Humanos , Hidroliasas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Mitocondrias/metabolismo , Células PC-3 , Unión Proteica , ARN de Transferencia de Alanina/metabolismo , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia de Triptófano/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera
5.
Nucleic Acids Res ; 49(1): 383-399, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33313903

RESUMEN

Translational control is essential in response to stress. We investigated the translational programmes launched by the fission yeast Schizosaccharomyces pombe upon five environmental stresses. We also explored the contribution of defence pathways to these programmes: The Integrated Stress Response (ISR), which regulates translation initiation, and the stress-response MAPK pathway. We performed ribosome profiling of cells subjected to each stress, in wild type cells and in cells with the defence pathways inactivated. The transcription factor Fil1, a functional homologue of the yeast Gcn4 and the mammalian Atf4 proteins, was translationally upregulated and required for the response to most stresses. Moreover, many mRNAs encoding proteins required for ribosome biogenesis were translationally downregulated. Thus, several stresses trigger a universal translational response, including reduced ribosome production and a Fil1-mediated transcriptional programme. Surprisingly, ribosomes stalled on tryptophan codons upon oxidative stress, likely due to a decrease in charged tRNA-Tryptophan. Stalling caused ribosome accumulation upstream of tryptophan codons (ribosome queuing/collisions), demonstrating that stalled ribosomes affect translation elongation by other ribosomes. Consistently, tryptophan codon stalling led to reduced translation elongation and contributed to the ISR-mediated inhibition of initiation. We show that different stresses elicit common and specific translational responses, revealing a novel role in Tryptophan-tRNA availability.


Asunto(s)
Codón , Estrés Oxidativo/genética , Extensión de la Cadena Peptídica de Translación , ARN de Transferencia de Triptófano/genética , Ribosomas/metabolismo , Schizosaccharomyces/genética , Triptófano/genética , Compuestos de Cadmio/farmacología , Factor 2 Eucariótico de Iniciación/genética , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Calor , Peróxido de Hidrógeno/farmacología , Sistema de Señalización de MAP Quinasas , Metilmetanosulfonato/farmacología , Proteínas Quinasas Activadas por Mitógenos/deficiencia , Presión Osmótica , ARN de Hongos/genética , ARN Mensajero/genética , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Sorbitol/farmacología , Sulfatos/farmacología
6.
Can J Cardiol ; 36(10): 1690.e1-1690.e3, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32360196

RESUMEN

Mitochondrial diseases are rare metabolic disorders that can cause hypertrophic cardiomyopathy. Herein we describe the case of a 3-year-old girl diagnosed with mitochondrial disease (mutation m.5559A>G in the mitochondrial-tRNATrp gene). Echocardiography showed left ventricular hypertrophy with an enlarged septum (9 mm, z score = 3.26). Antioxidant supplementation associated with a high-fat ketogenic diet was introduced and, as expected, improved neurologic status. In addition, heart parameters improved with normalisation of interventricular septum thickness at 6 years of age (6 mm, z score = 1.05). In this case report, we suggest that a ketogenic diet may improve hypertrophic cardiomyopathy in the context of mitochondrial disease.


Asunto(s)
Cardiomiopatía Hipertrófica , Dieta Cetogénica/métodos , Ecocardiografía/métodos , Ventrículos Cardíacos/diagnóstico por imagen , Enfermedades Mitocondriales , ARN de Transferencia de Triptófano/genética , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Cardiomiopatía Hipertrófica/dietoterapia , Cardiomiopatía Hipertrófica/etiología , Preescolar , Femenino , Humanos , Enfermedades Mitocondriales/dietoterapia , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/fisiopatología , Monitoreo Fisiológico/métodos , Mutación , ARN Mitocondrial/genética , Análisis de Secuencia de ARN/métodos , Resultado del Tratamiento
7.
J Bacteriol ; 201(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31405913

RESUMEN

tRNA m2G10/m22G10 methyltransferase (archaeal Trm11) methylates the 2-amino group in guanosine at position 10 in tRNA and forms N2,N2-dimethylguanosine (m22G10) via N2-methylguanosine (m2G10). We determined the complete sequence of tRNATrp, one of the substrate tRNAs for archaeal Trm11 from Thermococcus kodakarensis, a hyperthermophilic archaeon. Liquid chromatography/mass spectrometry following enzymatic digestion of tRNATrp identified 15 types of modified nucleoside at 21 positions. Several modifications were found at novel positions in tRNA, including 2'-O-methylcytidine at position 6, 2-thiocytidine at position 17, 2'-O-methyluridine at position 20, 5,2'-O-dimethylcytidine at position 32, and 2'-O-methylguanosine at position 42. Furthermore, methylwyosine was found at position 37 in this tRNATrp, although 1-methylguanosine is generally found at this location in tRNATrp from other archaea. We constructed trm11 (Δtrm11) and some gene disruptant strains and compared their tRNATrp with that of the wild-type strain, which confirmed the absence of m22G10 and other corresponding modifications, respectively. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this methylation is mediated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures. The m22G10 modification might have effects on stabilization of tRNA and/or correct folding of tRNA at the high temperatures. Collectively, these results provide new clues to the function of modifications and the substrate specificities of modification enzymes in archaeal tRNA, enabling us to propose a strategy for tRNA stabilization of this archaeon at high temperatures.IMPORTANCEThermococcus kodakarensis is a hyperthermophilic archaeon that can grow at 60 to 100°C. The sequence of tRNATrp from this archaeon was determined by liquid chromatography/mass spectrometry. Fifteen types of modified nucleoside were observed at 21 positions, including 5 modifications at novel positions; in addition, methylwyosine at position 37 was newly observed in an archaeal tRNATrp The construction of trm11 (Δtrm11) and other gene disruptant strains confirmed the enzymes responsible for modifications in this tRNA. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this position is methylated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures.


Asunto(s)
Metiltransferasas/genética , ARN de Transferencia de Triptófano/genética , Thermococcus/genética , Proteínas Arqueales/genética , Guanosina/análogos & derivados , Guanosina/genética , Humanos , Temperatura , Uridina/análogos & derivados , Uridina/genética
8.
Biochem Biophys Res Commun ; 500(2): 158-162, 2018 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-29625105

RESUMEN

We sequenced the mitochondrial genome from a 40-year-old woman with myoclonus epilepsy, retinitis pigmentosa, leukoencephalopathy and cerebral calcifications. Histological and biochemical features of mitochondrial respiratory chain dysfunction were present. Direct sequencing showed a novel heteroplasmic mutation at nucleotide 5513 in the MT-TW gene that encodes tRNATrp. Restriction Fragment Length Polymorphism analysis confirmed that about 80% of muscle mtDNA harboured the mutation while it was present in minor percentages in mtDNA from other tissues. The mutation is predicted to disrupt a highly conserved base pair within the aminoacyl acceptor stem of the tRNA. This is the 17° mutation in MT-TW gene and expands the known causes of late-onset mitochondrial diseases.


Asunto(s)
Epilepsias Mioclónicas/genética , Predisposición Genética a la Enfermedad , Leucoencefalopatías/genética , Mutación/genética , ARN de Transferencia de Triptófano/genética , Retinitis Pigmentosa/genética , Calcificación Vascular/genética , Adulto , Secuencia de Bases , Epilepsias Mioclónicas/sangre , Epilepsias Mioclónicas/diagnóstico por imagen , Femenino , Humanos , Leucoencefalopatías/sangre , Leucoencefalopatías/diagnóstico por imagen , Retinitis Pigmentosa/sangre , Retinitis Pigmentosa/diagnóstico por imagen , Análisis de Secuencia de ADN , Tomografía Computarizada por Rayos X
9.
Biochem Biophys Res Commun ; 479(4): 800-807, 2016 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-27687549

RESUMEN

Essential hypertension (EH) is a common complex disorder with high heritability. Maternal inherited pattern was observed in some families with EH, which was known as maternally inherited essential hypertension (MIEH). Mitochondrial DNA (mtDNA) mutations were identified to account for some MIEH in previous studies. In the present study, we characterized clinical manifestations and the complete mitochondrial genome of a Chinese family with MIEH. Through analyzing the whole mtDNA genome of the proband, we identified a mutation m.5512A > G in the MT-TW gene that changed a highly conserved nucleotide and could potentially affect the function of tRNATrp. Furthermore, significantly exercise intolerance, left ventricular remodeling and increased arterial stiffness were observed in carriers with mutation m.5512A > G, which further supported the potentially pathogenic effect of m.5512A > G in MIEH.


Asunto(s)
ADN Mitocondrial/genética , Hipertensión/genética , Herencia Materna , Mutación Puntual , ARN de Transferencia de Triptófano/genética , Adulto , Anciano , Pueblo Asiatico/genética , Secuencia de Bases , China , Análisis Mutacional de ADN , Hipertensión Esencial , Prueba de Esfuerzo , Femenino , Genoma Mitocondrial , Heterocigoto , Humanos , Hipertensión/fisiopatología , Masculino , Persona de Mediana Edad , Conformación de Ácido Nucleico , ARN de Transferencia de Triptófano/química , Rigidez Vascular/genética , Remodelación Ventricular/genética
10.
Mitochondrion ; 31: 40-44, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27693765

RESUMEN

We describe here two novel mitochondrial mutations associated with a complex mitochondrial encephalopathy. An A to G transition at position 7495 (MT-TS1 (MT-tRNSer(UCN))) was identified at 83% heteroplasmy in the muscle of a four year old female with ptosis, hypotonia, seizures, and dilated cardiomyopathy (Case 1). A homoplasmic C to T transition at position 5577 (MT-TW (MT-tRNATrp)) was found in a twenty-four year old woman with exercise intolerance, mild muscle weakness, hearing loss, seizures, and cognitive decline (Case 2). The phenotypic information provided here will assist in phenotype-genotype correlations should additional patients be reported in the future. The mutations can be added to the database of mitochondrial DNA variations in conserved regions which result in clinically diverse phenotypes with the shared markers of mitochondrial disease.


Asunto(s)
Insuficiencia Cardíaca/genética , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/patología , Mutación , ARN de Transferencia de Serina/genética , ARN de Transferencia de Triptófano/genética , Convulsiones/genética , Femenino , Insuficiencia Cardíaca/etiología , Humanos , Encefalomiopatías Mitocondriales/diagnóstico , Convulsiones/etiología , Adulto Joven
11.
Mitochondrion ; 25: 113-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26524491

RESUMEN

Leigh syndrome (LS) is a progressive mitochondrial neurodegenerative disorder, whose symptoms most commonly include psychomotor delay with regression, lactic acidosis and a failure to thrive. Here we describe three siblings with LS, but with additional manifestations including hypertrophic cardiomyopathy, hepatosplenomegaly, cholestatic hepatitis, and seizures. All three affected siblings were found to be homoplasmic for an m. 5559A>G mutation in the T stem of the mitochondrial DNA-encoded MT-TW by next generation sequencing. The m.5559A>G mutation causes a reduction in the steady state levels of tRNA(Trp) and this decrease likely affects the stability of other mitochondrial RNAs in the patient fibroblasts. We observe accumulation of an unprocessed transcript containing tRNA(Trp), decreased de novo protein synthesis and consequently lowered steady state levels of mitochondrial DNA-encoded proteins that compromise mitochondrial respiration. Our results show that the m.5559A>G mutation at homoplasmic levels causes LS in association with severe multi-organ disease (LS-plus) as a consequence of dysfunctional mitochondrial RNA metabolism.


Asunto(s)
Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Mitocondrias/genética , Mitocondrias/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Triptófano/genética , ARN de Transferencia de Triptófano/metabolismo , Células Cultivadas , Niño , Preescolar , Salud de la Familia , Femenino , Fibroblastos/fisiología , Humanos , Lactante , Recién Nacido , Masculino , Mutación Puntual , Hermanos
12.
Acta Neuropathol Commun ; 3: 52, 2015 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-26297375

RESUMEN

INTRODUCTION: Numerous pathogenic mutations responsible for mitochondrial diseases have been identified in mitochondrial DNA (mtDNA)-encoded tRNA genes. In most cases, however, the detailed molecular pathomechanisms and cellular pathophysiology of these mtDNA mutations -how such genetic defects determine the variation and the severity of clinical symptoms in affected individuals- remain unclear. To investigate the molecular pathomechanisms and to realize in vitro recapitulation of mitochondrial diseases, intracellular mutant mtDNA proportions must always be considered. RESULTS: We found a disease-causative mutation, m.5541C>T heteroplasmy in MT-TW gene, in a patient exhibiting mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) with multiple organ involvement. We identified the intrinsic molecular pathomechanisms of m.5541C>T. This mutation firstly disturbed the translation machinery of mitochondrial tRNA(Trp) and induced mitochondrial respiratory dysfunction, followed by severely injured mitochondrial homeostasis. We also demonstrated cell-type-specific disease phenotypes using patient-derived induced pluripotent stem cells (iPSCs) carrying ~100 % mutant m.5541C>T. Significant loss of terminally differentiated iPSC-derived neurons, but not their stem/progenitor cells, was detected most likely due to serious mitochondrial dysfunction triggered by m.5541C>T; in contrast, m.5541C>T did not apparently affect skeletal muscle development. CONCLUSIONS: Our iPSC-based disease models would be widely available for understanding the "definite" genotype-phenotype relationship of affected tissues and organs in various mitochondrial diseases caused by heteroplasmic mtDNA mutations, as well as for further drug discovery applications.


Asunto(s)
Síndrome MELAS/genética , Síndrome MELAS/patología , Mutación/genética , ARN de Transferencia de Triptófano/genética , Adenosina Trifosfato/metabolismo , Encéfalo/patología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , Niño , Citrato (si)-Sintasa/metabolismo , Análisis Mutacional de ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/fisiología , Masculino , Potenciales de la Membrana/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mioblastos/metabolismo , Neuronas/fisiología , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
13.
PLoS One ; 9(4): e94774, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24740380

RESUMEN

The relationship between Scleractinia and Corallimorpharia, Orders within Anthozoa distinguished by the presence of an aragonite skeleton in the former, is controversial. Although classically considered distinct groups, some phylogenetic analyses have placed the Corallimorpharia within a larger Scleractinia/Corallimorpharia clade, leading to the suggestion that the Corallimorpharia are "naked corals" that arose via skeleton loss during the Cretaceous from a Scleractinian ancestor. Scleractinian paraphyly is, however, contradicted by a number of recent phylogenetic studies based on mt nucleotide (nt) sequence data. Whereas the "naked coral" hypothesis was based on analysis of the sequences of proteins encoded by a relatively small number of mt genomes, here a much-expanded dataset was used to reinvestigate hexacorallian phylogeny. The initial observation was that, whereas analyses based on nt data support scleractinian monophyly, those based on amino acid (aa) data support the "naked coral" hypothesis, irrespective of the method and with very strong support. To better understand the bases of these contrasting results, the effects of systematic errors were examined. Compared to other hexacorallians, the mt genomes of "Robust" corals have a higher (A+T) content, codon usage is far more constrained, and the proteins that they encode have a markedly higher phenylalanine content, leading us to suggest that mt DNA repair may be impaired in this lineage. Thus the "naked coral" topology could be caused by high levels of saturation in these mitochondrial sequences, long-branch effects or model violations. The equivocal results of these extensive analyses highlight the fundamental problems of basing coral phylogeny on mitochondrial sequence data.


Asunto(s)
Antozoos/genética , ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Proteínas Mitocondriales/genética , Filogenia , Aminoácidos/genética , Animales , Antozoos/clasificación , Composición de Base/genética , Codón/genética , ADN Mitocondrial/química , ARN Ribosómico/genética , ARN Ribosómico 16S/genética , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Triptófano/genética , Análisis de Secuencia de ADN , Especificidad de la Especie
14.
Mitochondrial DNA ; 25(5): 394-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23841600

RESUMEN

Mitochondrial DNA (mtDNA) defects were known to be associated with a large spectrum of human diseases and patients might present wide range of clinical features with various combinations. Mutations in mitochondrial tRNAs, rRNAs and protein-coding genes or large-scale rearrangements have been implicated in several cytopathies. Mitochondrial myopathies, usually maternally inherited group of neuromuscular diseases caused by mitochondrial dysfunction occurring before the age of 20 years and often begin with exercise intolerance, muscle weakness and neurodevelopmental retardation. We studied the mtDNA in three Tunisian patients with mitochondrial myopathy. The mutational analysis screening revealed the presence of two mitochondrial mutations: the m.5521G>A mutation in the D-stem region of the tRNA(Trp) gene which could lead to a disruption of the secondary structure of this tRNA and affect the tRNA-ribosome interaction with a consequent decrease in the rate of synthesis of mitochondrial proteins. The second mutation is the m.8249G>A (p.G222R) variation in the MT-CO2 gene which may affect the electrons transfer from cytochrome c to the bimetallic center of the catalytic subunit I.


Asunto(s)
Ciclooxigenasa 2/genética , Análisis Mutacional de ADN/métodos , ADN Mitocondrial/análisis , Miopatías Mitocondriales/genética , ARN de Transferencia de Triptófano/genética , Adolescente , Estudios de Casos y Controles , Niño , Femenino , Humanos , Masculino , Mutación Puntual , Túnez
15.
Nat Commun ; 4: 2886, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24301020

RESUMEN

Mitochondria are essential cellular organelles for generation of energy and their dysfunction may cause diabetes, Parkinson's disease and multi-systemic failure marked by failure to thrive, gastrointestinal problems, lactic acidosis and early lethality. Disease-associated mitochondrial mutations often affect components of the mitochondrial translation machinery. Here we perform ribosome profiling to measure mitochondrial translation at nucleotide resolution. Using a protocol optimized for the retrieval of mitochondrial ribosome protected fragments (RPFs) we show that the size distribution of wild-type mitochondrial RPFs follows a bimodal distribution peaking at 27 and 33 nucleotides, which is distinct from the 30-nucleotide peak of nuclear RPFs. Their cross-correlation suggests generation of mitochondrial RPFs during ribosome progression. In contrast, RPFs from patient-derived mitochondria mutated in tRNA-Tryptophan are centered on tryptophan codons and reduced downstream, indicating ribosome stalling. Intriguingly, long RPFs are enriched in mutated mitochondria, suggesting they characterize stalled ribosomes. Our findings provide the first model for translation in wild-type and disease-triggering mitochondria.


Asunto(s)
Enfermedad/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Biosíntesis de Proteínas , Ribosomas/genética , Línea Celular , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ARN de Transferencia de Triptófano/genética , ARN de Transferencia de Triptófano/metabolismo , Ribosomas/metabolismo , Transcriptoma
16.
Mol Cell Biol ; 33(24): 4900-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24126054

RESUMEN

Human TRIT1 is a tRNA isopentenyltransferase (IPTase) homologue of Escherichia coli MiaA, Saccharomyces cerevisiae Mod5, Schizosaccharomyces pombe Tit1, and Caenorhabditis elegans GRO-1 that adds isopentenyl groups to adenosine 37 (i6A37) of substrate tRNAs. Prior studies indicate that i6A37 increases translation fidelity and efficiency in codon-specific ways. TRIT1 is a tumor suppressor whose mutant alleles are associated with cancer progression. We report the systematic identification of i6A37-containing tRNAs in a higher eukaryote, performed using small interfering RNA knockdown and other methods to examine TRIT1 activity in HeLa cells. Although several potential substrates contained the IPTase recognition sequence A36A37A38 in the anticodon loop, only tRNA(Ser)AGA, tRNA(Ser)CGA, tRNA(Ser)UGA, and selenocysteine tRNA with UCA (tRNA([Ser]Sec)UCA) contained i6A37. This subset is a significantly more restricted than that for two distant yeasts (S. cerevisiae and S. pombe), the only other organisms comprehensively examined. Unlike the fully i6A37-modified tRNAs for Ser, tRNA([Ser]Sec)UCA is partially (∼40%) modified. Exogenous selenium and other treatments that decreased the i6A37 content of tRNA([Ser]Sec)UCA led to increased levels of the tRNA([Ser]Sec)UCA. Of the human mitochondrion (mt)-encoded tRNAs with A36A37A38, only mt tRNAs tRNA(Ser)UGA and tRNA(Trp)UCA contained detectable i6A37. Moreover, while tRNA(Ser) levels were unaffected by TRIT1 knockdown, the tRNA([Ser]Sec)UCA level was increased and the mt tRNA(Ser)UGA level was decreased, suggesting that TRIT1 may control the levels of some tRNAs as well as their specific activity.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , ARN de Transferencia de Serina/metabolismo , Transferasas Alquil y Aril/genética , Secuencia de Bases , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Secuencias Invertidas Repetidas , Procesamiento Postranscripcional del ARN , ARN Interferente Pequeño/genética , ARN de Transferencia de Leucina/genética , ARN de Transferencia de Leucina/metabolismo , ARN de Transferencia de Serina/genética , ARN de Transferencia de Triptófano/genética , ARN de Transferencia de Triptófano/metabolismo , Selenio/fisiología , Especificidad por Sustrato
17.
Eur J Hum Genet ; 21(8): 871-5, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23232693

RESUMEN

We report a novel pathogenic mutation of the mitochondrial transfer RNA (tRNA) gene for tryptophan in a patient with isolated myopathy and persistently elevated creatine kinase. Muscle studies revealed ragged red fibres and decreased activity of respiratory chain complex I and cytochrome c oxidase (COX). Sequencing of the 22 mitochondrial tRNA genes revealed a mutation m.5522G>A, which alters a conserved base pairing in the D-stem of the tRNA for tryptophan. The mutation was heteroplasmic with a mutational load between 88 and 99% in COX-negative fibres. This case contributes to the genetic heterogeneity of mitochondrial diseases caused by mutations in mitochondrial tRNA genes.


Asunto(s)
Miopatías Mitocondriales/genética , Mutación Puntual , ARN de Transferencia de Triptófano/genética , Adolescente , Secuencia de Bases , Análisis Mutacional de ADN , ADN Mitocondrial/química , ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Inmunohistoquímica , Masculino , Microscopía Electrónica , Miopatías Mitocondriales/metabolismo , Datos de Secuencia Molecular , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/patología , Fibras Musculares de Contracción Lenta/ultraestructura , Homología de Secuencia de Ácido Nucleico
18.
RNA ; 17(9): 1760-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21784868

RESUMEN

A part of eukaryotic tRNA genes harbor an intron at one nucleotide 3' to the anticodon, so that removal of the intron is an essential processing step for tRNA maturation. While some tRNA introns have important roles in modification of certain nucleotides, essentiality of the tRNA intron in eukaryotes has not been tested extensively. This is partly because most of the eukaryotic genomes have multiple genes encoding an isoacceptor tRNA. Here, we examined whether the intron of tRNA-Trp(CCA) genes, six copies of which are scattered on the genome of yeast, Saccharomyces cerevisiae, is essential for growth or translation of the yeast in vivo. We devised a procedure to remove all of the tRNA introns from the yeast genome iteratively with marker cassettes containing both positive and negative markers. Using this procedure, we removed all the introns from the six tRNA-Trp(CCA) genes, and found that the intronless strain grew normally and expressed tRNA-Trp(CCA) in an amount similar to that of the wild-type genes. Neither incorporation of (35)S-labeled amino acids into a TCA-insoluble fraction nor the major protein pattern on SDS-PAGE/2D gel were affected by complete removal of the intron, while expression levels of some proteins were marginally affected. Therefore, the tRNA-Trp(CCA) intron is dispensable for growth and bulk translation of the yeast. This raises the possibility that some mechanism other than selective pressure from translational efficiency maintains the tRNA intron on the yeast genome.


Asunto(s)
Intrones , Biosíntesis de Proteínas , ARN de Hongos/genética , ARN de Transferencia de Triptófano/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Anticodón , Secuencia de Bases , Cromosomas Fúngicos , Electroforesis en Gel de Poliacrilamida , Genes Fúngicos , Datos de Secuencia Molecular , Plásmidos , Eliminación de Secuencia
19.
J Neurol Sci ; 297(1-2): 105-8, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20708751

RESUMEN

BACKGROUND: Mitochondrial diseases due to mitochondrial tRNA genes mutations are usually multisystem disorders with infantile or adult onset. OBJECTIVE: To identify the molecular defect underlying a mitochondrial encephalomyopathy. METHODS/PATIENTS: Case report of a 51year-old woman presenting with late-onset myoclonic epilepsy plus additional features. Proband's mother presented hypothyroidism and diabetes. RESULTS: Muscle biopsy showed mitochondrial changes. Respiratory chain activities were reduced. The novel G5538A mutation was identified in different tissues DNAs from the proband and from her mother. CONCLUSION: We were able to identify a novel mtDNA tRNA((Trp)) gene pathogenic mutation.


Asunto(s)
Mitocondrias/genética , Encefalomiopatías Mitocondriales/genética , Mutación Puntual/genética , ARN de Transferencia de Triptófano/genética , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Mitocondrias/patología , Encefalomiopatías Mitocondriales/patología , Datos de Secuencia Molecular , Músculo Esquelético/enzimología , Músculo Esquelético/patología
20.
RNA ; 16(10): 2002-13, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20739608

RESUMEN

The selection of cognate tRNAs during translation is specified by a kinetic discrimination mechanism driven by distinct structural states of the ribosome. While the biochemical steps that drive the tRNA selection process have been carefully documented, it remains unclear how recognition of matched codon:anticodon helices in the small subunit facilitate global rearrangements in the ribosome complex that efficiently promote tRNA decoding. Here we use an in vitro selection approach to isolate tRNA(Trp) miscoding variants that exhibit a globally perturbed tRNA tertiary structure. Interestingly, the most substantial distortions are positioned in the elbow region of the tRNA that closely approaches helix 69 (H69) of the large ribosomal subunit. The importance of these specific interactions to tRNA selection is underscored by our kinetic analysis of both tRNA and rRNA variants that perturb the integrity of this interaction.


Asunto(s)
ARN Ribosómico/química , ARN Ribosómico/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Codón/química , Codón/genética , Codón/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Modelos Moleculares , Mutación , Conformación de Ácido Nucleico , Extensión de la Cadena Peptídica de Translación , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico/genética , ARN de Transferencia/genética , ARN de Transferencia de Triptófano/química , ARN de Transferencia de Triptófano/genética , ARN de Transferencia de Triptófano/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA