Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 954
Filtrar
1.
Environ Monit Assess ; 196(10): 920, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256203

RESUMEN

This study investigates the phytoremediation potential of non-productive seedlings of Ailanthus altissima, Acer pseudoplatanus, and Fraxinus excelsior for lead, cadmium, and zinc accumulation in contaminated soils of Zanjan Province, an industrial area with significant pollution. The evaluation employed a completely randomized design, with three treatment levels for each element, alongside a control treatment, replicated three times over a two-year period. A total of 810 one-year-old seedlings from the three species were involved in the study. Soil contamination levels, ranging from 0 to 2000 mg/kg for lead and zinc and from 0 to 200 mg/kg for cadmium, were administered through soil pot irrigation. Sampling of seedling stems and pot soils was conducted in November of 2021 and 2022. The absorption levels of elements in the samples were determined using the dry acid digestion method and an ICP-OES atomic absorption spectrometer. Results indicate species-specific variations in metal absorption, with Ailanthus showing the highest accumulation rates. Findings suggest Ailanthus as a promising candidate for soil improvement in polluted environments, particularly in contaminated soils of Zanjan Province.


Asunto(s)
Acer , Ailanthus , Biodegradación Ambiental , Fraxinus , Metales Pesados , Plantones , Contaminantes del Suelo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Fraxinus/metabolismo , Ailanthus/metabolismo , Metales Pesados/metabolismo , Metales Pesados/análisis , Acer/metabolismo , Plantones/metabolismo , Suelo/química , Zinc/metabolismo , Zinc/análisis , Cadmio/metabolismo , Cadmio/análisis , Plomo/metabolismo , Plomo/análisis
2.
BMC Microbiol ; 24(1): 356, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300361

RESUMEN

BACKGROUND: Maple is an important ornamental plant in China. With the increasing use of maple trees in landscaping, a symptom of shoot dieback has been observed in Henan province, China. RESULTS: In this study, 28 Diaporthe isolates were obtained from symptomatic shoots of maple trees between 2020 and 2023. Phylogenetic analyses based on five loci (ITS, TEF, CAL, HIS and TUB) coupled with morphology of 12 representative isolates identified three known species (D. eres, D. pescicola and D. spinosa) and one new species, namely D. pseudoacerina sp. nov. Koch's postulates confirmed that all these species were pathogenic. Additionally, D. pseudoacerina was able to infect China wingnut (Pterocarya stenoptera), pear (Pyrus sp.), and black locust (Robinia pseudoacacia). This study marks the first report of Diaporthe spinosa and D. pescicola pathogens infecting maple trees. CONCLUSIONS: These findings enhance the existing knowledge of the taxonomy and host diversity of Diaporthe species as, while also providing valuable information for managing of maple shoot dieback in Henan Province, China.


Asunto(s)
Acer , Ascomicetos , Filogenia , Enfermedades de las Plantas , Brotes de la Planta , Acer/microbiología , China , Enfermedades de las Plantas/microbiología , Brotes de la Planta/microbiología , Ascomicetos/genética , Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , Ascomicetos/fisiología , ADN de Hongos/genética , Análisis de Secuencia de ADN , Pyrus/microbiología
3.
Physiol Plant ; 176(5): e14522, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39248017

RESUMEN

Reserves of non-structural carbohydrates (NSC) stored in living cells are essential for drought tolerance of trees. However, little is known about the phenotypic plasticity of living storage compartments (SC) and their interactions with NSC reserves under changing water availability. Here, we examined adjustments of SC and NSC reserves in stems and roots of seedlings of two temperate tree species, Acer negundo L. and Betula pendula Roth., cultivated under different substrate water availability. We found that relative contents of soluble NSC, starch and total NSC increased with decreasing water availability in stems of both species, and similar tendencies were also observed in roots of A. negundo. In the roots of B. pendula, soluble NSC contents decreased along with the decreasing water availability, possibly due to phloem decoupling or NSC translocation to shoots. Despite the contrast in organ responses, NSC contents (namely starch) positively correlated with proportions of total organ SC. Individual types of SC showed markedly distinct plasticity upon decreasing water availability, suggesting that water availability changes the partitioning of organ storage capacity. We found an increasing contribution of parenchyma-rich bark to the total organ NSC storage capacity under decreasing water availability. However, xylem SC showed substantially greater plasticity than those in bark. Axial storage cells, namely living fibers in A. negundo, responded more sensitively to decreasing water availability than radial parenchyma. Our results demonstrate that drought-induced changes in carbon balance affect the organ storage capacity provided by living cells, whose proportions are sensitively coordinated along with changing NSC reserves.


Asunto(s)
Acer , Almidón , Agua , Agua/metabolismo , Acer/metabolismo , Acer/fisiología , Almidón/metabolismo , Betula/metabolismo , Betula/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , Árboles/metabolismo , Árboles/fisiología , Sequías , Metabolismo de los Hidratos de Carbono , Xilema/metabolismo , Madera/metabolismo , Plantones/metabolismo , Plantones/fisiología
4.
J Plant Res ; 137(5): 893-906, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977619

RESUMEN

Stem water content serves as a pivotal parameter that reflects the plant vitality and maintains their internal water balance. Given the insufficient comprehension regarding the stem water content characteristics and its influencing factors during different stages of the overwintering period, the study focused on Acer truncatum Bunge and developed an Internet of Things (IoT)-based ecological information monitoring system. The system incorporated a proprietary stem water content sensor, allowing non-invasive, in-situ and real time acquisition of stem water content while monitoring diverse environmental parameters. We conducted a detailed elucidation of stem water content variation characteristics and their responses to diverse environmental factors. The results showed: (1) During the overwintering period, stem water content exhibited diurnal variations characterized by " daytime ascent and nighttime descent" across the three stages, exhibiting differences in the moment when the stem water content reaches extremal values and daily fluctuations ranges. Stem water content exhibited minimal fluctuations during deciduous and bud-breaking stages but experienced significant freezing-thawing alternations during the dormant stage, leading to an increased daily fluctuation range. (2) The Pearson correlation coefficients between environmental parameters and stem water content varied dynamically across stages. Path analysis revealed that during the deciduous stage, stem temperature and saturation vapor pressure deficit were dominant factors influencing stem water content; during dormant stage, air temperature and saturation vapor pressure deficit directly impacted stem water content; during the bud-breaking stage, the primary parameters affecting stem water content were saturation vapor pressure deficit and stem temperature. The study provides valuable insights into unveiling the water transport patterns within tree stems tissue and their environmental adaptation mechanisms during the overwintering period, aiding in the scientific development of winter management strategies to protect trees from severe cold and freezing damage, while fostering healthy growth in the subsequent year.


Asunto(s)
Acer , Tallos de la Planta , Estaciones del Año , Agua , Acer/fisiología , Tallos de la Planta/fisiología , Tallos de la Planta/química , Agua/metabolismo , Temperatura
5.
Genes (Basel) ; 15(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39062644

RESUMEN

DNA barcodes can provide accurate identification of plants. We used previously reported DNA primers targeting the internal transcribed spacer (ITS1) region of the nuclear ribosomal cistron, internal transcribed spacer (ITS2), and chloroplast trnL (UAA) intron to identify four trees at Bergen Community College. Two of the four trees were identified as Acer rubrum and Fagus sylvatica. However, Quercus was only identified at the genus level, and the fourth tree did not show similar identification between barcodes. Next-generation sequencing of 16S rRNA genes showed that the predominant bacterial communities in the rhizosphere mainly consisted of the Pseudomonadota, Actinomycetota, Bacteroidota, and Acidobacteriota. A. rubrum showed the most diverse bacterial community while F. sylvatica was less diverse. The genus Rhodoplanes showed the highest relative bacterial abundance in all trees. Fungal ITS sequence analysis demonstrated that the communities predominantly consisted of the Ascomycota and Basidiomycota. Quercus showed the highest fungi diversity while F. sylvatica showed the lowest. Russula showed the highest abundance of fungi genera. Average similarity values in the rhizosphere for fungi communities at the phylum level were higher than for bacteria. However, at the genus level, bacterial communities showed higher similarities than fungi. Similarity values decreased at lower taxonomical levels for both bacteria and fungi, indicating each tree has selected for specific bacterial and fungal communities. This study confirmed the distinctiveness of the microbial communities in the rhizosphere of each tree and their importance in sustaining and supporting viability and growth but also demonstrating the limitations of DNA barcoding with the primers used in this study to identify genus and species for some of the trees. The optimization of DNA barcoding will require additional DNA sequences to enhance the resolution and identification of trees at the study site.


Asunto(s)
Bacterias , Código de Barras del ADN Taxonómico , Microbiota , Quercus , ARN Ribosómico 16S , Rizosfera , Árboles , Código de Barras del ADN Taxonómico/métodos , Microbiota/genética , Bacterias/genética , Bacterias/clasificación , ARN Ribosómico 16S/genética , Quercus/microbiología , Quercus/genética , Árboles/microbiología , Árboles/genética , Microbiología del Suelo , Fagus/microbiología , Fagus/genética , Hongos/genética , Hongos/clasificación , Genotipo , Filogenia , Acer/microbiología , Acer/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
6.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1214-1222, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38886419

RESUMEN

Quantitative analysis of vessel characteristics at the cellular scale is of great significance for understan-ding plant adaptation strategies to environment. The direct grinding combined with stereo-microscope imaging is one of the main approaches to examine the anatomical structure of xylem (conifer tracheid and hardwood vessel) wood structure, which inevitably damages xylem cells, hindering the accurate understanding of anatomical structures. In this study, we applied X-ray micro-computed tomography (µCT) and stereo-microscope technology to quantitatively measure the diameter and area of vessels of seven Canadian broadleaved tree species (Acer saccharum, Betula papyrifera, Fraxinus americana, Ostrya virginiana, Populus grandidentata, Quercus rubra, and Carya cordiformis). We fitted the results by linear model and tested the feasibility of µCT technology in quantifying the vessel size of broadleaved species. We found that the results of the two methods for measuring vessel size were highly similar (R2=0.98). The goodness of fit of the vessel diameter results measured by the two methods for the ring-porous wood species (C. cordiformis, R2=0.98; F. americana, R2=0.96; Q. rubra, R2=0.99) was higher than that of the diffuse-porous wood species (B. papyrifera, R2=0.88; O. virginiana, R2=0.73; A. saccharum, R2=0.68; P. grandiden-tata, R2=0.88). The goodness of fit of small vessels (diameter≤200 µm, R2=0.94) measured by the two methods was higher than that of large vessels (diameter>200 µm, R2=0.92). Thus, the µCT technique provided a new non-destructive detection method for quantifying xylem vessels of broadleaved tree species.


Asunto(s)
Acer , Fraxinus , Populus , Quercus , Árboles , Microtomografía por Rayos X , Xilema , Microtomografía por Rayos X/métodos , Betula
7.
BMC Genomics ; 25(1): 605, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886635

RESUMEN

BACKGROUND: Acer truncatum Bunge is an economic, ecological, oil, and medicinal tree, and its kernel oil is rich in nervonic acid. It is crucial to explore the transcriptional expression patterns of genes affecting fatty acid synthesis to improve the quality of Acer truncatum oil. RESULTS: This study used the seeds from high fatty acid strain YQC and those from low fatty acid strain Y38 as the test materials. Specifically, we performed a comparative transcriptome analysis of Y38 seeds and YQC to identify differentially expressed genes (DEGs) at two time points (seeds 30 days after the blooming period and 90 days after the blooming period). Compared with YQC_1 (YQC seeds at 30 days after the blooming period), a total of 3,618 DEGs were identified, including 2,333 up-regulated and 1,285 downregulated DEGs in Y38_1 (Y38 seeds at 30 days after blooming period). In the Y38_2 (Y38 seeds at 90 days after the blooming period) versus YQC_2 (YQC seeds at 90 days after the blooming period) comparison group, 9,340 genes were differentially expressed, including 5,422 up-regulated and 3,918 down-regulated genes. The number of DEGs in Y38 compared to YQC was significantly higher in the late stages of seed development. Gene functional enrichment analyses showed that the DEGs were mainly involved in the fatty acid biosynthesis pathway. And two fatty acid synthesis-related genes and seven nervonic acid synthesis-related genes were validated by qRT-PCR. CONCLUSIONS: This study provides a basis for further research on biosynthesizing fatty acids and nervonic acidnervonic acids in A. truncatum seeds.


Asunto(s)
Acer , Ácidos Grasos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Semillas , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Acer/genética , Acer/metabolismo , Acer/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genes de Plantas , Ácidos Grasos Monoinsaturados
8.
Sci Total Environ ; 942: 173784, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38851330

RESUMEN

Forest foundation species, vital for shaping community structure and dynamics through non-trophic level interactions, are key to forest succession and sustainability. Despite their ecological importance, the habitat ranges of these species in China and their responses to future climate change remain unclear. Our study employed the optimal MaxEnt model to assess the range shifts and their essential drivers of four typical forest foundation species from three climatic zones in China under climate scenarios, including Acer tegmentosum, Acer pseudo-sieboldianum (temperate zone), Quercus glandulifera (subtropical zone), and Ficus hispida (tropical zone). The optimal MaxEnt model exhibited high evaluation indices (AUC values > 0.90) for the four foundation species, indicating excellent predictive performance. Currently, we observed that A. tegmentosum and A. pseudo-sieboldianum are predominantly inhabited temperate forest areas in northeastern China, Q. glandulifera is primarily concentrated in subtropical forests in southeastern China, and F. hispida is mainly distributed across the tropical forests in southern China. Climate factors, particularly temperature, emerged as the primary environmental factors influencing the potential range of forest foundation species. Moreover, precipitation strongly influenced the potential range of A. tegmentosum and A. pseudo-sieboldianum, while elevation exhibited a greater impact on the range of Q. glandulifera and F. hispida. Under future climate scenarios, suitable areas for A. tegmentosum and A. pseudo-sieboldianum tend to expand southward, F. hispida tends to expand northward, while Q. glandulifera exhibited a tendency to contract towards the center. This study advances our understanding of the spatial and temporal dynamics of forest foundation species in China under climate change, providing critical insights for conservation efforts and sustainable forest management practices.


Asunto(s)
Cambio Climático , Bosques , Quercus , China , Acer , Ecosistema , Ficus , Árboles
9.
BMC Plant Biol ; 24(1): 445, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778277

RESUMEN

BACKGROUND: Acer is a taxonomically intractable and speciose genus that contains over 150 species. It is challenging to distinguish Acer species only by morphological method due to their abundant variations. Plastome and nuclear ribosomal DNA (nrDNA) sequences are recommended as powerful next-generation DNA barcodes for species discrimination. However, their efficacies were still poorly studied. The current study will evaluate the application of plastome and nrDNA in species identification and perform phylogenetic analyses for Acer. RESULT: Based on a collection of 83 individuals representing 55 species (c. 55% of Chinese species) from 13 sections, our barcoding analyses demonstrated that plastomes exhibited the highest (90.47%) species discriminatory power among all plastid DNA markers, such as the standard plastid barcodes matK + rbcL + trnH-psbA (61.90%) and ycf1 (76.19%). And the nrDNA (80.95%) revealed higher species resolution than ITS (71.43%). Acer plastomes show abundant interspecific variations, however, species identification failure may be due to the incomplete lineage sorting (ILS) and chloroplast capture resulting from hybridization. We found that the usage of nrDNA contributed to identifying those species that were unidentified by plastomes, implying its capability to some extent to mitigate the impact of hybridization and ILS on species discrimination. However, combining plastome and nrDNA is not recommended given the cytonuclear conflict caused by potential hybridization. Our phylogenetic analysis covering 19 sections (95% sections of Acer) and 128 species (over 80% species of this genus) revealed pervasive inter- and intra-section cytonuclear discordances, hinting that hybridization has played an important role in the evolution of Acer. CONCLUSION: Plastomes and nrDNA can significantly improve the species resolution in Acer. Our phylogenetic analysis uncovered the scope and depth of cytonuclear conflict in Acer, providing important insights into its evolution.


Asunto(s)
Acer , Código de Barras del ADN Taxonómico , ADN de Plantas , ADN Ribosómico , Filogenia , Acer/genética , Código de Barras del ADN Taxonómico/métodos , ADN Ribosómico/genética , ADN de Plantas/genética , Plastidios/genética , Especificidad de la Especie , Núcleo Celular/genética
10.
J Microencapsul ; 41(4): 296-311, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38709162

RESUMEN

AIMS: To construct the microemulsion delivery system (ME) loading ATSO and NA and study their physicochemical characteristics to enhance their stability and water solubility. METHODS: By plotting ternary phase diagrams, the composition and proportions of the MEs were determined. The physicochemical characteristics and stability of MEs were evaluated by mean diameter, polydispersity index (PDI), pH, electrical conductivity, transmission electron microscopy (TEM), rheological behaviour measurement, and phase inversion temperature (PIT). RESULTS: The MEs was composed with EL-40 as a surfactant and specifically with the addition of ethanol as a cosurfactant in NA-loaded ME. The mean diameters of ATSO-loaded ME and NA-loaded ME were 39.65 ± 0.24 nm and 32.90 ± 2.65 nm, and PDI were 0.49 ± 0.01 and 0.28 ± 0.14, respectively. The TEM confirmed the spherical and smooth morphology of MEs. The rheological results indicated that MEs are dilatant fluids with the advantages of low viscosity, high fluidity, and tolerance to temperature fluctuations. The mean diameter and PDI of MEs showed no significant change after storage at 25 °C for 28 days and centrifugation. CONCLUSION: The prepared microemulsions could expand the application prospects of ATSO and NA products in cosmetics, medicine, foods and other fields.


Asunto(s)
Emulsiones , Aceites de Plantas , Reología , Emulsiones/química , Aceites de Plantas/química , Acer/química , Ácidos Grasos/química , Semillas/química , Tensoactivos/química , Estabilidad de Medicamentos , Viscosidad
11.
Plant Physiol ; 196(1): 153-163, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38757896

RESUMEN

Microcomputed tomography (µCT) is a nondestructive X-ray imaging method used in plant physiology to visualize in situ plant tissues that enables assessments of embolized xylem vessels. Whereas evidence for X-ray-induced cellular damage has been reported, the impact on plant physiological processes such as carbon (C) uptake, transport, and use is unknown. Yet, these damages could be particularly relevant for studies that track embolism and C fluxes over time. We examined the physiological consequences of µCT scanning for xylem embolism over 3 mo by monitoring net photosynthesis (Anet), diameter growth, chlorophyll (Chl) concentration, and foliar nonstructural carbohydrate (NSC) content in 4 deciduous tree species: hedge maple (Acer campestre), ash (Fraxinus excelsior), European hornbeam (Carpinus betulus), and sessile oak (Quercus petraea). C transport from the canopy to the roots was also assessed through 13C labeling. Our results show that monthly X-ray application did not impact foliar Anet, Chl, NSC content, and C transport. Although X-ray effects did not vary between species, the most pronounced impact was observed in sessile oak, marked by stopped growth and stem deformations around the irradiated area. The absence of adverse impacts on plant physiology for all the tested treatments indicates that laboratory-based µCT systems can be used with different beam energy levels and doses without threatening the integrity of plant physiology within the range of tested parameters. However, the impacts of repetitive µCT on the stem radial growth at the irradiated zone leading to deformations in sessile oak might have lasting implications for studies tracking plant embolism in the longer-term.


Asunto(s)
Acer , Hojas de la Planta , Tallos de la Planta , Quercus , Microtomografía por Rayos X , Microtomografía por Rayos X/métodos , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Quercus/crecimiento & desarrollo , Quercus/fisiología , Acer/crecimiento & desarrollo , Acer/fisiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Fotosíntesis , Xilema/crecimiento & desarrollo , Xilema/fisiología , Xilema/metabolismo , Carbono/metabolismo , Clorofila/metabolismo , Fraxinus/crecimiento & desarrollo , Fraxinus/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Árboles/fisiología , Transporte Biológico , Betulaceae/crecimiento & desarrollo
12.
J Vet Intern Med ; 38(4): 2399-2403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38682859

RESUMEN

An adult American Quarter Horse mare presented for pigmenturia and lethargy of 12 hours' duration and was diagnosed with silver maple leaf toxicity. The mare had intravascular hemolysis and azotemia. The mare was treated with a transfusion of whole blood, fluids administered IV, antibiotics, oxygen insufflation, and supportive care. The azotemia persisted despite conventional medical management and hemodialysis was elected. After 2 intermittent hemodialysis treatments over 3 days, the azotemia almost resolved, clinical signs improved, and the mare was discharged. The blood urea nitrogen, creatinine, and electrolyte concentrations remained normal 6 months later after examination by the referring veterinarian. Hemodialysis treatment can be feasible in horses if equipment and expertise are available and should be considered as a treatment option if indicated.


Asunto(s)
Lesión Renal Aguda , Enfermedades de los Caballos , Diálisis Renal , Animales , Caballos , Femenino , Enfermedades de los Caballos/terapia , Diálisis Renal/veterinaria , Lesión Renal Aguda/veterinaria , Lesión Renal Aguda/terapia , Lesión Renal Aguda/inducido químicamente , Hojas de la Planta , Acer , Azotemia/veterinaria , Azotemia/terapia
13.
Food Chem ; 449: 139180, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38579650

RESUMEN

Maple syrup, a popular natural sweetener has a high content of sucrose, whose consumption is linked to different health issues such as obesity and diabetes. Hence, within this paper, the conversion of sucrose to prebiotics (fructo-oligosaccharides, FOS) was proposed as a promising approach to obtaining a healthier, value-added product. Enzymatic conversion was optimized with respect to key experimental factors, and thereafter derived immobilized preparation of fructosyltransferase (FTase) from Pectinex® Ultra SP-L (FTase-epoxy Purolite, 255 IU/g support) was successfully utilized to produce novel functional product in ten consecutive reaction cycles. The product, obtained under optimal conditions (60 °C, 7.65 IU/mL, 12 h), resulted in 56.0% FOS, 16.7% sucrose, and 27.3% monosaccharides of total carbohydrates, leading to a 1.6-fold reduction in caloric content. The obtained products` prebiotic potential toward the probiotic strain Lactobacillus plantarum 299v was demonstrated. The changes in physico-chemical and sensorial characteristics were esteemed as negligible.


Asunto(s)
Acer , Proteínas Bacterianas , Hexosiltransferasas , Oligosacáridos , Prebióticos , Sacarosa , Prebióticos/análisis , Oligosacáridos/química , Oligosacáridos/metabolismo , Hexosiltransferasas/metabolismo , Hexosiltransferasas/química , Sacarosa/metabolismo , Sacarosa/química , Acer/química , Acer/metabolismo , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/enzimología , Lactobacillus plantarum/química , Biocatálisis , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo
14.
Ecol Appl ; 34(4): e2970, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602711

RESUMEN

Tree growth is a key mechanism driving carbon sequestration in forest ecosystems. Environmental conditions are important regulators of tree growth that can vary considerably between nearby urban and rural forests. For example, trees growing in cities often experience hotter and drier conditions than their rural counterparts while also being exposed to higher levels of light, pollution, and nutrient inputs. However, the extent to which these intrinsic differences in the growing conditions of trees in urban versus rural forests influence tree growth response to climate is not well known. In this study, we tested for differences in the climate sensitivity of tree growth between urban and rural forests along a latitudinal transect in the eastern United States that included Boston, Massachusetts, New York City, New York, and Baltimore, Maryland. Using dendrochronology analyses of tree cores from 55 white oak trees (Quercus alba), 55 red maple trees (Acer rubrum), and 41 red oak trees (Quercus rubra) we investigated the impacts of heat stress and water stress on the radial growth of individual trees. Across our three-city study, we found that tree growth was more closely correlated with climate stress in the cooler climate cities of Boston and New York than in Baltimore. Furthermore, heat stress was a significant hindrance to tree growth in higher latitudes while the impacts of water stress appeared to be more evenly distributed across latitudes. We also found that the growth of oak trees, but not red maple trees, in the urban sites of Boston and New York City was more adversely impacted by heat stress than their rural counterparts, but we did not see these urban-rural differences in Maryland. Trees provide a wide range of important ecosystem services and increasing tree canopy cover was typically an important component of urban sustainability strategies. In light of our findings that urbanization can influence how tree growth responds to a warming climate, we suggest that municipalities consider these interactions when developing their tree-planting palettes and when estimating the capacity of urban forests to contribute to broader sustainability goals in the future.


Asunto(s)
Cambio Climático , Árboles , Urbanización , Árboles/crecimiento & desarrollo , Acer/crecimiento & desarrollo , Acer/fisiología , Quercus/crecimiento & desarrollo , Quercus/fisiología , Bosques , Ciudades
15.
BMC Plant Biol ; 24(1): 284, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627650

RESUMEN

BACKGROUND: Lipids found in plant seeds are essential for controlling seed dormancy, dispersal, and defenses against biotic and abiotic stress. Additionally, these lipids provide nutrition and energy and are therefore important to the human diet as edible oils. Acer truncatum, which belongs to the Aceaceae family, is widely cultivated around the world for its ornamental value. Further because its seed oil is rich in unsaturated fatty acids (UFAs)- i.e. α-linolenic acid (ALA) and nervonic acid (NA)- and because it has been validated as a new food resource in China, the importance of A. truncatum has greatly risen. However, it remains unknown how UFAs are biosynthesized during the growth season, to what extent environmental factors impact their content, and what areas are potentially optimal for their production. RESULTS: In this study, transcriptome and metabolome of A. truncatum seeds at three representative developmental stages was used to find the accumulation patterns of all major FAs. Cumulatively, 966 metabolites and 87,343 unigenes were detected; the differential expressed unigenes and metabolites were compared between stages as follows: stage 1 vs. 2, stage 1 vs. 3, and stage 2 vs. 3 seeds, respectively. Moreover, 13 fatty acid desaturases (FADs) and 20 ß-ketoacyl-CoA synthases (KCSs) were identified, among which the expression level of FAD3 (Cluster-7222.41455) and KCS20 (Cluster-7222.40643) were consistent with the metabolic results of ALA and NA, respectively. Upon analysis of the geographical origin-affected diversity from 17 various locations, we found significant variation in phenotypes and UFA content. Notably, in this study we found that 7 bioclimatic variables showed considerable influence on FAs contents in A. truncatum seeds oil, suggesting their significance as critical environmental parameters. Ultimately, we developed a model for potentially ecological suitable regions in China. CONCLUSION: This study provides a comprehensive understanding of the relationship between metabolome and transcriptome in A. truncatum at various developmental stages of seeds and a new strategy to enhance seed FA content, especially ALA and NA. This is particularly significant in meeting the increasing demands for high-quality edible oil for human consumption. The study offers a scientific basis for A. truncatum's novel utilization as a woody vegetable oil rather than an ornamental plant, potentially expanding its cultivation worldwide.


Asunto(s)
Acer , Transcriptoma , Humanos , Perfilación de la Expresión Génica , Acer/genética , Acer/metabolismo , Ácidos Grasos Insaturados/metabolismo , Semillas , Metaboloma , Aceites de Plantas/metabolismo
16.
Sci Total Environ ; 927: 172166, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575023

RESUMEN

Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy. Legacy effects were assessed by calculating differences between observed and predicted basal area increment (BAI). Overall, the growth response of the study stands to the 2017 drought was contingent on site conditions and species characteristics. Most sites presented BAI and canopy cover reductions during the drought. Growth decline was followed by a quick recovery and positive legacy effects, particularly in the case of F. ornus. However, we found negative drought legacies in some species (e.g., Q. pubescens, A. monspessulanum) and sites. In those sites showing negative legacies, high growth rates prior to drought in response to previous wet winter-spring conditions may have predisposed trees to drought damage. Vice versa, the positive drought legacy found in some F. ornus site was linked to post-drought growth release due to Q. pubescens dieback and mortality. Therefore, we found evidences of structural drought overshoot, but it was restricted to specific sites and species. Our findings highlight the importance of considering site settings such as stand composition, pre-drought conditions and different tree species when studying structural overshoot. Droughts contribute to modify the composition and dynamics in mixed forests.


Asunto(s)
Sequías , Bosques , Árboles , Árboles/fisiología , Italia , Quercus/crecimiento & desarrollo , Quercus/fisiología , Cambio Climático , Pinus/fisiología , Pinus/crecimiento & desarrollo , Monitoreo del Ambiente , Fraxinus/fisiología , Fraxinus/crecimiento & desarrollo , Acer/crecimiento & desarrollo , Acer/fisiología
17.
Sci Total Environ ; 927: 172164, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580112

RESUMEN

Soil nitrogen (N) availability affects plant carbon (C) utilization. However, it is unclear how various tree functional types respond to N addition in terms of C assimilation, allocation, and storage. Here, a microcosm experiment with dual 13C and 15N labeling was conducted to study the effects of N addition (i.e., control, 0 g N kg-1; moderate N addition, 1.68 g N kg-1; and high N addition, 3.36 g N kg-1 soil) on morphological traits, on changes in nonstructural carbohydrates (NSC) in different organs, as well as on C and N uptake and allocation in three European temperate forest tree species (i.e., Acer pseudoplatanus, Picea abies and Abies alba). Our results demonstrated that root N uptake rates of the three tree species increased by N addition. In A. pseudoplatanus, N uptake by roots, N allocation to aboveground organs, and aboveground biomass allocation significantly improved by moderate and high N addition. In A. alba, only the high N addition treatment considerably raised aboveground N and C allocation. In contrast, biomass as well as C and N allocation between above and belowground tissues were not altered by N addition in P. abies. Meanwhile, NSC content as well as C and N coupling (represented by the ratio of relative 13C and 15N allocation rates in organs) were affected by N addition in A. pseudoplantanus and P. abies but not in A. alba. Overall, A. pseudoplatanus displayed the highest sensitivity to N addition and the highest N requirement among the three species, while P. abies had a lower N demand than A. alba. Our findings highlight that the responses of C and N allocation to soil N availability are species-specific and vary with the amount of N addition.


Asunto(s)
Isótopos de Carbono , Carbono , Isótopos de Nitrógeno , Nitrógeno , Suelo , Árboles , Nitrógeno/metabolismo , Isótopos de Carbono/análisis , Isótopos de Nitrógeno/análisis , Carbono/metabolismo , Suelo/química , Picea , Especificidad de la Especie , Abies , Acer , Raíces de Plantas/metabolismo , Fertilizantes
18.
Int J Biol Macromol ; 267(Pt 2): 131389, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582461

RESUMEN

This work developed Acer tegmentosum extract-mediated silver nanoparticles (AgNPs) loaded chitosan (CS)/alginic acid (AL) scaffolds (CS/AL-AgNPs) to enhance the healing of E. coli-infected wounds. The SEM-EDS and XRD results revealed the successful formation of the CS/AL-AgNPs. FTIR analysis evidenced that the anionic group of AL (-COO-) and cationic amine groups of CS (-NH3+) were ionically crosslinked to form scaffold (CS/AL). The CS/AL-AgNPs exhibited significant antimicrobial activity against both Gram-positive (G+) and Gram-negative (G-) bacterial pathogens, while being non-toxic to red blood cells (RBCs), the hen's egg chorioallantoic membrane (HET-CAM), and a non-cancerous cell line (NIH3T3). Treatment with CS/AL-AgNPs significantly accelerated the healing of E. coli-infected wounds by regulating the collagen deposition and blood parameters as evidenced by in vivo experiments. Overall, these findings suggest that CS/AL-AgNPs are promising for the treatment of infected wounds.


Asunto(s)
Acer , Alginatos , Antibacterianos , Quitosano , Escherichia coli , Nanopartículas del Metal , Extractos Vegetales , Plata , Cicatrización de Heridas , Quitosano/química , Quitosano/farmacología , Nanopartículas del Metal/química , Plata/química , Plata/farmacología , Animales , Cicatrización de Heridas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Ratones , Acer/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Células 3T3 NIH , Antibacterianos/farmacología , Antibacterianos/química , Alginatos/química , Alginatos/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Andamios del Tejido/química
19.
J Exp Bot ; 75(11): 3521-3541, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38469677

RESUMEN

We hypothesized that anthocyanins act as a sugar-buffer and an alternative electron sink during leaf senescence to prevent sugar-mediated early senescence and photoinhibition. To elucidate the role of anthocyanin, we monitored seasonal changes in photosynthetic traits, sugar, starch and N contents, pigment composition, and gene expression profiles in leaves exposed to substantially different light conditions within a canopy of an adult fullmoon maple (Acer japonicum) tree. Enhancement of starch amylolysis accompanied by cessation of starch synthesis occurred in the same manner independent of light conditions. Leaf sugar contents increased, but reached upper limits in the late stage of leaf senescence, even though leaf anthocyanins further increased after complete depletion of starch. Sun-exposed leaves maintained higher energy consumption via electron flow than shade-grown leaves during leaf N resorption. Thus, anthocyanins accumulated in sun-exposed leaves might have a regulative role as a sugar-buffer, retarding leaf senescence, and an indirect photoprotective role as an alternative sink for electron consumption to compensate declines in other metabolic processes such as starch and protein synthesis. In this context, anthocyanins may be key substrates protecting both outer-canopy leaves (against photoinhibition) and inner-canopy leaves (via shading by outer-canopy leaves) from high light stress during N resorption.


Asunto(s)
Acer , Antocianinas , Hojas de la Planta , Almidón , Acer/fisiología , Acer/metabolismo , Almidón/metabolismo , Antocianinas/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/metabolismo , Senescencia de la Planta , Fotosíntesis
20.
Commun Biol ; 7(1): 248, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429358

RESUMEN

Winged, autorotating seeds from the genus Acer, have been the subject of study for botanists and aerodynamicists for decades. Despite this attention and the relative simplicity of these winged seeds, there are still considerable gaps in our understanding of how samara dynamics are informed by morphological features. Additionally, questions remain regarding the robustness of their dynamics to morphological alterations such as mass change by moisture or area change by damage. We here challenge the conventional approach of using wing-loading correlations and instead demonstrate the superiority of a classical aerodynamic model. Using allometry, we determine why some species deviate from interspecific aerodynamic behavior. We alter samara mass and wing area and measure corresponding changes to descent velocity, rotation rate, and coning angle, thereby demonstrating their remarkable ability to autorotate despite significant morphological alteration. Samaras endure mass changes greater than 100% while maintaining descent velocity changes of less than 15%, and are thus robust to changes in mass by moisture or damage. Additionally, samaras withstand up to a 40% reduction in wing area before losing their ability to autorotate, with the largest wings more robust to ablation. Thus, samaras are also robust to wing damage in their environment, a fact children joyfully exploit.


Asunto(s)
Acer , Animales , Niño , Humanos , Semillas/anatomía & histología , Alas de Animales/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA