Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.491
Filtrar
1.
Molecules ; 29(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124900

RESUMEN

Cellulose and lignin, sourced from biomass, hold potential for innovative bioprocesses and biomaterials. However, traditional fractionation and purification methods often rely on harmful chemicals and high temperatures, making these processes both hazardous and costly. This study introduces a sustainable approach for fractionating acacia wood, focusing on both cellulose and lignin extraction using a deep eutectic solvent (DES) composed of choline chloride (ChCl) and levulinic acid (LA). A design of experiment was employed for the optimization of the most relevant fractionation parameters: time and temperature. In the case of the lignin, both parameters were found to be significant variables in the fractionation process (p-values of 0.0128 and 0.0319 for time and temperature, respectively), with a positive influence. Likewise, in the cellulose case, time and temperature also demonstrated a positive effect, with p-values of 0.0103 and 0.028, respectively. An optimization study was finally conducted to determine the maximum fractionation yield of lignin and cellulose. The optimized conditions were found to be 15% (w/v) of the wood sample in 1:3 ChCl:LA under a treatment temperature of 160 °C for 8 h. The developed method was validated through repeatability and intermediate precision studies, which yielded a coefficient of variation lower than 5%. The recovery and reuse of DES were successfully evaluated, revealing remarkable fractionation yields even after five cycles. This work demonstrates the feasibility of selectively extracting lignin and cellulose from woody biomass using a sustainable solvent, thus paving the way for valorization of invasive species biomass.


Asunto(s)
Acacia , Celulosa , Fraccionamiento Químico , Disolventes Eutécticos Profundos , Lignina , Madera , Lignina/química , Lignina/aislamiento & purificación , Celulosa/química , Acacia/química , Madera/química , Fraccionamiento Químico/métodos , Disolventes Eutécticos Profundos/química , Solventes/química , Temperatura , Biomasa
2.
Sci Total Environ ; 948: 174929, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038678

RESUMEN

Dormancy in seeds is a key persistence mechanism for many flowering plants. Physically dormant (PY) seeds have water impermeable seed coats, and in fire-prone systems a common mechanism for dormancy release is fire-induced soil heating. However, the thermal thresholds innate to seeds with PY may be influenced by vegetation, climate, and fire regimes, varying substantially between populations of the same species. To investigate intraspecific variation of thermal thresholds in PY seeds, we sampled obligate seeding Acacia pulchella (Fabaceae) which produces PY seeds. Sampling was undertaken from 13 populations across a climate gradient of rainfall and temperature, and between two vegetation communities in fire-prone Mediterranean-type ecosystems of south-west Western Australia. To test a range of weather and fire-induced soil heating dormancy-break scenarios, we conducted dry heat shock experiments between 40 and 140 °C for 10 min and scored germination for 16 weeks. We created population-specific thermal performance curves and extracted the dormancy release temperature at which 50 % of the seeds had germinated (DRT50), the optimum dormancy-breaking temperature to stimulate maximum germination (T0), and the lethal temperature at which 50 % of the seeds were killed (LT50). Generalised linear models were used to examine relationships between thermal thresholds and possible vegetation, climate, and fire regime drivers of intraspecific variation in seed traits. We found that thermal thresholds differed between vegetation communities, with thresholds consistently higher in forest-type ecosystems compared to open woodland, and the influence of climate varied significantly between the two communities. Seeds from Jarrah Forest populations had a DRT50 16.0 °C higher, a T0 9.7 °C higher, and LT50 7.8 °C higher than seeds from Banksia woodlands. A high rate of non-dormancy was identified in one population that had lost fire in its system and displayed significant germination after both summer and fire-related temperatures. The PY thermal thresholds modelled here provide insight into the strong influence of variable soil heating as a function of vegetation and fuel dynamics in fire-prone environments. Our findings highlight the significant intraspecific variation for this species and suggest that fire-induced soil heating generated by vegetation characteristics may be an overlooked element of fire regimes shaping seed traits.


Asunto(s)
Acacia , Semillas , Acacia/fisiología , Germinación/fisiología , Latencia en las Plantas , Calor , Clima , Australia Occidental , Ecosistema
3.
Meat Sci ; 216: 109579, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38959639

RESUMEN

Fatty acid profile, physicochemical composition, and carcass traits of 32 young Nellore bulls were assessed following the supplementation of Acacia mearnsii extract at levels of 0, 10, 30, and 50 g/kg of total dry matter (DM) in a completely randomized experiment with four treatments and eight replicates. Adding 50 g/kg DM of condensed tannins (CT) from Acacia mearnsii in the bulls' diet reduced DM intake, average daily gain, and meat lipid oxidation (P ≤ 0.05). The pH, centesimal composition, collagen, and meat color indexes of the longissimus muscle were not altered by the addition of Acacia mearnsii (P > 0.05). Cooling loss increased (P = 0.049) linearly. Including Acacia mearnsii in diet reduced the Warner-Bratzler shear force (WBSF, P = 0.018) of longissimus muscle of the bulls. The concentration of C16:0, C17:0, C24:0, t9,10,11,16-18:1, c9t11-18:2, C18:2n-6, C20:4n-6, 20:5n-3, 22:5n-3, and 22:6n-3 in the muscle increased due to the addition of Acacia in the diet (P ≤ 0.05), with the highest muscle concentrations caused by the addition of 10 to 30 g Acacia. c9-18:1 and t16-18:1 reduced linearly. Æ©SFA, Æ©BI, Æ©cis- and Æ©MUFA, Æ©n-3, Æ©n-6, and Æ©PUFA (P ≤ 0.05) quadratically increased at higher concentrations of addition of Acacia, above 30 g/kg DM. It is recommended to include Acacia mearnsii extract up to 30 g/kg total DM in diets for young bulls as it improves CLA, PUFA and TI and reduces lipid oxidation. Acacia mearnsii extract as source of CT at 50 g/kg DM negatively impacted the young bulls performance.


Asunto(s)
Acacia , Alimentación Animal , Dieta , Ácidos Grasos , Músculo Esquelético , Extractos Vegetales , Carne Roja , Animales , Bovinos , Acacia/química , Masculino , Carne Roja/análisis , Músculo Esquelético/química , Alimentación Animal/análisis , Ácidos Grasos/análisis , Dieta/veterinaria , Extractos Vegetales/química , Color , Resistencia al Corte , Suplementos Dietéticos
4.
Chem Biodivers ; 21(8): e202401061, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963913

RESUMEN

In the current investigation, total phenolics and flavonoids of the methanolic extract obtained from the trunk bark of Acacia cyanophylla Lindl. were quantified by LC-HRMS technique. DPPH and ABTS reagents were employed to assay the antioxidant potential. The anti-tyrosinase and anti-α-amylase potentials were also assayed. The findings revealed that thirteen polyphenolic compounds were detected in the methanolic extract with trans-taxifolin (23.2 g/kg), as the major constituent. A. cyanophylla extract displayed a higher activity with DPPH test (IC50=10.14±1.00 µg/mL) than with ABTS (IC50=15.27±2.09 µg/mL). The same extract also exhibited interesting α-amylase inhibitory action (IC50 value of 4.00±0.17 µg/mL). Moreover, methanolic trunk bark extract exerted strong anti-tyrosinase capacity with an IC50 of 5.12±0.41 µg/mL in comparison to kojic acid (IC50=10.22±0.85 µg/mL) used as positive control. The antioxidant, anti-tyrosinase and anti-α-amylase potentials of the methanolic extract of A. cyanophylla trunk bark were reinforced by in silico molecular docking analyses, which confirmed the results of the in vitro tests.


Asunto(s)
Acacia , Antioxidantes , Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa , Fenoles , Corteza de la Planta , Extractos Vegetales , alfa-Amilasas , Corteza de la Planta/química , Fenoles/química , Fenoles/farmacología , Fenoles/aislamiento & purificación , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Acacia/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Picratos/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Simulación por Computador , Flavonoides/química , Flavonoides/farmacología , Flavonoides/aislamiento & purificación
5.
J Environ Manage ; 367: 121941, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068785

RESUMEN

Reforestation and afforestation either through natural regeneration, tree planting or both methods have been globally promoted to motivate ecological restoration of degraded lands and to improve livelihoods. However, moisture stress and infertile soils limit the survival and growth of trees planted for restoration in drier areas. Hence, understanding the factors that determine the restoration success of drylands through tree planting is critical. We conducted a factorial experiment in Tigray, Ethiopia to evaluate the survival, growth performance and biomass of planted seedlings of the multipurpose agroforestry tree species Acacia saligna over 24 months. The treatments were application of watering (W), mulching (M) and compost (C) separately and in combinations (WM, WMC). We established experimental plots on farmland and on a nearby hillside-exclosure to examine the role of planting niches on seedling performance. Seedlings treated with watering, mulching, and compost (WMC) revealed significantly greater height, root collar diameter (RCD), and dry biomass compared to the other treatments. Seedlings planted in farmland showed significantly greater height, RCD, and total dry biomass compared to those planted at the hillside-exclosure. Although the survival rate was slightly higher in farmland, we also found sufficient survival rates in the hillside-exclosures. Therefore, post-planting care and activities including mulching, watering and fertilization are crucial to enhance the survival and growth performance of A. saligna or other tree species so that efforts in reversing land degradation and restoration of drylands will be successful.


Asunto(s)
Acacia , Acacia/crecimiento & desarrollo , Suelo/química , Biomasa , Plantones/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Etiopía , Conservación de los Recursos Naturales , Agricultura/métodos
6.
Microb Pathog ; 194: 106819, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067493

RESUMEN

Macrophomina phaseolina is a wide host ranged soil-borne fungal plant pathogen. It infects more than 500 host plant species belonging to 100 families. Many important oil-seed and leguminous crops are known to be attacked by this devastating plant pathogen. In the present study, antifungal potential of flowers of a leguminous tree Acacia nilotica subsp. indica, was assessed against this pathogen through bioassays guided fractionation. Initially, methanolic extracts of 1 %-5 % of leaf, flower, root-bark and stem-bark of the plant species under consideration were evaluated for their antifungal potential against the target pathogen. Among these, the best antifungal activity was shown by flower extract. The reduction in growth of the test fungal strain was 27-49 %, 4-40 % and 2-27 % due to flower, root-bark and leaf extracts, respectivey, over control. Flower extract was partitioned using n-hexane, chloroform, ethyl acetate and n-butanol as the solvents. Bioassays guided study of these fractions of methanolic extract of flower revealed that high antifungal potential was shown by n-hexane and chloroform fractions against M. phaseolina causing 26-53 % and 28-50 % decline in fungal biomass, respectively, as compared to that of control. GC-MS analysis of chloroform fraction revealed the presence of 27 compounds in this fraction. Among these cyclopentanol,-1-methyl (10.93 %) was the predominant compound followed by methyl, 4,4-dimethyl butanoate (7.04 %), 1-pentanol (6.80 %), 2-propanol, 1-cyclopropyl (6.11 %), 1H,imidazole-4-5-dihydro-2-methyl (5.93 %), trichloroethane (5.91 %), carbonic acid-ethyl hexyl ester (4.59 %), 1,4-butandiol,2,3-bis(methylene)- (4.54 %) and [S]-3,4-dimethyl pentanol (4.48 %).


Asunto(s)
Acacia , Antifúngicos , Ascomicetos , Flores , Cromatografía de Gases y Espectrometría de Masas , Extractos Vegetales , Acacia/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Flores/química , Antifúngicos/farmacología , Ascomicetos/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Pruebas de Sensibilidad Microbiana , Hojas de la Planta/química
7.
Biomed Chromatogr ; 38(7): e5891, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38773686

RESUMEN

The aim of this study was to analyze the phytochemical profile of Acacia cyclops trunk bark ethyl acetate extract using LC-tandem mass spectrometry for the first time, along with evaluating its antioxidant and anti-tyrosinase properties. Consequently, we determined the total phenolic and flavonoid contents of the extract under investigation and identified and quantified 19 compounds, including phenolic acids and flavonoids. In addition to assessing their antioxidant potential against DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azino-bis-[3-ethylbenzothiazoline-6-sulfonic] acid) assays, in vitro and in silico studies were conducted to evaluate the tyrosinase inhibitory properties of the A. cyclops extract. The ethyl acetate trunk bark extract exhibited a substantial total phenolic content and demonstrated significant antioxidant activity in terms of free radical scavenging, as well as notable tyrosinase inhibitory action (half-maximal inhibitory concentration [IC50] = 14.08 ± 1.10 µg/mL). The substantial anti-tyrosinase activity of the examined extract was revealed through molecular docking analysis and druglikeness prediction of the main selected compounds. The findings suggest that A. cyclops extract holds promise as a potential treatment for skin hyperpigmentation disorders.


Asunto(s)
Acacia , Antioxidantes , Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa , Corteza de la Planta , Extractos Vegetales , Monofenol Monooxigenasa/antagonistas & inhibidores , Acacia/química , Corteza de la Planta/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/análisis , Extractos Vegetales/química , Extractos Vegetales/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/análisis , Espectrometría de Masas en Tándem/métodos , Flavonoides/química , Flavonoides/análisis , Flavonoides/farmacología , Fenoles/química , Fenoles/análisis , Fenoles/farmacología , Cromatografía Liquida/métodos
8.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732191

RESUMEN

Acacia melanoxylon is highly valued for its commercial applications, with the heartwood exhibiting a range of colors from dark to light among its various clones. The underlying mechanisms contributing to this color variation, however, have not been fully elucidated. In an effort to understand the factors that influence the development of dark heartwood, a comparative analysis was conducted on the microstructure, substance composition, differential gene expression, and metabolite profiles in the sapwood (SW), transition zone (TZ), and heartwood (HW) of two distinct clones, SR14 and SR25. A microscopic examination revealed that heartwood color variations are associated with an increased substance content within the ray parenchyma cells. A substance analysis indicated that the levels of starches, sugars, and lignin were more abundant in SP compared to HW, while the concentrations of phenols, flavonoids, and terpenoids were found to be higher in HW than in SP. Notably, the dark heartwood of the SR25 clone exhibited greater quantities of phenols and flavonoids compared to the SR14 clone, suggesting that these compounds are pivotal to the color distinction of the heartwood. An integrated analysis of transcriptome and metabolomics data uncovered a significant accumulation of sinapyl alcohol, sinapoyl aldehyde, hesperetin, 2', 3, 4, 4', 6'-peptahydroxychalcone 4'-O-glucoside, homoeriodictyol, and (2S)-liquiritigenin in the heartwood of SR25, which correlates with the up-regulated expression of CCRs (evm.TU.Chr3.1751, evm.TU.Chr4.654_667, evm.TU.Chr4.675, evm.TU.Chr4.699, and evm.TU.Chr4.704), COMTs (evm.TU.Chr13.3082, evm.TU.Chr13.3086, and evm.TU.Chr7.1411), CADs (evm.TU.Chr10.2175, evm.TU.Chr1.3453, and evm.TU.Chr8.1600), and HCTs (evm.TU.Chr4.1122, evm.TU.Chr4.1123, evm.TU.Chr8.1758, and evm.TU.Chr9.2960) in the TZ of A. melanoxylon. Furthermore, a marked differential expression of transcription factors (TFs), including MYBs, AP2/ERFs, bHLHs, bZIPs, C2H2s, and WRKYs, were observed to be closely linked to the phenols and flavonoids metabolites, highlighting the potential role of multiple TFs in regulating the biosynthesis of these metabolites and, consequently, influencing the color variation in the heartwood. This study facilitates molecular breeding for the accumulation of metabolites influencing the heartwood color in A. melanoxylon, and offers new insights into the molecular mechanisms underlying heartwood formation in woody plants.


Asunto(s)
Acacia , Regulación de la Expresión Génica de las Plantas , Madera , Acacia/metabolismo , Acacia/genética , Madera/metabolismo , Madera/química , Flavonoides/metabolismo , Lignina/metabolismo , Transcriptoma , Fenoles/metabolismo , Perfilación de la Expresión Génica/métodos , Metabolómica/métodos
9.
Plant Dis ; 108(6): 1491-1500, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38780477

RESUMEN

Ceratocystis manginecans has caused significant losses in forestry productivity in Indonesia and neighboring nations. It also infects horticultural trees, but the host range of individual isolates of C. manginecans is poorly studied. So, this study aimed to better understand the potential host range and evaluate aggressiveness against forestry and fruit tree species of C. manginecans isolated from various tree species in Indonesia. Five C. manginecans isolates, four from different tree species and one from the shot-hole borer Euwallacea perbrevis, were used to inoculate seven fruit and six forest tree species, including E. pellita and Acacia mangium. Many of the inoculated trees produced typical canker disease symptoms, such as rough, swollen, and cracked lesions on the bark, but some trees did not have any external symptoms. Mortality in the most susceptible clone of A. mangium was 40% within 8 weeks. Forest tree species were more susceptible than fruit trees, with the length of xylem discoloration ranging from 0.4 to 101 cm. In fruit trees, the average extent of xylem discoloration was lower, ranging from 0.4 to 20.5 cm; however, mortalities were recorded in two fruit tree species, Citrus microcarpa and Durio zibethinus. Host-isolate interaction was evident; isolate Ep106C from Eucalyptus pellita caused the greatest xylem discoloration in Citrus sp., whereas Hy163C from Hymenaea courbaril was the most damaging in D. zibethinus, Artocarpus heterophyllus, and Mangifera indica. Increasingly globalized food and fiber systems increase risk of disease spread, and the serious threat of C. manginecans incursions into countries where it is not present must be evaluated more thoroughly.


Asunto(s)
Agricultura Forestal , Enfermedades de las Plantas , Árboles , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Ascomicetos/fisiología , Ascomicetos/aislamiento & purificación , Especificidad del Huésped , Indonesia , Animales , Frutas/microbiología , Acacia/microbiología
10.
Trop Anim Health Prod ; 56(4): 152, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722369

RESUMEN

Supplementing livestock grazing communal rangelands with leaf-meals from Acacia trees, which are currently considered as problematic invasive alien plants globally, may be a sustainable way of exploiting their desirable nutritional and anthelmintic properties. The current study evaluated worm burdens and growth performance of lambs grazing low-quality communal rangelands supplemented with leaf-meals prepared from the invasive alien plant species; Acacia mearnsii or A. dealbata. Forty, three-month-old ewe lambs weighing an average of 18.9 ± 0.60 kg were randomly allocated to four supplementary diets: (1) rangeland hay only (control), (2) commercial protein supplement plus rangeland hay, (3) A. mearnsii leaf-meal plus rangeland hay and (4) A. dealbata leaf-meal plus rangeland hay. All the supplementary diets were formulated to meet the lambs' minimum maintenance requirements for protein. All the lambs were grazed on communal rangelands daily from 0800 to 1400 after which they were penned to allow them access to their respective supplementary diets until 08:00 the following morning. The respective supplementary diets were offered at the rate of 400 g ewe- 1 day- 1 for 60 days. Lambs fed the commercial protein supplement had the highest dry matter intake followed by those fed the Acacia leaf-meals and the control diet, respectively (P ≤ 0.05). Relative to the other supplementary diets, lambs fed the commercial protein supplement and A. dealbata leaf-meal had higher (P ≤ 0.05) final body weight and average daily gains. Dietary supplementation did not affect lamb faecal worm egg counts over the study period (P > 0.05). There was no association between supplementary diets and lamb FAMACHA© scores (P > 0.05). It was concluded that supplementation of Acacia dealbata versus Acacia mearnsii has the potential to emulate commercial protein in maintaining growth performance of lambs grazing communal rangelands in the dry season.


Asunto(s)
Acacia , Alimentación Animal , Dieta , Suplementos Dietéticos , Hojas de la Planta , Animales , Alimentación Animal/análisis , Hojas de la Planta/química , Suplementos Dietéticos/análisis , Femenino , Sudáfrica , Dieta/veterinaria , Oveja Doméstica/crecimiento & desarrollo , Oveja Doméstica/fisiología , Enfermedades de las Ovejas/prevención & control , Enfermedades de las Ovejas/parasitología , Ovinos/crecimiento & desarrollo , Ovinos/fisiología , Heces , Distribución Aleatoria , Recuento de Huevos de Parásitos/veterinaria , Fenómenos Fisiológicos Nutricionales de los Animales
11.
Sci Rep ; 14(1): 11469, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769392

RESUMEN

Large amount of wastes are burnt or left to decompose on site or at landfills where they cause air pollution and nutrient leaching to groundwater. Waste management strategies that return these food wastes to agricultural soils recover the carbon and nutrients that would otherwise have been lost, enrich soils and improve crop productivity. The incorporation of liming materials can neutralize the protons released, hence reducing soil acidity and its adverse impacts to the soil environment, food security, and human health. Biochar derived from organic residues is becoming a source of carbon input to soil and provides multifunctional values. Biochar can be alkaline in nature, with the level of alkalinity dependent upon the feedstock and processing conditions. This study conducted a characterization of biochar derived from the pyrolysis process of eggplant and Acacia nilotica bark at temperatures of 300 °C and 600 °C. An analysis was conducted on the biochar kinds to determine their pH, phosphorus (P), as well as other elemental composition. The proximate analysis was conducted by the ASTM standard 1762-84, while the surface morphological features were measured using a scanning electron microscope. The biochar derived from Acacia nilotica bark exhibited a greater yield and higher level of fixed carbon while possessing a lower content of ash and volatile components compared to biochar derived from eggplant. The eggplant biochar exhibits a higher liming ability at 600 °C compared to the acacia nilotica bark-derived biochar. The calcium carbonate equivalent, pH, potassium (K), and phosphorus (P) levels in eggplant biochars increased as the pyrolysis temperature increased. The results suggest that biochar derived from eggplant could be a beneficial resource for storing carbon in the soil, as well as for addressing soil acidity and enhancing nutrients availability, particularly potassium and phosphorus in acidic soils.


Asunto(s)
Biomasa , Carbón Orgánico , Pirólisis , Carbón Orgánico/química , Fósforo/química , Fósforo/análisis , Madera/química , Concentración de Iones de Hidrógeno , Suelo/química , Temperatura , Acacia/química , Carbono/química , Carbono/análisis
12.
BMC Plant Biol ; 24(1): 428, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773358

RESUMEN

BACKGROUND: Acacia nilotica Linn. is a widely distributed tree known for its applications in post-harvest and medicinal horticulture. However, its seed-based growth is relatively slow. Seed is a vital component for the propagation of A. nilotica due to its cost-effectiveness, genetic diversity, and ease of handling. Colchicine, commonly used for polyploidy induction in plants, may act as a pollutant at elevated levels. Its optimal concentration for Acacia nilotica's improved growth and development has not yet been determined, and the precise mechanism underlying this phenomenon has not been established. Therefore, this study investigated the impact of optimized colchicine (0.07%) seed treatment on A. nilotica's morphological, anatomical, physiological, fluorescent, and biochemical attributes under controlled conditions, comparing it with a control. RESULTS: Colchicine seed treatment significantly improved various plant attributes compared to control. This included increased shoot length (84.6%), root length (53.5%), shoot fresh weight (59.1%), root fresh weight (42.8%), shoot dry weight (51.5%), root dry weight (40%), fresh biomass (23.6%), stomatal size (35.9%), stomatal density (41.7%), stomatal index (51.2%), leaf thickness (11 times), leaf angle (2.4 times), photosynthetic rate (40%), water use efficiency (2.2 times), substomatal CO2 (36.6%), quantum yield of photosystem II (13.1%), proton flux (3.1 times), proton conductivity (2.3 times), linear electron flow (46.7%), enzymatic activities of catalase (25%), superoxide dismutase (33%), peroxidase (13.5%), and ascorbate peroxidase (28%), 2,2-diphenyl-1-picrylhydrazyl-radical scavenging activities(23%), total antioxidant capacity (59%), total phenolic (23%), and flavonoid content (37%) with less number of days to 80% germination (57.1%), transpiration rate (53.9%), stomatal conductance (67.1%), non-photochemical quenching (82.8%), non-regulatory energy dissipation (24.3%), and H2O2 (25%) and O-2 levels (30%). CONCLUSION: These findings elucidate the intricate mechanism behind the morphological, anatomical, physiological, fluorescent, and biochemical transformative effects of colchicine seed treatment on Acacia nilotica Linn. and offer valuable insights for quick production of A. nilotica's plants with modification and enhancement from seeds through an eco-friendly approach.


Asunto(s)
Acacia , Colchicina , Semillas , Colchicina/farmacología , Acacia/efectos de los fármacos , Acacia/fisiología , Acacia/crecimiento & desarrollo , Acacia/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo
13.
BMC Plant Biol ; 24(1): 308, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644502

RESUMEN

Acacia melanoxylon is well known as a valuable commercial tree species owing to its high-quality heartwood (HW) products. However, the metabolism and regulatory mechanism of heartwood during wood development remain largely unclear. In this study, both microscopic observation and content determination proved that total amount of starches decreased and phenolics and flavonoids increased gradually from sapwood (SW) to HW. We also obtained the metabolite profiles of 10 metabolites related to phenolics and flavonoids during HW formation by metabolomics. Additionally, we collected a comprehensive overview of genes associated with the biosynthesis of sugars, terpenoids, phenolics, and flavonoids using RNA-seq. A total of ninety-one genes related to HW formation were identified. The transcripts related to plant hormones, programmed cell death (PCD), and dehydration were increased in transition zone (TZ) than in SW. The results of RT-PCR showed that the relative expression level of genes and transcription factors was also high in the TZ, regardless of the horizontal or vertical direction of the trunk. Therefore, the HW formation took place in the TZ for A. melanoxylon from molecular level, and potentially connected to plant hormones, PCD, and cell dehydration. Besides, the increased expression of sugar and terpenoid biosynthesis-related genes in TZ further confirmed the close connection between terpenoid biosynthesis and carbohydrate metabolites of A. melanoxylon. Furthermore, the integrated analysis of metabolism data and RNA-seq data showed the key transcription factors (TFs) regulating flavonoids and phenolics accumulation in HW, including negative correlation TFs (WRKY, MYB) and positive correlation TFs (AP2, bZIP, CBF, PB1, and TCP). And, the genes and metabolites from phenylpropanoid and flavonoid metabolism and biosynthesis were up-regulated and largely accumulated in TZ and HW, respectively. The findings of this research provide a basis for comprehending the buildup of metabolites and the molecular regulatory processes of HW formation in A. melanoxylon.


Asunto(s)
Acacia , Flavonoides , Perfilación de la Expresión Génica , Madera , Acacia/genética , Acacia/metabolismo , Flavonoides/metabolismo , Flavonoides/biosíntesis , Madera/genética , Madera/metabolismo , Metabolómica , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Fenoles/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
14.
Sci Rep ; 14(1): 8720, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622258

RESUMEN

This article examined the effect of geographical (different climate conditions) and floral origins on some quality parameters of honey including the activity of diastase enzyme. Moreover, some non-quality parameters were investigated such as the pH, fructose, glucose, ratio of fructose/glucose and invertase. The honey samples were collected from Asir (cold climate) and Jazan (hot climate) regions at the southwestern part of Saudi Arabia. The geographical origin significantly affected the mean value moisture of the Acacia honey (p-value = 0.02), conductivity of the polyfloral honey (p-value = 0.03), sucrose of the Acacia honey (p-value = 0.02), diastase activity of the Acacia (p-value = 0.001), Ziziphus (p-value = 0.046) and polyfloral honey (p-value ≤ 0.001), fructose of the Acacia honey (p-value = 0.01), glucose of the Ziziphus honey (p-value = 0.03), fructose/ glucose ratio of the Ziziphus honey (p-value = 0.035), and invertase activity of the polyfloral honey (p-value ≤ 0.001). Regarding the effect of the floral origin of the honey from Asir region, the sucrose percentage of the Acacia honey was significantly more than that of the polyfloral honey (p- value = 0.003), the diastase activity of the Acacia honey was significantly more than its activity in the Ziziphus honey (p- value = 0.044), glucose percentage of the Ziziphus honey was significantly more the glucose percentage of the Acacia honey (p-value = 0.009) and the fructose/ glucose ratio of the Ziziphus honey was significantly more than that of the Acacia and polyforal honeys (p-value = 0.011 and p-value = 0.045, respectively). Concerning the significant effects of the floral origin on the quality parameters of the honey samples from Jazan region, the moisture of the Ziziphus honey was significantly increased when compared to the moisture of the Acacia honey (p-value = 0.038), the acidity of the polfloral honey was significantly more than the acidity of the Acacia honey (p-value = 0.049), the sum of fructose and glucose of the polyfloral honey was significantly increased compared to that of the Acacia honey (p-value = 0.015), the pH of the Ziziphus hiney was significantly more than the pH of the polyfloral honey (0.011) and the fructose of the polfloral honey was significantly more than that of the Acacia honey (p-value = 0.031). The effect of the geographical origin of the honey samples on their quality parameters depends on their floral origin and the effect of their floral origin differs according to their geographical origin. This article suggests considering collectively the geographical and floral origins effect when developing honey standards. However, the Codex standards for honey started considering this issue when it changed the standard concentration of HMF in honey from not more than 80-40 mg/Kg for honeys from cold climate and 80 mg/Kg for honeys from hot climates.


Asunto(s)
Acacia , Miel , Arabia Saudita , beta-Fructofuranosidasa , Fructosa , Glucosa , Sacarosa , Amilasas
15.
Eur J Nutr ; 63(5): 1983-1994, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38653808

RESUMEN

PURPOSE: To date, no adequate treatment for irritable bowel syndrome with predominant constipation complaints (IBS-C) is available. Fibers with prebiotic properties and probiotic compounds have shown promise in relieving IBS-C-related complaints. We aimed to determine the effects of a 4-week intervention with either an Acacia fiber (AF) with prebiotic properties or a probiotic Bifidobacterium Lactis (BLa80) supplement, compared to a control supplement, on stool pattern, IBS symptoms and Quality of Life (QoL), in IBS-C individuals. METHODS: A parallel, double-blind, randomized controlled trial involving 180 subjects meeting the ROME IV criteria for IBS-C was conducted. Following a 4-week observation period, subjects received either AF (10 g), Probiotic BLa80 (4 g; 2 × 1011 CFU/g) or a maltodextrin placebo (10 g) daily for 4 weeks. Subjects reported daily information on stool pattern and gastrointestinal complaints. Before and after each 4-week period, questionnaires on symptom severity, constipation symptoms, anxiety and depression and QoL were completed. Stool mass was measured for 5-days before and after the intervention. RESULTS: Stool frequency significantly improved in the AF and Probiotic BLa80 groups compared to placebo (P < 0.001, P = 0.02, respectively). Probiotic BLa80 showed a significant reduction in IBS symptom severity (P = 0.03), for AF a trend towards decreased constipation symptoms (PAC-SYM, P = 0.10) was observed. No significant changes in stool consistency, stool mass or QoL measures were observed between the AF and Probiotic BLa80 compared to placebo. CONCLUSION: Daily dietary supplementation with Acacia fiber and probiotic supplements might help IBS-C patients by relieving IBS-related complaints compared to a placebo supplement. REGISTRATION NUMBER OF CLINICAL TRIAL: The trial is registered at ClinicalTrials.gov: NCT04798417: Study Details | Nutrition to Relieve IBS Constipation | ClinicalTrials.gov.


Asunto(s)
Acacia , Estreñimiento , Fibras de la Dieta , Suplementos Dietéticos , Síndrome del Colon Irritable , Probióticos , Calidad de Vida , Humanos , Probióticos/administración & dosificación , Probióticos/uso terapéutico , Método Doble Ciego , Estreñimiento/terapia , Femenino , Masculino , Fibras de la Dieta/administración & dosificación , Fibras de la Dieta/uso terapéutico , Adulto , Síndrome del Colon Irritable/complicaciones , Síndrome del Colon Irritable/terapia , Síndrome del Colon Irritable/dietoterapia , Persona de Mediana Edad , Resultado del Tratamiento , Heces/microbiología
16.
Plant Physiol Biochem ; 210: 108618, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631157

RESUMEN

The Acacia koa S-adenosylmethionine (SAM) synthetase was identified from transcriptome data and cloned into the T7-expression vector pEt14b. Assays indicate a thermoalkaliphic enzyme which tolerates conditions up to pH 10.5, 55 °C and 3 M KCl. In vitro examples of plant SAM-synthetase activity are scarce, however this study provides supporting evidence that these extremophilic properties may actually be typical for this plant enzyme. Enzyme kinetic constants (Km = 1.44 mM, Kcat = 1.29 s-1, Vmax 170 µM. min-1) are comparable to nonplant SAM-synthetases except that substrate inhibition was not apparent at 10 mM ATP/L-methionine. Methods were explored in this study to reduce feedback inhibition, which is known to limit SAM-synthetase activity in vitro. Four single-point mutation variants of the Acacia koa SAM-synthetase were produced, each with varying degrees of reduced reaction rate, greater sensitivity to product inhibition and loss of thermophilic properties. Although an enhanced mutant was not produced, this study describes the first mutagenesis of a plant SAM-synthetase. Overcoming feedback inhibition was accomplished by the addition of organic solvent to enzyme assays. Acetonitrile, methanol or dimethylformamide, when included as 25% of the assay volume, improved total SAM production by 30-65%.


Asunto(s)
Acacia , Metionina Adenosiltransferasa , Acacia/genética , Acacia/metabolismo , Acacia/enzimología , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cinética , S-Adenosilmetionina/metabolismo , Concentración de Iones de Hidrógeno
17.
Toxicon ; 243: 107737, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38677379

RESUMEN

Botanical essential oils are natural insecticides derived from plants, offering eco-friendly alternatives to synthetic chemicals for pest control. In this study, the essential oils were extracted from Acacia nilotica seed cotyledons, and their toxicity was tested against insect pests. Furthermore, the chemical components of the essential oils were identified through gas chromatography-mass spectrometry (GC-MS) analysis. The essential oil extracted from A. nilotica seeds exhibited the highest mortality rates of 60% and 98% in Culex quinquefasciatus, and 60% and 96.66% mortality in Plutella xylostella at 24 and 48 h after treatment, respectively. The essential oils resulted in a lower LC50 of 159.263 ppm/mL, and LC90 of 320.930 ppm/mL within 24 h. In 48 h, the LC50 was 52.070 ppm/mL and the LC90 was 195.123 ppm/mL for C. quinquefasciatus. In the essential oil treatment of P. xylostella, the lower LC50 was 165.900 ppm/mL, and the LC90 was 343.840 ppm/mL 24 h after the treatment. At 48 h post-treatment, the LC50 decreased to 62.965 ppm/mL, and the LC90 decreased to 236.795 ppm/mL in P. xylostella. The study investigated the impact of essential oils on insect enzymes 24 h after treatment. The study revealed significant changes in the levels of insect enzymes, including a decrease in acetylcholinesterase enzymes and an increase in glutathione S-transferase compared to the control group. Essential oils had minimal effects, resulting in mortality rates of 30.66% and 46% at 24 and 48 h after treatment on Artemia salina. After 48 h, minimal toxic effects of essential oils were observed on E. eugeniae, with a mortality rate of 11.33%. The GC-MS analysis of A. nilotica seed-derived essential oils revealed ten major chemical constituents, including 6-hydroxymellein, phthalic acid, trichloroacetic acid, hexadecane, acetamide, heptacosane, eicosane, pentadecane, 1,3,4-eugenol, and chrodrimanin B. Among these constituents, Heptacosane is the major chemical component, and this molecule has a high potential for involvement in insecticidal activity.


Asunto(s)
Acacia , Insecticidas , Simulación del Acoplamiento Molecular , Aceites Volátiles , Animales , Aceites Volátiles/química , Aceites Volátiles/farmacología , Acacia/química , Insecticidas/química , Insecticidas/toxicidad , Culex/efectos de los fármacos , Cromatografía de Gases y Espectrometría de Masas , Mariposas Nocturnas/efectos de los fármacos , Semillas/química
18.
Chemosphere ; 356: 141881, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575078

RESUMEN

Acacia Senegal waste (ASW) is remaining biomass following gum Arabic harvesting and has no use mentioned in the literature as of yet. This study aims to convert ASW into valuable biochar via two comparative thermal and hydrothermal techniques, which include pyrochar ASW at 300 °C (PC ASW300) and hydrochar ASW at 180 °C (HC ASW180), respectively, for Cu (II) adsorption from aqueous solutions. SEM-EDS, FTIR, XRD, and XPS were used to characterize the biochar. Adsorption performance was studied as a function of pH, contact time, and adsorbent concentration. Adsorption kinetics were best fit for a pseudo-second-order model. And thermodynamics studies revealed that Cu (II) on biochar was endothermic, spontaneous, and best fitted to the Langmuir isotherm model. Pyrochar adsorption capacity (31.93 mg g-1) was seven times that of hydrochar (5.45 mg g-1). ASW treated with phosphorus (PC H3PO4 and HC H3PO4) prior to the carbonization altered the pore structure and surface functional groups as well (O-P-O, P-CH3, and P-OH) of biochar. It was found that treating with phosphorous acid increased adsorption capacity to 141.7 mg g-1 and 22.24 mg g-1 for PC H3PO4 and HC H3PO4, respectively. The surface functional groups of biochar resulted from lignin, alkaloids, and polysaccharides combined with Cu (II) during the adsorption process via surface complexation accompanied by π-electron interaction and Cu (II) reduction. These findings shed light on the ASW biochar potential as a new green cost-effective adsorbent and drew an insightful understanding of Cu (II) adsorption performance and mechanism. It is concluded that ASW-derived biochar is highly effective and a promising alternative for Cu (II) decontamination from wastewater.


Asunto(s)
Acacia , Carbón Orgánico , Cobre , Aguas Residuales , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico/química , Cobre/química , Acacia/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Cinética , Termodinámica , Descontaminación/métodos , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos
19.
Molecules ; 29(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38611939

RESUMEN

Biosynthesized silver nanoparticles (AgNPs) are widely used in varied applications, which are morphology dependent. Consequently, a morphology-controlled synthesis is mandatory. Although there are several studies focused on the plant extract-based biosynthesis of metallic nanoparticles, the use of extracts obtained from agro-wastes is scant. Furthermore, information regarding morphology modification through the use of additional agents is even more scarce. Thus, in this study, AgNPs were synthesized using a malt extract (ME) obtained from an artisanal beer brewing process residue. Additionally, sodium chloride (NaCl), gum arabic (GA), and talc (T) were used in an attempt to modify the morphology of AgNPs. XRD, DLS, SEM, and TEM results demonstrate that stable AgNPs of different sizes and shapes were synthesized. FTIR, HPLC analysis, and the quantification of total proteins, free amino acids, reducing sugars, and total polyphenols before and after AgNPs synthesis showed that ME biomolecules allowed them to act as a source of reducing and stabilizing agents. Therefore, this study provides evidence that ME can be successfully used to biosynthesize AgNPs. Additionally, the antibacterial activity of AgNPs against Gram-negative and Gram-positive bacteria was evaluated. Results indicate that AgNPs show a higher antibacterial activity against Gram-positive bacteria.


Asunto(s)
Acacia , Nanopartículas del Metal , Cerveza , Plata , Antibacterianos/farmacología , Cloruro de Sodio
20.
Proc Biol Sci ; 291(2020): 20232941, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593850

RESUMEN

Invasive flowering plants can disrupt plant-pollinator networks. This is well documented where invasives occur amongst native plants; however, the potential for 'spillover' effects of invasives that form stands in adjacent habitats are less well understood. Here we quantify the impact of two invasive Australian species, Acacia saligna and Acacia longifolia, on the plant-pollinator networks in fynbos habitats in South Africa. We compared networks from replicate 1 ha plots of native vegetation (n = 21) that were subjected to three treatments: (1) at least 400 m from flowering Acacia; (2) adjacent to flowering Acacia, or (3) adjacent to flowering Acacia where all Acacia flowers were manually removed. We found that native flowers adjacent to stands of flowering Acacia received significantly more insect visits, especially from beetles and Apis mellifera capensis, and that visitation was more generalized. We also recorded visitation to, and the seed set of, three native flowering species and found that two received more insect visits, but produced fewer seeds, when adjacent to flowering Acacia. Our research shows that 'spillover' effects of invasive Acacia can lead to significant changes in visitation and seed production of native co-flowering species in neighbouring habitats-a factor to be considered when managing invaded landscapes.


Asunto(s)
Acacia , Polinización , Animales , Australia , Plantas , Semillas , Insectos , Flores , Especies Introducidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA