Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 467
Filtrar
1.
Molecules ; 29(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38999095

RESUMEN

Propolis is a bee product mainly consisting of plant resins and is used by bees to maintain the structural integrity of the colony. Propolis is known to contribute to bee health via its antimicrobial activity and is a valued product for human use owing to its nutritional and medicinal properties. Propolis is often characterised into seven categories depending on the resin source. New Zealand propolis is typically assumed as being poplar-type propolis, but few studies have chemically characterised New Zealand propolis to confirm or reject this assumption. Here, for the first time, we characterise propolis originating from different regions in New Zealand based on its volatile organic compounds, using gas chromatography coupled with mass spectrometry (GC-MS). To support this characterisation, we also collected and analysed resin samples from a variety of resin-producing plants (both native to New Zealand and introduced). Our findings suggest that bees mainly use poplar as a resin source, but also utilize native plant species to produce propolis. While regional variation did not allow for clear separation between samples, some patterns emerged, with samples from some regions having more chemical complexity and a higher contribution from native species (as suggested by a higher number of compounds unique to native species resin). Further studies are needed to accurately identify the botanical sources contributing to these samples. It may be also of interest to explore the biological activity of regional propolis samples and their potential nutritional or medicinal benefits.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Própolis , Compuestos Orgánicos Volátiles , Própolis/química , Nueva Zelanda , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Abejas/química , Animales , Resinas de Plantas/química
2.
Drug Des Devel Ther ; 18: 2745-2760, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974120

RESUMEN

Purpose: Bee pollen possesses favorable anticancer activities. As a medicinal plant source, Schisandra chinensis bee pollen (SCBP) possesses potential pharmacological properties, such as reducing cisplatin-induced liver injury, but its anti-liver cancer effect is still rarely reported. This paper aims to investigate the effect and mechanism of SCBP extract (SCBPE) on hepatocellular carcinoma HepG2 cells. Methods: The effect of SCBPE on cell proliferation and migration of HepG2 cells was evaluated based on MTT assay, morphology observation, or scratching assay. Furthermore, tandem mass tag-based quantitative proteomics was used to study the effect mechanisms. The mRNA expression levels of identified proteins were verified by RT-qPCR. Results: Tandem mass tag-based quantitative proteomics showed that 61 differentially expressed proteins were obtained in the SCBPE group compared with the negative-control group: 18 significantly downregulated and 43 significantly upregulated proteins. Bioinformatic analysis showed the significantly enriched KEGG pathways were predominantly ferroptosis-, Wnt-, and hepatocellular carcinoma-signaling ones. Protein-protein interaction network analysis and RT-qPCR validation revealed SCBPE also downregulated the focal adhesion-signaling pathway, which is abrogated by PF-562271, a well-known inhibitor of FAK. Conclusion: This study confirmed SCBPE suppressed the cell proliferation and migration of hepatocellular carcinoma HepG2 cells, mainly through modulation of ferroptosis-, Wnt-, hepatocellular carcinoma-, and focal adhesion-signaling pathways, providing scientific data supporting adjuvant treatment of hepatocellular carcinoma using SCBP.


Asunto(s)
Carcinoma Hepatocelular , Movimiento Celular , Proliferación Celular , Ferroptosis , Neoplasias Hepáticas , Polen , Schisandra , Humanos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Células Hep G2 , Animales , Schisandra/química , Polen/química , Ferroptosis/efectos de los fármacos , Abejas/química , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Antineoplásicos/química , Transducción de Señal/efectos de los fármacos , Productos Biológicos , Polifenoles
3.
Molecules ; 29(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38930823

RESUMEN

Propolis is a resinous bee product with a very complex composition, which is dependent upon the plant sources that bees visit. Due to the promising antimicrobial activities of red Brazilian propolis, it is paramount to identify the compounds responsible for it, which, in most of the cases, are not commercially available. The aim of this study was to develop a quick and clean preparative-scale methodology for preparing fractions of red propolis directly from a complex crude ethanol extract by combining the extractive capacity of counter-current chromatography (CCC) with preparative HPLC. The CCC method development included step gradient elution for the removal of waxes (which can bind to and block HPLC columns), sample injection in a single solvent to improve stationary phase stability, and a change in the mobile phase flow pattern, resulting in the loading of 2.5 g of the Brazilian red propolis crude extract on a 912.5 mL Midi CCC column. Three compounds were subsequently isolated from the concentrated fractions by preparative HPLC and identified by NMR and high-resolution MS: red pigment, retusapurpurin A; the isoflavan 3(R)-7-O-methylvestitol; and the prenylated benzophenone isomers xanthochymol/isoxanthochymol. These compounds are markers of red propolis that contribute to its therapeutic properties, and the amount isolated allows for further biological activities testing and for their use as chromatographic standards.


Asunto(s)
Distribución en Contracorriente , Própolis , Própolis/química , Distribución en Contracorriente/métodos , Cromatografía Líquida de Alta Presión , Brasil , Animales , Fraccionamiento Químico/métodos , Abejas/química
4.
Int J Biol Macromol ; 273(Pt 1): 133080, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866284

RESUMEN

In the intricate web of ecological relationships, pollinators such as the Italian honeybee (Apis mellifera) play a crucial role in maintaining biodiversity and agricultural productivity. This study focuses on the interactions between three neonicotinoid compounds and the honeybee's chemosensory protein 3 (CSP3), a key player in their olfactory system. Employing advanced spectroscopic techniques and molecular modeling, we explore the binding dynamics and conformational changes in CSP3 upon exposure to these pesticides. The research reveals that all three neonicotinoids considerably quench CSP3's fluorescence through a dynamic and static mixing mechanism, indicating a strong binding affinity, predominantly driven by hydrophobic interactions. UV-visible absorption, synchronous fluorescence, and 3D fluorescence spectra support slight changes in the microenvironment around the aromatic amino acids of CSP3. Circular dichroism spectra indicate a reduction in CSP3's α-helix content, suggesting structural alterations. Molecular docking and dynamics simulations further elucidate the binding modes and stability of these interactions, highlighting the role of specific amino acids in CSP3's binding cavity. Findings provide critical insights into molecular mechanisms by which neonicotinoids may impair honeybee chemosensory function, offering implications for designing safer pesticides and understanding the broader ecological impact of these chemicals on pollinator health.


Asunto(s)
Proteínas de Insectos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neonicotinoides , Animales , Abejas/efectos de los fármacos , Abejas/química , Neonicotinoides/química , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Unión Proteica , Relación Estructura-Actividad , Modelos Moleculares , Espectrometría de Fluorescencia , Análisis Espectral , Dicroismo Circular
5.
Food Chem ; 452: 139611, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38749141

RESUMEN

High pressure processing is a safe and green novel non-thermal processing technique for modulating food protein aggregation behavior. However, the systematic relationship between high pressure processing conditions and protein deaggregation has not been sufficiently investigated. Major royal jelly proteins, which are naturally highly fibrillar aggregates, and it was found that the pressure level and exposure time could significantly promote protein deaggregation. The 100-200 MPa treatment favoured the deaggregation of proteins with a significant decrease in the sulfhydryl group content. Contrarily, at higher pressure levels (>400 MPa), the exposure time promoted the formation of disordered agglomerates. Notably, the inter-conversion of α-helix and ß-strands in major royal jelly proteins after high pressure processing eliminates the solvent-free cavities inside the aggregates, which exerts a 'collapsing' effect on the fibrillar aggregates. Furthermore, the first machine learning model of the high pressure processing conditions and the protein deaggregation behaviour was developed, which provided digital guidance for protein aggregation regulation.


Asunto(s)
Ácidos Grasos , Proteínas de Insectos , Presión , Agregado de Proteínas , Proteínas de Insectos/química , Ácidos Grasos/química , Animales , Manipulación de Alimentos , Abejas/química
6.
Chem Biodivers ; 20(4): e202201138, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36890118

RESUMEN

Honeybee pollen (HBP) is a mixture of floral pollen collected by honeybees near the hive. It is characterized by a composition rich in phenolic compounds, carotenoids and vitamins that act as free radicals scavengers, conferring antioxidant and antibacterial capacity to the matrix. These bioactive properties are related to the botanical origin of the honeybee pollen. Honeybee pollen samples were collected from different geographical locations in central Chile, and their total carotenoid content, polyphenols profile by HPLC/MS/MS, DPPH radical scavenging capacity, and antimicrobial capacity against S. pyogenes, E. coli, S. aureus, and P. auriginosa strains were evaluated. Our results showed a good carotenoids content and polyphenols composition, while antioxidant capacity presented values between 0-95 % for the scavenging effect related to the botanical origin of the samples. Inhibition diameter for the different strains presented less variability among the samples, Furthermore, binary mixtures representing the two most abundant species in each HBP were prepared to assess the synergy effect of the floral pollen (FP) present in the samples. Data shows an antagonist effect was observed when assessing the carotenoid content, and a synergy effect often presents for antimicrobial and antioxidant capacity for bee pollen samples. The bioactive capacities of the honeybee pollen and their synergy effect could apply to develop new functional ingredients for the food industry.


Asunto(s)
Antiinfecciosos , Antioxidantes , Abejas , Polen , Animales , Antiinfecciosos/farmacología , Antioxidantes/farmacología , Antioxidantes/análisis , Abejas/química , Abejas/metabolismo , Carotenoides/farmacología , Carotenoides/análisis , Escherichia coli , Polen/química , Polifenoles/farmacología , Polifenoles/análisis , Staphylococcus aureus , Espectrometría de Masas en Tándem
7.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834960

RESUMEN

Bevacizumab (Bev) a humanized monoclonal antibody that fights vascular endothelial growth factor A (VEGF-A). It was the first specifically considered angiogenesis inhibitor and it has now become the normative first-line therapy for advanced non-small-cell lung cancer (NSCLC). In the current study, polyphenolic compounds were isolated from bee pollen (PCIBP) and encapsulated (EPCIBP) inside moieties of hybrid peptide-protein hydrogel nanoparticles in which bovine serum albumin (BSA) was combined with protamine-free sulfate and targeted with folic acid (FA). The apoptotic effects of PCIBP and its encapsulation (EPCIBP) were further investigated using A549 and MCF-7 cell lines, providing significant upregulation of Bax and caspase 3 genes and downregulation of Bcl2, HRAS, and MAPK as well. This effect was synergistically improved in combination with Bev. Our findings may contribute to the use of EPCIBP simultaneously with chemotherapy to strengthen the effectiveness and minimize the required dose.


Asunto(s)
Antineoplásicos , Bevacizumab , Productos Biológicos , Carcinoma de Pulmón de Células no Pequeñas , Hidrogeles , Animales , Humanos , Células A549/efectos de los fármacos , Células A549/metabolismo , Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos/química , Antineoplásicos/farmacología , Abejas/química , Abejas/metabolismo , Bevacizumab/uso terapéutico , Productos Biológicos/química , Productos Biológicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Hidrogeles/química , Hidrogeles/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Células MCF-7/efectos de los fármacos , Células MCF-7/metabolismo , Nanopartículas/química , Nanopartículas/uso terapéutico , Polen/química , Polen/metabolismo , Factor A de Crecimiento Endotelial Vascular/uso terapéutico
8.
Chem Biodivers ; 20(3): e202201124, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36730100

RESUMEN

Bee bread is a unique natural product made by bees and good for human health. It has many bioactive molecules that can treat or prevent diseases. In this study, melissopalynological methods were used to examine five bee bread samples. Major plant sources found in bee bread were Lotus spp., Trifolium spp., and Xeranthemum spp., which are from the Fabaceae and Asteraceae families. Then, the amount of phenolic compounds and major carotenoids in bee bread (BB) samples were quantified. Gallic acid, caffeic acid, quercetin, and kaempferol were found in all BB samples, with ß-carotene being the most abundant carotenoid in all but BB1. In addition, the total phenolic/flavonoid content and antioxidant activities of all BB samples were determined. Total flavonoid, total phenolic, DPPH⋅, and ABTS⋅+ values were varied between 5.6-10.00 mg GAE/g DW, 1.2-4.3 mg QE/g DW, 1.2-5.5 mg TEAC/g DW, and 2.6-15.4 mg TEAC/g DW, respectively.


Asunto(s)
Antioxidantes , Própolis , Animales , Humanos , Antioxidantes/farmacología , Asteraceae/química , Abejas/química , Abejas/metabolismo , Carotenoides/química , Carotenoides/farmacología , Flavonoides , Fenoles/química , Fenoles/farmacología , Própolis/química
9.
Molecules ; 27(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35209088

RESUMEN

This study aimed to characterize bee products (bee bread, bee pollen, beeswax, and multiflorous honey) with the profile of phenolic compounds, total phenolic (TPC) and flavonoid (TFC) contents, and antioxidant and microbiological properties. The TP and TF contents could be ordered as follows: bee pollen > bee bread > beeswax > honey. The UPLC-PDA-MS/MS analysis allowed identifying 20 polyphenols. Sinapic acid dominated in bee pollen, gallic acid in the bee bread and honey, while pinobanksin was the major compound of beeswax. The data showed that bee pollen and bee bread had a stronger antioxidant potential than honey and beeswax. Moreover, the antibacterial activity of the bee products was studied using 14 bacterial strains. Bee bread's and bee pollen's antimicrobial activity was higher towards Gram-negative strains. In comparison, honey was more potent in inhibiting Gram-positive bacteria. Our study indicates that bee products may represent valuable sources of bioactive compounds offering functional properties.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Abejas/química , Productos Biológicos/farmacología , Polifenoles/farmacología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Antioxidantes/química , Productos Biológicos/química , Cromatografía Líquida de Alta Presión , Flavonoides/química , Miel/análisis , Pruebas de Sensibilidad Microbiana , Fenoles/química , Polen/química , Polifenoles/química , Própolis/química , Espectrometría de Masas en Tándem
10.
Fitoterapia ; 157: 105106, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34958852

RESUMEN

Propolis is an aromatic substance which is collected by bees and mixed with bee saliva. The plant sources of propolis are mainly consisted with plant exudates from bark, buds and etc. Flavonoids are secondary metabolites widely found in natural plants, which have a variety of health care functions and are the main active ingredients of propolis. This article summarized the types, active ingredients, pharmacological effects, extraction methods and applications of propolis flavonoids, the aim was to provide the theoretical basis for further research and development of propolis flavonoids.


Asunto(s)
Abejas , Flavonoides/química , Flavonoides/aislamiento & purificación , Própolis/química , Animales , Abejas/química , Abejas/clasificación , Abejas/fisiología , China , Flavonoides/fisiología , Própolis/uso terapéutico
11.
J Insect Sci ; 21(6)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34723332

RESUMEN

Despite numerous interventions, the ectoparasitic mite Varroa (Varroa destructor Anderson and Trueman [Mesostigmata: Varroidae]) and the pathogens it vectors remain a primary threat to honey bee (Apis mellifera Linnaeus [Hymenoptera: Apidae]) health. Hygienic behavior, the ability to detect, uncap, and remove unhealthy brood from the colony, has been bred for selectively for over two decades and continues to be a promising avenue for improved Varroa management. Although hygienic behavior is expressed more in Varroa-resistant colonies, hygiene does not always confer resistance to Varroa. Additionally, existing Varroa resistance selection methods trade efficacy for efficiency, because those achieving the highest levels of Varroa resistance can be time-consuming, and thus expensive and impractical for apicultural use. Here, we tested the hypothesis that hygienic response to a mixture of semiochemicals associated with Varroa-infested honey bee brood can serve as an improved tool for predicting colony-level Varroa resistance. In support of our hypothesis, we demonstrated that a mixture of the compounds (Z)-10-tritriacontene, (Z)-8-hentriacontene, (Z)-8-heptadecene, and (Z)-6-pentadecene triggers hygienic behavior in a two-hour assay, and that high-performing colonies (hygienic response to ≥60% of treated cells) have significantly lower Varroa infestations, remove significantly more introduced Varroa, and are significantly more likely to survive the winter compared to low-performing colonies (hygienic response to <60% of treated cells). We discuss the relative efficacy and efficiency of this assay for facilitating apiary management decisions and selection of Varroa-resistant honey bees, as well as the relevance of these findings to honey bee health, pollination services, and social insect communication.


Asunto(s)
Abejas , Feromonas , Varroidae , Animales , Apicultura , Abejas/química , Abejas/parasitología
12.
Molecules ; 26(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34770878

RESUMEN

Double and triple bonds have significant effects on the biological activities of lipids. Determining multiple bond positions in their molecules by mass spectrometry usually requires chemical derivatization. This work presents an HPLC/MS method for pinpointing the double and triple bonds in fatty acids. Fatty acid methyl esters were separated by reversed-phase HPLC with an acetonitrile mobile phase. In the APCI source, acetonitrile formed reactive species, which added to double and triple bonds to form [M + C3H5N]+• ions. Their collisional activation in an ion trap provided fragments helpful in localizing the multiple bond positions. This approach was applied to fatty acids with isolated, cumulated, and conjugated double bonds and triple bonds. The fatty acids were isolated from the fat body of early-nesting bumblebee Bombus pratorum and seeds or seed oils of Punicum granatum, Marrubium vulgare, and Santalum album. Using the method, the presence of the known fatty acids was confirmed, and new ones were discovered.


Asunto(s)
Acetonitrilos/química , Abejas/química , Ésteres/química , Ácidos Grasos/química , Animales , Cromatografía Líquida de Alta Presión , Ésteres/aislamiento & purificación , Ácidos Grasos/aislamiento & purificación , Espectrometría de Masas , Estructura Molecular
13.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 40-44, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-34817370

RESUMEN

Propolis is a highly adhesive and resinous product of honey bee (Apis mellifera L.) which is produced from the exudations of plants. Bee propolis being a source of bioactive compounds like polyphenols and flavonoids imparts numerous biological properties including, antioxidant, anti-inflammatory, antimicrobial and anticancer activities. Present study was designed to elucidate the composition and antioxidant status of locally available propolis using in-vitro conditions. Propolis collected from locally found apiaries and its hydroalcoholic extract of propolis was prepared using different concentrations of ethanol and methanol. The results regarding proximate composition of propolis showed a higher proportion of ether extract (85.59±0.87%) and lowest contents of crude fiber (0.31±0.08%). Among the mineral's sodium, potassium and calcium was found in a concentration of 11.33±0.91, 52.10±2.9 and 10.53±0.83.59±0.23mg/Kg respectively whilst zinc was noticed as 3.59±0.23mg/Kg. HPLC characterization indicates a highest concentration of Chlorogenic acid 31.80±2.56mg/Kg whereas gallic acid (0.21±0.01mg/Kg) was found in lowest concentration among the polyphenols. Ethanol extract represents more phenolic contents, DPPH activity and antioxidant status as 327.30±14.89mg/gGAE, 73.18±4.43% and 60.59±4.38% accordingly in comparison to methanol and water extract. Bee propolis found an effective source of natural antioxidants which retards the production of free radicals and reactive oxygen species thus help to cope oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Abejas/química , Cromatografía Líquida de Alta Presión/métodos , Própolis/análisis , Própolis/farmacología , Animales , Antiinfecciosos/análisis , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/análisis , Antioxidantes/química , Flavonoides/análisis , Flavonoides/farmacología , Depuradores de Radicales Libres/análisis , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Estrés Oxidativo/efectos de los fármacos , Pakistán , Fenoles/análisis , Fenoles/farmacología , Polifenoles/análisis , Polifenoles/farmacología , Própolis/química
14.
PLoS Negl Trop Dis ; 15(10): e0009824, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34648501

RESUMEN

The frequency of arboviral disease epidemics is increasing and vector control remains the primary mechanism to limit arboviral transmission. Container inhabiting mosquitoes such as Aedes albopictus and Aedes aegypti are the primary vectors of dengue, chikungunya, and Zika viruses. Current vector control methods for these species are often ineffective, suggesting the need for novel control approaches. A proposed novel approach is autodissemination of insect growth regulators (IGRs). The advantage of autodissemination approaches is small amounts of active ingredients compared to traditional insecticide applications are used to impact mosquito populations. While the direct targeting of cryptic locations via autodissemination seems like a significant advantage over large scale applications of insecticides, this approach could actually affect nontarget organisms by delivering these highly potent long lasting growth inhibitors such as pyriproxyfen (PPF) to the exact locations that other beneficial insects visit, such as a nectar source. Here we tested the hypothesis that PPF treated male Ae. albopictus will contaminate nectar sources, which results in the indirect transfer of PPF to European honey bees (Apis mellifera). We performed bioassays, fluorescent imaging, and mass spectrometry on insect and artificial nectar source materials to examine for intra- and interspecific transfer of PPF. Data suggests there is direct transfer of PPF from Ae. albopictus PPF treated males and indirect transfer of PPF to A. mellifera from artificial nectar sources. In addition, we show a reduction in fecundity in Ae. albopictus and Drosophila melanogaster when exposed to sublethal doses of PPF. The observed transfer of PPF to A. mellifera suggests the need for further investigation of autodissemination approaches in a more field like setting to examine for risks to insect pollinators.


Asunto(s)
Aedes/efectos de los fármacos , Abejas/química , Insecticidas/análisis , Hormonas Juveniles/análisis , Piridinas/análisis , Aedes/fisiología , Animales , Drosophila melanogaster , Femenino , Insecticidas/farmacología , Hormonas Juveniles/farmacología , Masculino , Control de Mosquitos/métodos , Piridinas/farmacología
15.
Toxins (Basel) ; 13(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34564620

RESUMEN

In this review, we outline and reflect on the important differences between allergen-specific immunotherapy for inhalant allergies (i.e., aeroallergens) and venom-specific immunotherapy (VIT), with a special focus on Venomil® Bee and Wasp. Venomil® is provided as a freeze-dried extract and a diluent to prepare a solution for injection for the treatment of patients with IgE-mediated allergies to bee and/or wasp venom and for evaluating the degree of sensitivity in a skin test. While the materials that make up the product have not changed, the suppliers of raw materials have changed over the years. Here, we consolidate relevant historical safety and efficacy studies that used products from shared manufacture supply profiles, i.e., products from Bayer or Hollister-Stier. We also consider the characterization and standardization of venom marker allergens, providing insights into manufacturing controls that have produced stable and consistent quality profiles over many years. Quality differences between products and their impacts on treatment outcomes have been a current topic of discussion and further research. Finally, we review the considerations surrounding the choice of depot adjuvant most suitable to augmenting VIT.


Asunto(s)
Alérgenos/aislamiento & purificación , Venenos de Abeja/inmunología , Desensibilización Inmunológica/métodos , Desensibilización Inmunológica/estadística & datos numéricos , Hipersensibilidad/terapia , Venenos de Avispas/inmunología , Alérgenos/química , Animales , Abejas/química , Desensibilización Inmunológica/clasificación , Humanos , Avispas/química
16.
Molecules ; 26(16)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34443466

RESUMEN

Bees and their products are useful bioindicators of anthropogenic activities and could overcome the deficiencies of air quality networks. Among the environmental contaminants, mercury (Hg) is a toxic metal that can accumulate in living organisms. The first aim of this study was to develop a simple analytical method to determine Hg in small mass samples of bees and beehive products by cold vapor atomic fluorescence spectrometry. The proposed method was optimized for about 0.02 g bee, pollen, propolis, and royal jelly, 0.05 g beeswax and honey, or 0.1 g honeydew with 0.5 mL HCl, 0.2 mL HNO3, and 0.1 mL H2O2 in a water bath (95 °C, 30 min); samples were made up to a final volume of 5 mL deionized water. The method limits sample manipulation and the reagent mixture volume used. Detection limits were lower than 3 µg kg-1 for a sample mass of 0.02 g, and recoveries and precision were within 20% of the expected value and less than 10%, respectively, for many matrices. The second aim of the present study was to evaluate the proposed method's performances on real samples collected in six areas of the Lazio region in Italy.


Asunto(s)
Abejas/química , Monitoreo Biológico/métodos , Mercurio/análisis , Espectrometría de Fluorescencia/métodos , Animales , Frío , Cucumis melo/química , Exactitud de los Datos , Contaminación Ambiental/análisis , Ácidos Grasos/análisis , Miel/análisis , Italia , Polen/química , Própolis/análisis , Espectrofotometría Atómica/métodos , Ceras/análisis
17.
Molecules ; 26(16)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34443529

RESUMEN

Insects of the order Hymenoptera have a defensive substance that contains many biologically active compounds. Specifically, venom from honeybees (Apis mellifera) contains many enzymes and peptides that are effective against various diseases. Different research papers stated the possibility of using bee venom (a direct bee sting or in an injectable form) in treating several complications; either in vivo or in vitro. Other reports used the active fractions of bee venom clinically or at labratory scale. Many reports and publications have stated that bee venom and its constituents have multiple biological activities including anti-microbial, anti-protozoan, anti-cancer, anti-inflammatory, and anti-arthritic properties. The present review aims to refer to the use of bee venom itself or its fractions in treating several diseases and counteracting drug toxicities as an alternative protocol of therapy. The updated molecular mechanisms of actions of bee venom and its components are discussed in light of the previous updated publications. The review also summarizes the potential of venom loaded on nanoparticles as a drug delivery vehicle and its molecular mechanisms. Finally, the products of bee venom available in markets are also demonstrated.


Asunto(s)
Venenos de Abeja/uso terapéutico , Abejas/química , Enzimas/química , Preparaciones Farmacéuticas/química , Alérgenos/efectos adversos , Alérgenos/química , Animales , Venenos de Abeja/química , Venenos de Abeja/enzimología , Humanos , Mordeduras y Picaduras de Insectos , Péptidos/química , Péptidos/uso terapéutico
18.
Molecules ; 26(16)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34443531

RESUMEN

The aim of the study was to determine the chemical profile, antioxidant properties and antimicrobial activities of Heterotrigona itama bee bread from Malaysia. The pH, presence of phytochemicals, antioxidant properties, total phenolic content (TPC) and total flavonoid content (TFC), as well as antimicrobial activities, were assessed. Results revealed a decrease in the pH of bee bread water extract (BBW) relative to bee bread ethanolic extract (BBE) and bee bread hot water extract (BBH). Further, alkaloids, flavonoids, phenols, tannins, saponins, terpenoids, resins, glycosides and xanthoproteins were detected in BBW, BBH and BBE. Also, significant decreases in TPC, TFC, DPPH activity and FRAP were detected in BBW relative to BBH and BBE. We detected phenolic acids such as gallic acid, caffeic acid, trans-ferulic acid, trans 3-hydroxycinnamic acid and 2-hydroxycinnamic acid, and flavonoids such as quercetin, kaempferol, apigenin and mangiferin in BBE using high-performance liquid chromatography analysis. The strongest antimicrobial activity was observed in Klebsilla pneumonia (MIC50 1.914 µg/mL), followed by E. coli (MIC50 1.923 µg/mL), Shigella (MIC50 1.813 µg/mL) and Salmonella typhi (MIC50 1.617 µg/mL). Bee bread samples possess antioxidant and antimicrobial properties. Bee bread contains phenolic acids and flavonoids, and could be beneficial in the management and treatment of metabolic diseases.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Abejas/química , Própolis/farmacología , Alcaloides/química , Animales , Antiinfecciosos/química , Antioxidantes/química , Cromatografía Líquida de Alta Presión , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Flavonoides/química , Glicósidos/química , Himenópteros/química , Fenoles/química , Própolis/química , Salmonella typhi/efectos de los fármacos , Salmonella typhi/patogenicidad , Saponinas/química , Shigella/efectos de los fármacos , Shigella/patogenicidad , Taninos/química , Terpenos/química
19.
Molecules ; 26(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209107

RESUMEN

Bee products have been known for centuries for their versatile healing properties. In recent decades they have become the subject of documented scientific research. This review aims to present and compare the impact of bee products and their components as antimicrobial agents. Honey, propolis, royal jelly and bee venom are bee products that have antibacterial properties. Sensitivity of bacteria to these products varies considerably between products and varieties of the same product depending on their origin. According to the type of bee product, different degrees of activity were observed against Gram-positive and Gram-negative bacteria, yeasts, molds and dermatophytes, as well as biofilm-forming microorganisms. Pseudomonas aeruginosa turned out to be the most resistant to bee products. An analysis of average minimum inhibitory concentration values for bee products showed that bee venom has the strongest bacterial effectiveness, while royal jelly showed the weakest antibacterial activity. The most challenging problems associated with using bee products for medical purposes are dosage and safety. The complexity and variability in composition of these products raise the need for their standardization before safe and predictable clinical uses can be achieved.


Asunto(s)
Antibacterianos , Venenos de Abeja , Abejas/química , Ácidos Grasos , Miel , Própolis , Animales , Antibacterianos/química , Antibacterianos/uso terapéutico , Venenos de Abeja/química , Venenos de Abeja/uso terapéutico , Ácidos Grasos/química , Ácidos Grasos/uso terapéutico , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/crecimiento & desarrollo , Própolis/química , Própolis/uso terapéutico
20.
Molecules ; 26(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200300

RESUMEN

Propolis is a balsamic product obtained from vegetable resins by exotic Africanized bees Apis mellifera L., transported and processed by them, originating from the activity that explores and maintains these individuals. Because of its vegetable and natural origins, propolis is a complex mixture of different compound classes; among them are the volatile compounds present in the aroma. In this sense, in the present study we evaluated the volatile fraction of propolis present in the aroma obtained by distillation and simultaneous extraction, and its chemical composition was determined using coupled gas chromatography, mass spectrometry, and flame ionization detection. The majority of compounds were sesquiterpene and hydrocarbons, comprising 8.2-22.19% α-copaene and 6.2-21.7% ß-caryophyllene, with additional compounds identified in greater concentrations. Multivariate analysis showed that samples collected from one region may have different chemical compositions, which may be related to the location of the resin's production. This may be related to other bee products.


Asunto(s)
Abejas/química , Própolis/química , Compuestos Orgánicos Volátiles/química , Animales , Brasil , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidrocarburos/química , Sesquiterpenos Policíclicos/química , Resinas de Plantas/química , Sesquiterpenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA