Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 593
Filtrar
1.
Molecules ; 29(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39064827

RESUMEN

The use of chemical pesticides in agriculture contributes to soil, water and air pollution, biodiversity loss, and injury to non-target species. The European Commission has already established a Harmonized Risk Indicator to quantify the progress in reducing the risks linked to pesticides. Therefore, there is an increasing need to promote biopesticides, or so-called low-risk pesticides (LRP). Tea tree oil (TTO) is known for its antiseptic, antimicrobial, antiviral, antifungal, and anti-inflammatory properties. TTO has been extensively studied in pest management as well as in the pharmaceutical and cosmetic industry; there are already products based on its active substances on the market. This review focuses on the overall evaluation of TTO in terms of effectiveness and safety as a biopesticide for the first time. The collected data can be an added value for further evaluation of TTO in terms of the authorization extension as a fungicide in 2026.


Asunto(s)
Plaguicidas , Aceite de Árbol de Té , Aceite de Árbol de Té/química , Plaguicidas/farmacología , Agentes de Control Biológico/farmacología , Humanos
2.
PeerJ ; 12: e17241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854801

RESUMEN

Tea tree (Melaleuca alternifolia) oil (TTO) is an antimicrobial agent, and hence, its use in fabricating nanoparticles (NP) may be useful in providing more efficacious antimicrobial agents. The current research aimed to test the antimicrobial efficacy of TTO and its TTO-Metal-NPs against oral microbes: Porphyromonas gingivalis, Enterococcus faecalis, and Streptococcus mutans. The antimicrobial activity of TTO and zinc (Zn) and iron (Fe) nanoparticles (NPs) and the combined effects of antimicrobial agents were investigated using agar well diffusion assays. Fourier-transform infrared spectroscopy (FT-IR) was used to identify the phyto-constituents of TTO. Field emission scanning electron microscopy (FE-SEM), dynamic light scatter (DLS), and zeta potential were utilized to analyze the biogenic nanoparticles' morphology, size, and potential. The antimicrobial mode of action was determined by assessing the morphological changes under scanning electron microscopy (SEM). The TTO extracts converted Zn and Fe ions to NPs, having an average size of 97.50 (ZnNPs) and 102.4 nm (FeNPs). All tested agents had significant antibacterial efficacy against the tested oral microbes. However, the TTO extract was more efficacious than the NPs. Combination treatment of TTO with antibiotics resulted in partial additive effects against P. gingivalis and partial antagonistic effects against E. faecalis, S. mutans, and common mouthwashes (Oral B and chlorhexidine). TTO and NP-treated bacteria underwent morphological changes on treatment. M. alternifolia phytochemicals could be useful for further research and development of antimicrobial NPs. The current study highlights the variance in activity observed for different types of bacteria and antagonistic effects seen with common mouthwashes, which represent a threat to therapeutic efficacy and heighten the risk of clinical microbial resistance.


Asunto(s)
Nanopartículas del Metal , Porphyromonas gingivalis , Streptococcus mutans , Aceite de Árbol de Té , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/química , Nanopartículas del Metal/química , Porphyromonas gingivalis/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Enterococcus faecalis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Boca/microbiología , Microscopía Electrónica de Rastreo , Melaleuca/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Humanos , Hierro , Espectroscopía Infrarroja por Transformada de Fourier
3.
Fitoterapia ; 176: 106051, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838826

RESUMEN

Owing to their extensive biological potential, essential oils (EOs) and their bioactive phytochemicals have gained attention from the scientific community. Within this domain, Terpinen-4-ol (T-4-ol), a bioactive monoterpene alcohol and the major constituent of tea tree oil (TTO), has made its way into translational research. Recent literature on T-4-ol strongly indicates its diverse pharmacological properties, including but not limited to antimicrobial, antivirulent, anti-oxidant, anti-inflammatory, anti-hypertensive, and anti-cancer effects. Hence, this review is the first to provide a comprehensive overview of the sources, bioavailability, safety, pharmaceutical delivery systems, and multifaceted biological properties of T-4-ol, emphasizing its medicinal potential for widescale application. The antibacterial and antifungal effectiveness of T-4-ol has been discussed, encompassing its role in combating a broad spectrum of bacterial and fungal pathogens. The review delves into the antivirulent prospects of T-4-ol, shedding light on its ability to attenuate virulence and mitigate bacterial pathogenesis. Scientific literature on the anti-oxidant and anti-inflammatory activity of T-4-ol highlighting its role in neutralizing reactive oxygen species and modulating inflammatory pathways has also been collated. Furthermore, the review elaborates on the cardioprotective and anti-hypertensive properties of T-4-ol and augments literature on its anti-cancer mechanism against various cancer cell lines. The review also provides in-depth knowledge of the pharmaceutical formulations of T-4-ol and recent knowledge about its application in clinical/field trials. The exploration of these diverse attributes positions T-4-ol as a promising candidate for further research and therapeutic repurposing in various biomedical applications.


Asunto(s)
Terpenos , Terpenos/farmacología , Terpenos/química , Antiinflamatorios/farmacología , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/química , Humanos , Antioxidantes/farmacología , Fitoquímicos/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Animales , Estructura Molecular
4.
Med Mycol ; 62(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38936838

RESUMEN

Candida auris is an emerging fungal pathogen responsible for healthcare-associated infections and outbreaks with high mortality around the world. It readily colonizes the skin, nares, respiratory and urinary tract of hospitalized patients, and such colonization may lead to invasive Candida infection in susceptible patients. However, there is no recommended decolonization protocol for C. auris by international health authorities. The aim of this study is to evaluate the susceptibility of C. auris to commonly used synthetic and natural antiseptic products using an in vitro, broth microdilution assay. Synthetic antiseptics including chlorhexidine, povidone-iodine, and nystatin were shown to be fungicidal against C. auris. Among the natural antiseptics tested, tea tree oil and manuka oil were both fungicidal against C. auris at concentrations less than or equal to 1.25% (v/v). Manuka honey inhibited C. auris at 25% (v/v) concentrations. Among the commercial products tested, manuka body wash and mouthwash were fungicidal against C. auris at concentrations less than or equal to 0.39% (w/v) and 6.25% (v/v) of products as supplied for use, respectively, while tea tree body wash and MedihoneyTM wound gel demonstrated fungistatic properties. In conclusion, this study demonstrated good in vitro antifungal efficacy of tea tree oil, manuka oil, manuka honey, and commercially available antiseptic products containing these active ingredients. Future studies are warranted to evaluate the effectiveness of these antiseptic products in clinical settings.


Candida auris is an emerging superbug fungus that poses a serious threat to global public health. The excellent antifungal efficacy of natural antiseptics and their commercial hygiene products provide new insights into the development of an alternative decolonization regimen against C. auris.


Asunto(s)
Antiinfecciosos Locales , Antifúngicos , Candida auris , Pruebas de Sensibilidad Microbiana , Antiinfecciosos Locales/farmacología , Antifúngicos/farmacología , Humanos , Candida auris/efectos de los fármacos , Aceite de Árbol de Té/farmacología , Miel , Clorhexidina/farmacología , Leptospermum/química
5.
Oral Health Prev Dent ; 22: 211-222, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864380

RESUMEN

PURPOSE: To evaluate the efficacy of the adjunctive use of tea tree oil (TTO) for dental plaque control and nonsurgical periodontal treatment (NSPT). MATERIALS AND METHODS: Three electronic databases were searched from 2003. The reference lists of the included articles and relevant reviews were also manually searched. Randomised controlled trials reporting the clinical outcomes of the topical use of TTO as an adjunct to daily oral hygiene or scaling and root planing (SRP) were included. Regarding the use of TTO as an adjunctive to daily oral hygiene, the primary outcome was plaque index (PI) reduction. Regarding the use of TTO as an adjunctive to SRP, probing pocket depth (PPD) reduction and clinical attachment level (CAL) gain were the primary outcomes. The secondary outcomes were adverse events. RESULTS: Eleven studies were included for qualitative analysis, 9 studies were included for quantitative analysis, and 6 studies were included to examine the application of TTO mouthwash as an adjunctive to daily oral hygiene. In addition, three studies were included to analyse the subgingival use of TTO adjunctive to SRP at selected sites. The results indicated a nonsignificant improvement in PI reduction in the TTO mouthwash group compared with placebo. The incidence of adverse events was statistically significantly greater in the CHX group than in the TTO group. For subgingival use of TTO adjunctive to SRP, beneficial effects were observed in the TTO group compared with SRP alone in terms of PPD and CAL at both three and six months post-treatment. However, an unpleasant taste was reported in three out of four studies. CONCLUSION: There is a lack of strong evidence to support the beneficial effects of TTO. Studies with larger sample sizes and standardised evaluation criteria are needed to further demonstrate the clinical relevance of TTO.


Asunto(s)
Placa Dental , Raspado Dental , Antisépticos Bucales , Ensayos Clínicos Controlados Aleatorios como Asunto , Aceite de Árbol de Té , Humanos , Aceite de Árbol de Té/uso terapéutico , Aceite de Árbol de Té/administración & dosificación , Antisépticos Bucales/uso terapéutico , Placa Dental/prevención & control , Higiene Bucal/educación , Aplanamiento de la Raíz , Índice de Placa Dental , Terapia Combinada , Resultado del Tratamiento , Fitoterapia/métodos , Enfermedades Periodontales/terapia , Enfermedades Periodontales/tratamiento farmacológico
6.
Poult Sci ; 103(7): 103860, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795514

RESUMEN

A large amount of hydrogen sulfide (H2S) is produced in the process of chicken breeding, which can cause serious inflammation and oxidative damage to the respiratory system of chickens. Tea tree oil (TTO) has antioxidant and anti-inflammatory properties. No studies have been reported on the use of TTO in H2S-induced lung injury in chickens. Therefore, in this study, 240 one-day-old Roman pink laying hens were randomly and equally divided into 3 groups: control group (CON), H2S exposure group (AVG, containing H2S), and TTO treatment group (TTG, containing H2S and 0.02 mL/L TTO) to establish an experimental model of TTO treatment with H2S exposure for a period of 42 d. Hematoxylin and eosin (H&E) staining was used to detect lung histopathology. Gene expression profiles were analyzed using transcriptomics. The underlying mechanism of the amelioration of lung injury by TTO was further revealed by antioxidant enzyme assays and qRT-PCR. The results showed that H2S exposure induced significant gene expression of CYP450s (CYP1B1 and CYP1C1) (P < 0.05), and caused intense oxidative stress, apoptosis and inflammation compared with CON. TTO could reduce ROS production and enhance antioxidant capacity (SOD, CAT, T-AOC, and GSH-PX) by regulating the CYP450s/ROS pathway (P < 0.05). Compared with the control group, the treatment group showed significantly decreased expression of apoptotic (Caspase-8, Caspase-3, Bid and Fas) (P < 0.05) and inflammatory (IL-4, IL-16, NF-κB, TNF-α and IFN-γ) (P < 0.05) factors in the lung. This study revealed that TTO regulated CYP450s/ROS pathway to alleviate H2S-induced lung injury in chickens. These results enrich the theory of the action mechanism of TTO on H2S-exposed chicken lungs and are of great value for the treatment of H2S-exposed animals.


Asunto(s)
Pollos , Sistema Enzimático del Citocromo P-450 , Sulfuro de Hidrógeno , Pulmón , Estrés Oxidativo , Aceite de Árbol de Té , Animales , Sulfuro de Hidrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/administración & dosificación , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Femenino , Especies Reactivas de Oxígeno/metabolismo , Enfermedades de las Aves de Corral/inducido químicamente , Antioxidantes/metabolismo , Antioxidantes/farmacología , Proteínas Aviares/metabolismo , Proteínas Aviares/genética , Distribución Aleatoria , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/veterinaria , Lesión Pulmonar/tratamiento farmacológico
7.
Contact Dermatitis ; 91(2): 139-145, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38783163

RESUMEN

BACKGROUND: Chemical hair relaxers are widely utilized by black women, yet little research exists on the allergens present in these products. OBJECTIVE: This study aims to investigate allergen prevalence in the most popular chemical hair relaxers. METHODS: We analysed 41 products from five major retailers, identifying allergens through ingredient lists and comparing them to the 2020 American Contact Dermatitis Group Core allergen series. RESULTS: The most common contact allergens in chemical relaxers include propylene glycol, cetyl steryl alcohol, fragrance, D/L-a-tocopherol, tea tree oil and cocamidopropyl betaine. CONCLUSION: Understanding allergen exposure in products used by individuals with textured hair is needed for managing contact dermatitis in diverse populations. This analysis underscores the presence of potential allergens in hair relaxers, emphasizing the importance of dermatologists' awareness and patient scrutiny of ingredient lists.


Asunto(s)
Alérgenos , Dermatitis Alérgica por Contacto , Preparaciones para el Cabello , Humanos , Preparaciones para el Cabello/efectos adversos , Preparaciones para el Cabello/química , Alérgenos/efectos adversos , Alérgenos/análisis , Dermatitis Alérgica por Contacto/etiología , Betaína/análogos & derivados , Betaína/efectos adversos , Betaína/análisis , Aceite de Árbol de Té/efectos adversos , Aceite de Árbol de Té/análisis , Perfumes/efectos adversos , Perfumes/análisis , Propilenglicol/efectos adversos , Propilenglicol/análisis , Femenino
8.
Int J Food Microbiol ; 418: 110741, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38733636

RESUMEN

Plant volatile organic compounds (PVOCs) have gained increasing attention for their role in preventing fungal spoilage and insect contamination in postharvest agro-products owing to their effectiveness and sustainability. In this study, the essential oil was extracted from fresh M. alternifolia (tea tree) leaves, and the fumigation vapor of tea tree oil (TTO) completely inhibited the growth of Aspergillus flavus on agar plates at a concentration of 1.714 µL/mL. Terpinen-4-ol was identified as the major component (40.76 %) of TTO volatiles analyzed using headspace gas chromatography-mass spectrometry. Terpinen-4-ol vapor completely inhibited the A. flavus growth on agar plates and 20 % moisture wheat grain at 0.556 and 1.579 µL/mL, respectively, indicating that terpinen-4-ol serves as the main antifungal constituent in TTO volatiles. The minimum inhibitory concentration of terpinen-4-ol in liquid-contact culture was 1.6 µL/mL. Terpinen-4-ol treatment caused depressed, wrinkled, and punctured mycelial morphology and destroyed the plasma membrane integrity of A. flavus. Metabolomics analysis identified significant alterations in 93 metabolites, with 79 upregulated and 14 downregulated in A. flavus mycelia exposed to 1.6 µL/mL terpinen-4-ol for 6 h, involved in multiple cellular processes including cell membrane permeability and integrity, the ABC transport system, pentose phosphate pathway, and the tricarboxylic acid cycle. Biochemical analysis and 2,7-dichlorofluorescein diacetate staining showed that terpinen-4-ol induced oxidative stress and mitochondrial dysfunction in A. flavus mycelia. This study provides new insights into the antifungal effects of the main TTO volatile compounds terpinen-4-ol on the growth of A. flavus.


Asunto(s)
Aspergillus flavus , Aceite de Árbol de Té , Terpenos , Triticum , Aspergillus flavus/efectos de los fármacos , Aspergillus flavus/crecimiento & desarrollo , Aceite de Árbol de Té/farmacología , Terpenos/farmacología , Triticum/microbiología , Antifúngicos/farmacología , Compuestos Orgánicos Volátiles/farmacología , Pruebas de Sensibilidad Microbiana , Cromatografía de Gases y Espectrometría de Masas , Grano Comestible/microbiología , Conservación de Alimentos/métodos
9.
J Agric Food Chem ; 72(15): 8389-8400, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38568986

RESUMEN

A global demand for tea tree oil (TTO) has resulted in increased adulteration in commercial products. In this study, we use a novel enantiomeric gas chromatography mass spectrometry method for chiral analysis of key terpenes ((±)-terpinen-4-ol, (±)-α-terpineol, and (±)-limonene) and quantification of components present at >0.01% to test different methods of identifying adulterated TTO. Data from authentic Australian (n = 88) and oxidized (n = 12) TTO samples of known provenance were consistent with recommended ranges in ISO 4730:2017 and previously published enantiomeric ratios, with p-cymene identified as the major marker of TTO oxidation. The 15 ISO 4730:2017 constituents comprised between 84.5 and 89.8% of the total ion chromatogram (TIC) peak area. An additional 53 peaks were detected in all samples (7.3-11.0% of TIC peak area), while an additional 43 peaks were detected in between 0 and 99% (0.15-2.0% of the TIC peak area). Analysis of nine commercial samples demonstrated that comparison to the ISO 4730:2017 standard does not always identify adulterated TTO samples. While statistical analysis of minor components in TTO did identify two commercial samples that differed from authentic TTO, the (+)-enantiomer percentages for limonene, terpinen-4-ol, and α-terpineol provided clearer evidence that these samples were adulterated. Thus, straightforward identification of unadulterated and unoxidized TTO could be based on analysis of appropriate enantiomeric ratios and quantitation of the p-cymene percentage.


Asunto(s)
Monoterpenos Ciclohexánicos , Cimenos , Melaleuca , Aceite de Árbol de Té , Limoneno , Cromatografía de Gases y Espectrometría de Masas/métodos , Árboles , Australia , Terpenos/química , , Melaleuca/química
10.
Biomed Pharmacother ; 173: 116389, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461682

RESUMEN

Staphylococcus aureus is one of the most common bacterial isolates found in wounds. Thus, innovative dressings, such as hydrogels, are interesting vehicles for incorporating bioactive compounds like those from Melaleuca alternifolia essential oil (MaEO). In this study, we evaluated the antimicrobial and anti-inflammatory potential of MaEO incorporated into an alginate and chitosan hydrogel for treating wounds infected by S. aureus. The hydrogel incorporated with MaEO 1% (HMa 1%) was homogeneous with a bright pale-yellow color and the characteristic smell of Melaleuca. The incorporation of MaEO 1% does not affect the stability of the hydrogel, which was stable up to 90 days of storage. The Scanning electron microscopy analysis revealed that hydrogels showed irregular surfaces and interconnected porous structures with accumulations of oil crystals distributed throughout the formulation. HMa 1% has a high moisture content (95.1%) and can absorb simulated wound fluid. Regarding the antimicrobial effects, HMa 1% reduced the growth of S. aureus ATCC 6538 in both in vitro conditions and in an ex vivo model of wounds using porcine skin. In addition, the dairy topical treatment of murine skin lesions with HMa 1% induced a significant reduction of the wound area, inflammation score, and bacterial load, as well as tissue re-epithelialization and modulation of inflammatory mediators. Therefore, hydrogel incorporated with MaEO 1% has excellent potential to be used in the pharmacotherapy of infected wounds.


Asunto(s)
Antiinfecciosos , Melaleuca , Aceites Volátiles , Infecciones Estafilocócicas , Aceite de Árbol de Té , Porcinos , Animales , Ratones , Staphylococcus aureus , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Aceites Volátiles/química , Melaleuca/química , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Antiinfecciosos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
11.
Behav Processes ; 217: 105012, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493970

RESUMEN

It is generally believed that termites can't learn and are not "intelligent". This study aimed to test whether termites could have any form of memory. A Y-shaped test device with one release chamber and two identical test chambers was designed and constructed by 3D printing. A colony of damp wood termites was harvested from the wild. Worker termites were randomly selected for experiment. Repellent odors that could mimic the alarm pheromone for termites were first identified. Among all substances tested, a tea tree oil and lemon juice were found to contain repellent odors for the tested termites, as they significantly reduced the time that termites spent in the chamber treated with these substances. As control, a trail pheromone was found to be attractive. Subsequently, a second cohort of termites were operant conditioned by punishment using both tea tree oil and lemon juice, and then tested for their ability to remember the path that could lead to the repellant odors. The test device was thoroughly cleaned between trials. It was found that conditioned termites displayed a reduced tendency to choose the path that led to expectant punishment as compared with naïve termites. Thus, it is concluded that damp wood termites are capable of learning and forming "fear memory", indicative of "intelligence" in termites. This result challenges established presumption about termites' intelligence.


Asunto(s)
Isópteros , Odorantes , Isópteros/fisiología , Animales , Condicionamiento Operante/fisiología , Feromonas/farmacología , Memoria/fisiología , Aprendizaje/fisiología , Aceite de Árbol de Té/farmacología , Citrus , Repelentes de Insectos/farmacología , Conducta Animal/fisiología , Castigo
12.
Braz J Biol ; 84: e278013, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422288

RESUMEN

Colloidal systems have been used to encapsulate, protect and release essential oils in mouthwashes. In this study, we investigated the effect of cetylpyridinium chloride (CPC) on the physicochemical properties and antimicrobial activity of oil-in-water colloidal systems containing tea tree oil (TTO) and the nonionic surfactant polysorbate 80. Our main aim was to evaluate whether CPC could improve the antimicrobial activity of TTO, since this activity is impaired when this essential oil is encapsulated with polysorbate 80. These systems were prepared with different amounts of TTO (0-0.5% w/w) and CPC (0-0.5% w/w), at a final concentration of 2% (w/w) polysorbate 80. Dynamic light scattering (DLS) results revealed the formation of oil-swollen micelles and oil droplets as a function of TTO concentration. Increases in CPC concentrations led to a reduction of around 88% in the mean diameter of oil-swollen micelles. Although this variation was of only 20% for the oil droplets, the samples appearance changed from turbid to transparent. The surface charge of colloidal structures was also markedly affected by the CPC as demonstrated by the transition in zeta potential from slightly negative to highly positive values. Electron paramagnetic resonance (EPR) studies showed that this transition is followed by significant increases in the fluidity of surfactant monolayer of both colloidal structures. The antimicrobial activity of colloidal systems was tested against a Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureaus) bacteria. Our results revealed that the inhibition of bacterial growth is observed for the same CPC concentration (0.05% w/w for E. coli and 0.3% w/w for S. aureus) regardless of TTO content. These findings suggest that TTO may not act as an active ingredient in polysorbate 80 containing mouthwashes.


Asunto(s)
Aceites Volátiles , Aceite de Árbol de Té , Emulsiones/química , Emulsiones/farmacología , Polisorbatos/farmacología , Polisorbatos/química , Micelas , Staphylococcus aureus , Escherichia coli , Antisépticos Bucales/farmacología , Tensoactivos/farmacología , Tensoactivos/química , Aceites Volátiles/farmacología , Antibacterianos/farmacología , Aceite de Árbol de Té/farmacología
13.
Drug Deliv Transl Res ; 14(5): 1239-1252, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38227165

RESUMEN

Sepsis represents a complex clinical syndrome that results from a harmful host response to infection. The infections most associated with sepsis are pneumonia, intra-abdominal infection, and urinary tract infection. Tea tree oil (TTO) has shown high antibacterial activity; however, it exhibits low aqueous solubility and high volatility, which have motivated its nanoencapsulation. In this study, the performance of nanoemulsions (NE) and nanocapsules (NC) loaded with TTO was compared. These systems were prepared by spontaneous emulsification and nanoprecipitation methods, respectively. Poly-ε-caprolactone or Eudragit® RS100 were tested as polymers for NCs whereas Tween® 80 or Pluronic® F68 as surfactants in NE preparation. Pluronic® F68 and Eudragit® RS100 resulted in more homogeneous and stable nanoparticles. In accelerated stability studies at 4 and 25 °C, both colloidal suspensions (NC and NE) were kinetically stable. NCs showed to be more stable to photodegradation and less cytotoxic than NEs. After sepsis induction by the cecal ligation and puncture (CLP) model, both NE and NC reduced neutrophil infiltration into peritoneal lavage (PL) and kidneys. Moreover, the systems increased group thiols in the kidney and lung tissue and reduced bacterial growth in PL. Taken together, both systems showed to be effective against injury induced by sepsis; however, NCs should be prioritized due to advantages in terms of cytotoxicity and physicochemical stability.


Asunto(s)
Melaleuca , Nanocápsulas , Ácidos Polimetacrílicos , Sepsis , Aceite de Árbol de Té , Aceite de Árbol de Té/farmacología , Poloxámero , Sepsis/tratamiento farmacológico
14.
J Cosmet Dermatol ; 23(5): 1840-1849, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38213091

RESUMEN

BACKGROUND: Sleep is one of the most important factors affecting overall health. During the night, the skin repairs damage caused by daily stresses. Melatonin plays a key role in this process. Toxins are removed, and cellular repair and growth hormone production are increased. Inter alia, this also decreases signs of intrinsic aging. AIMS: The current study was intended to demonstrate the impact of a unique fraction of Melaleuca alternifolia (FMA) essential oil, on sleep and skin quality. METHODS: The effect of FMA was investigated in vitro on skin cells, evaluating its antioxidant and anti-inflammatory properties, and in an ex-vivo study on human skin biopsies treated with FMA following stress induction. In addition, two clinical studies were performed on volunteers with life-style-related sleep complaints. In one study, sleep was measured using a noncontact monitoring device (SleepScore Labs, Max). A second study was conducted to assess skin anti-aging effects. RESULTS: In vitro application of FMA reduced IL-8 and reactive oxygen species (ROS) generation in skin cells. This was confirmed ex vivo through a decrease in inflammatory markers and an increase in antioxidant enzymes after stress induction. Interestingly, FMA also upregulated melatonin-associated genes. Real-world sleep tracking revealed that FMA significantly improved sleep quality, relative to unscented control. In vivo applications also showed a reduction in signs of aging. CONCLUSION: These results provide initial data to suggest that this unique FMA delivers skin anti-aging benefits via a two-pronged mode of action, improving sleep quality, and reducing skin inflammatory and oxidative stress.


Asunto(s)
Antioxidantes , Melatonina , Piel , Calidad del Sueño , Humanos , Melatonina/farmacología , Melatonina/administración & dosificación , Piel/efectos de los fármacos , Piel/metabolismo , Femenino , Adulto , Persona de Mediana Edad , Antioxidantes/farmacología , Antioxidantes/administración & dosificación , Envejecimiento de la Piel/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Interleucina-8/metabolismo , Masculino , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Melaleuca/química , Aceites Volátiles/farmacología , Aceites Volátiles/administración & dosificación
15.
Vet Res Commun ; 48(3): 1379-1391, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38267710

RESUMEN

In cattle, Hyalomma scupense serves as an important vector of several pathogens resulting in diseases, subsequently affecting the agricultural field as well as the economy. Resistance to chemical acaricides has become widespread affirming the need for new drugs to tick control. The goal of this study was to investigate the acaricidal, repellent activities as well as the putative mode of action of two essential oils (EOs) from Melaleuca alternifolia (Tea tree) and Chamaemelum nobile (Roman chamomile) on Hyalomma scupense. The chemical composition of EOs was also evaluated. Different concentrations of EOs were tested in vitro for their acaricidal property on adults and larvae of H. scupense using adult immersion test (AIT) and larval packet test (LPT). Additionally, using Ellman's spectrophotometric method, the anticholinesterase (AChE) inhibition activity of M. alternifolia and C. nobile EOs was assessed in order to understand their putative mode of action. The main compounds of C. nobile were α-Bisabolene (22.20%) and (E)-ß-Famesene (20.41%). The major components in the analyzed M. alternifolia were Terpinen-4-ol (36.32%) and γ-Terpinene (13.69%). Adulticidal and larvicidal assays demonstrated a promising efficacy of the essential oils against tick H. scupense. The lethal concentration (LC50) values obtained for M. alternifolia and C. nobile oils were 0.84 and 0.96 mg/mL in the AIT and 0.37 and 0.48 mg/mL in the LPT, respectively. Regarding repellent activity, M. alternifolia achieved 100% repellency at the concentration of 1 mg/mL while C. nobile showed 95.98% repellency activity at concentration of 4 mg/mL. Also, M. alternifolia and C. nobile EOs displayed potent AChE inhibition with IC50 value of 91.27 and 100.12 µg/mL, respectively. In the present study, M. alternifolia and, to a lesser degree, C. nobile EOs were found to be effective in vitro acaricides, repellents and acetylcholinesterase inhibitor against H. scupense ticks. These plants may represent an economical and sustainable alternative to toxic synthetic acaricides in the management of ectoparasites of veterinary importance.


Asunto(s)
Acaricidas , Inhibidores de la Colinesterasa , Repelentes de Insectos , Ixodidae , Aceites Volátiles , Animales , Acaricidas/farmacología , Aceites Volátiles/farmacología , Aceites Volátiles/química , Ixodidae/efectos de los fármacos , Repelentes de Insectos/farmacología , Inhibidores de la Colinesterasa/farmacología , Melaleuca/química , Larva/efectos de los fármacos , Aceites de Plantas/farmacología , Aceites de Plantas/química , Femenino , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/química
16.
Nat Prod Res ; 38(4): 667-672, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36855252

RESUMEN

Tomato is one of the most produced and consumed fruits in the world. However, it is a crop that faces several phytosanitary problems, such as fusarium wilt, caused by Fusarium oxysporum. Thus, this study aimed to evaluate citronella and melaleuca essential oils in vitro potential in the fungus F. oxysporum management. The chemical identification of the components in the essential oils was performed by gas chromatography with flame ionization and mass spectrometer detectors. The IC50 and IC90 were determined by linear regression and the percentage of inhibition of the fungus by analysis of variance. The major compounds in citronella essential oil were citronellal, Geraniol, and citronellol; in melaleuca (tea tree) oil were terpinen-4-ol and α-terpinene. Both oils promoted more significant inhibition at concentrations of 1.5 and 2.5 µL/mL, besides not presenting significant differences with commercial fungicides, confirming the high potential for using this control method in agriculture.


Asunto(s)
Cymbopogon , Fungicidas Industriales , Fusarium , Lamiaceae , Aceites Volátiles , Solanum lycopersicum , Aceite de Árbol de Té , Fungicidas Industriales/farmacología , Árboles , Hongos , Aceites Volátiles/farmacología , Aceites Volátiles/química , , Enfermedades de las Plantas/microbiología
17.
Int J Prosthodont ; 37(1): 41-48, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-37222545

RESUMEN

PURPOSE: To evaluate the effect of adding tea tree oil to denture liners on Candida albicans and bond strength to the acrylic denture base. MATERIALS AND METHODS: Disc-shaped specimens were fabricated from silicone-based resilient liner (Tokuyama, Molloplast), acrylic-based hard liner (GC Reline), and acrylic-based soft liner (Visco-gel). Tea tree oil (TTO) was incorporated into the liners at varying concentrations (0% [control], 2%, 5%, 8%). C albicans were counted by viable colony count, and optical density (OD) was measured with a spectrophotometer. The tensile strength to heat polymerized acrylic denture base was measured in a universal testing machine. The compliance of the data to the distribution of normality was evaluated using the Shapiro Wilk test. Two-way ANOVA, Bonferroni correction, and paired sample t test were performed (α = .05). RESULTS: The addition of TTO into liners provided a significant decrease in the OD values (P < .001). The control groups of the liners presented the highest colony counts, whereas increasing TTO decreased the results (P < .01). According to tensile bond strength test, 8% TTO addition resulted in a significant decrease for Tokuyama (P < .01) and Molloplast liners (P < .05), while 2% TTO resulted in significance for GC Reline (P < .001). CONCLUSIONS: Denture liners containing increasing percentages of TTO presented lower amounts of C albicans colonies and decreased bond strength to the denture bases. When using TTO for its antifungal properties, the amount added should be carefully selected because the tensile bond strength may be affected.


Asunto(s)
Recubrimiento Dental Adhesivo , Alineadores Dentales , Aceite de Árbol de Té , Elastómeros de Silicona/química , Bases para Dentadura , Candida albicans , Aceite de Árbol de Té/farmacología , Resinas Acrílicas/química , Ensayo de Materiales , Polimetil Metacrilato , Resistencia a la Tracción
19.
Braz J Biol ; 83: e274368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37909586

RESUMEN

Fusarium oxysporum is the causal agent of Fusarium wilt in tomato plants. The most common form of control of this disease is through seed chemical treatment. However, the present work presents an alternative method, through the fumigation technique with essential oils. The pathogen F. oxysporum was inoculated on organic cherry tomato seeds through contact with sporulated Petri® plates. Thereafter, seeds were placed in stainless steel crucibles containing a 1.0 x 1.0 cm filter paper adhered to the lid and kept for 24 hours. This paper received 20 µL of each essential oil: tea tree, chia, citronella, lavender, anise basil, clove basil, and deionized water as control. This process was called "seed fumigation by essential oil". After this process, a germination test was carried out in germ boxes with Germitest® paper to verify the variables Germination Speed Index (GSI), Germination (G%), and Mean time to germination (MGT). Mycelial growth was verified in Petri® plates containing PDA medium. The plates containing mycelial growth were observed through scanning electron microscopy to verify possible morphological damage in the hyphae of the pathogen. Tea tree essential oil was the one that allowed the greatest suppression of the phytopathogen. Therefore, new tests were carried out with this specific oil. In germ boxes, tests of germination (G%), Abnormal seedlings count (ASC), and percentage of seedlings with mycelial growth were carried out. In addition, plant elicitation tests were performed in tomato seedlings through the analysis of chitinase, glucanase, and total proteins. All tests were carried out in completely randomized designs with four replications. All data were submitted to the Lilliefors normality test, followed by the analysis of variance, and Tukey's HSD (5% significance) for mean comparison. It was found that tea tree essential oil inhibited the mycelial growth of F. oxysporum without affecting the germination of cherry tomato seeds. Subsequent tests with this oil also demonstrated that there is a reduction in mycelia present in the seeds and a reduction in abnormal seedlings compared to the control. There was no significant difference between the variables tested for plant elicitation.


Asunto(s)
Fusarium , Aceites Volátiles , Solanum lycopersicum , Aceite de Árbol de Té , Compuestos Orgánicos Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/farmacología , Semillas , Plantones ,
20.
Biofouling ; 39(9-10): 962-979, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38009008

RESUMEN

The current work aims to develop a shikonin and tea tree oil loaded nanoemulsion system stabilized by a mixture of GRAS grade surfactants (Tween 20 and monoolein) and a cosurfactant (Transcutol P). This system was designed to address the poor aqueous solubility and photostability issues of shikonin. The authenticity of shikonin employed in this study was confirmed using nuclear magnetic resonance (NMR) spectroscopy. The optimized nanoemulsion exhibited highly favorable characteristics in terms of zeta potential (-23.8 mV), polydispersity index (0.216) and particle size (22.97 nm). These findings were corroborated by transmission electron microscopy (TEM) micrographs which confirmed the spherical and uniform nature of the nanoemulsion globules. Moreover, attenuated total reflectance (ATR) and X-ray diffraction analysis (XRD) analysis affirmed improved chemical stability and amorphization, respectively. Photodegradation studies were performed by exposing pure shikonin and the developed nanoemulsion to ultraviolet light for 1 h using a UV lamp, followed by high performance liquid chromatography (HPLC) analysis. The results confirmed that the developed nanoemulsion system imparts photoprotection to pure shikonin in the encapsulated system. Furthermore, the research investigated the effect of the nanoemulsion on biofilms formed by Candida albicans and methicillin resistant Staphylococcus aureus (MRSA). Scanning electron microscopy, florescence microscopy and phase contrast microscopy unveiled a remarkable reduction in biofilm area, accompanied by disruptions in the cell wall and abnormalities on the cell surface of the tested microorganisms. In conclusion, the nanoencapsulation of shikonin with tea tree oil as the lipid phase showcased significantly enhanced antimicrobial and antibiofilm potential compared to pure shikonin against resistant strains of Candida albicans and Staphylococcus aureus.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Naftoquinonas , Aceite de Árbol de Té , Candida albicans , Aceite de Árbol de Té/farmacología , Staphylococcus aureus , Biopelículas , Antiinfecciosos/farmacología , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA