Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.396
Filtrar
1.
BMC Oral Health ; 24(1): 501, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725023

RESUMEN

BACKGROUND: Releasing of metal ions might implicate in allergic reaction as a negative subsequent of the corrosion of Stainless Steel (SS304) orthodontic wires. The aim of this study was to evaluate the corrosion resistance of zinc-coated (Zn-coated) SS orthodontic wires. METHODS: Zinc coating was applied on SS wires by PVD method. Electrochemical impedance spectroscopy (EIS), Potentiodynamic polarization tests and Tafel analysis methods were used to predict the corrosion behavior of Zn-coated and uncoated SS wires in both neutral and acidic environments. RESULTS: The values of Ecorr ,icorr and Rct ,which were the electrochemical corrosion characteristics, reported better corrosion behavior of Zn-coated SS wires against uncoated ones in both artificial saliva and fluoride-containing environments. Experimental results of the Tafel plot analyses were consistent with that of electrochemical impedance spectroscopy analyses for both biological solutions. CONCLUSION: Applying Zn coating on bare SS orthodontic wire by PVD method might increase the corrosion resistance of the underlying stainless-steel substrate.


Asunto(s)
Espectroscopía Dieléctrica , Ensayo de Materiales , Alambres para Ortodoncia , Saliva Artificial , Acero Inoxidable , Zinc , Corrosión , Acero Inoxidable/química , Zinc/química , Saliva Artificial/química , Aleaciones Dentales/química , Materiales Biocompatibles Revestidos/química , Fluoruros/química , Concentración de Iones de Hidrógeno , Humanos , Propiedades de Superficie , Potenciometría
2.
Eur J Paediatr Dent ; 25: 1, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38775099

RESUMEN

AIM: Prosthetic rehabilitation of deciduous teeth in paediatric age using pre-formed crowns has been considered one of the best methods of dental restoration since their introduction. Their main advantages are related to durability, longevity and a low rate of recurrent cavities. Since stainless steel crowns do not coincide with aesthetic needs of parents and patients, preformed paedodontic crowns made of zirconia and nano-hybrid composite was introduced. The aim of the study is to evaluate the degree of wear on the enamel and on themselves of the different paedodontic crowns. MATERIALS: Nine bovine teeth and nine paedodontic crowns for deciduous molars were selected for the study, three of which in zirconia, three in nano-hybrid composite and three in stainless steel. Wear test was carried out on the Rtech™ Instruments tribometer applying a force of 50 N. After that, both the bovine teeth and the paedodontic crowns were observed using a stereo microscope (Zeiss Stemi C-500) and a scanning electron microscope (SEM, Cambridge Stereoscan 440). The areas of wear were calculated with a software [ImageJ, version 1x, Wayne Rasband, Maryland, USA]. CONCLUSION: Pre-formed paediatric crowns in zirconia, nano-hybrid composite and stainless steel are a valid aid for the restoration of deciduous teeth and do not compromise the physiological wear characteristic of the phases of the dental exchange. The stainless steel crown is preferable for the restorations in the posterior sectors as its behaviour is the most similar to that of a natural tooth. Zirconia and nano-hybrid composite crowns showed an inversely proportional behaviour between their wear volume and that of the opposing tooth.


Asunto(s)
Coronas , Acero Inoxidable , Diente Primario , Circonio , Bovinos , Circonio/química , Acero Inoxidable/química , Animales , Humanos , Resinas Compuestas/química , Microscopía Electrónica de Rastreo , Alisadura de la Restauración Dental , Materiales Dentales/química , Esmalte Dental , Desgaste de los Dientes , Niño
3.
J Clin Pediatr Dent ; 48(3): 46-51, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38755981

RESUMEN

Indirect pulp therapy (IPT) is a common conservative treatment for deep dental caries. However, the potential risk factors for the prognosis of IPT have not been well studied. This study retrospectively investigated the success rate of IPT in treating primary molars with deep caries and the factors potentially affecting the two-year success rate. A total of 303 primary molars in 202 children (106 boys and 96 girls) were included in this study. These primary molars were identified as having deep caries by clinical and radiographic examinations and were treated with IPT. The factors potentially affecting the IPT success rate were analyzed after two years of follow-up. The results indicated that the two-year IPT success rate was 86% (262/303). The success rate of primary molars with and without stainless steel crowns was 96% (120/125) and 80% (142/178), respectively. Primary molars treated with stainless steel crowns showed a significantly lower risk of failure (hazard ratio (HR) = 0.18, 95% confidence interval (CI): (0.10, 0.34), p = 0.01). There were no significant differences in other factors, including gender (male vs. female), age (preschool vs. school age), cooperation level (Frankl 2 vs. 3 or 4 scales), arch type (maxillary vs. mandibular), tooth type (first vs. second primary molar), or pulp capping material (calcium hydroxide vs. glass ionomer cement). IPT is an effective, conservative treatment modality for primary molars with deep caries. Stainless steel crowns could significantly improve the IPT success rate.


Asunto(s)
Coronas , Caries Dental , Diente Molar , Diente Primario , Humanos , Masculino , Estudios Retrospectivos , Femenino , Caries Dental/terapia , Preescolar , Niño , Acero Inoxidable , Resultado del Tratamiento , Recubrimiento de la Pulpa Dental/métodos , Factores de Riesgo , Estudios de Seguimiento
4.
Clin Oral Investig ; 28(6): 323, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761310

RESUMEN

OBJECTIVES: White spot lesions are the most common iatrogenic effect observed during orthodontic treatment. This study aimed to compare the surface characteristics and antibacterial action of uncoated and coated orthodontic brackets. MATERIALS AND METHODS: Sixty commercially available stainless steel brackets were coated with TiO2 nanotubes and methacryloyloxyethylphosphorylcholine. The sample was divided into Group 1: uncoated orthodontic brackets, Group 2: Stainless steel brackets with TiO2 nanotubes coating, Group 3: Stainless steel brackets with methacryloyloxyethylphosphorylcholine coating, and Group 4: Stainless steel brackets with TiO2 nanotubes combined with methacryloyloxyethylphosphorylcholine coating. Surface characterization was assessed using atomic force microscopy and scanning electron microscopy. Streptococcus mutans was selected to test the antibacterial ability of the orthodontic brackets, total bacterial adhesion and bacterial viability were assessed. The brackets were subjected to scanning electron microscopy to detect the presence of biofilm. RESULTS: The surface roughness was the greatest in Group 1 and least in Group 2 followed by Group 4 and Group 3 coated brackets. The optical density values were highest in Group 1 and lowest in Group 4. Comparison of colony counts revealed high counts in Group 1 and low counts in Group 4. A positive correlation between surface roughness and colony counts was obtained, however, was not statistically significant. CONCLUSIONS: The coated orthodontic brackets exhibited less surface roughness than the uncoated orthodontic brackets. Group 4 coated orthodontic brackets showed the best antibacterial properties. CLINICAL RELEVANCE: Coated orthodontic brackets prevent adhesion of streptococcus mutans and reduces plaque accumulation around the brackets thereby preventing formation of white spot lesions during orthodontic treatment.


Asunto(s)
Antibacterianos , Adhesión Bacteriana , Microscopía Electrónica de Rastreo , Nanotubos , Soportes Ortodóncicos , Fosforilcolina , Streptococcus mutans , Propiedades de Superficie , Titanio , Titanio/química , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Fosforilcolina/química , Streptococcus mutans/efectos de los fármacos , Antibacterianos/farmacología , Nanotubos/química , Adhesión Bacteriana/efectos de los fármacos , Microscopía de Fuerza Atómica , Ensayo de Materiales , Acero Inoxidable/química , Metacrilatos/farmacología , Metacrilatos/química , Biopelículas/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química
5.
Clin Oral Investig ; 28(5): 294, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698252

RESUMEN

OBJECTIVES: To compare ultrasonic scaler prototypes based on a planar piezoelectric transducer with different working frequencies featuring a titanium (Ti-20, Ti-28, and Ti-40) or stainless steel (SS-28) instrument, with a commercially available scaler (com-29) in terms of biofilm removal and reformation, dentine surface roughness and adhesion of periodontal fibroblasts. MATERIALS AND METHODS: A periodontal multi-species biofilm was formed on specimens with dentine slices. Thereafter specimens were instrumented with scalers in a periodontal pocket model or left untreated (control). The remaining biofilms were quantified and allowed to reform on instrumented dentine slices. In addition, fibroblasts were seeded for attachment evaluation after 72 h of incubation. Dentine surface roughness was analyzed before and after instrumentation. RESULTS: All tested instruments reduced the colony-forming unit (cfu) counts by about 3 to 4 log10 and the biofilm quantity (each p < 0.01 vs. control), but with no statistically significant difference between the instrumented groups. After 24-hour biofilm reformation, no differences in cfu counts were observed between any groups, but the biofilm quantity was about 50% in all instrumented groups compared to the control. The attachment of fibroblasts on instrumented dentine was significantly higher than on untreated dentine (p < 0.05), with the exception of Ti-20. The dentine surface roughness was not affected by any instrumentation. CONCLUSIONS: The planar piezoelectric scaler prototypes are able to efficiently remove biofilm without dentine surface alterations, regardless of the operating frequency or instrument material. CLINICAL RELEVANCE: Ultrasonic scalers based on a planar piezoelectric transducer might be an alternative to currently available ultrasonic scalers.


Asunto(s)
Biopelículas , Raspado Dental , Dentina , Fibroblastos , Ligamento Periodontal , Propiedades de Superficie , Titanio , Humanos , Raspado Dental/instrumentación , Técnicas In Vitro , Dentina/microbiología , Ligamento Periodontal/citología , Transductores , Adhesión Celular , Acero Inoxidable , Diseño de Equipo , Terapia por Ultrasonido/instrumentación
6.
J Clin Pediatr Dent ; 48(3): 59-67, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38755983

RESUMEN

The importance of aesthetics in children has increased over time. Therefore, this multicenter randomized clinical trial aimed to analyze and compare three-dimensional (3D)-printed resin crowns (RCs) as a potential alternative to stainless-steel crowns (SSCs) for restoring primary molars with extensive carious lesions. According to the null hypothesis, no statistically significant difference was observed in restoration failure between RC and SSC groups. A total of 56 primary molars after pulp treatment at two dental hospitals were included. After pulp treatment, the teeth were randomly divided into two groups: SSCs (n = 28) and RCs (n = 28). At 1 week and 3, 6 and 12 months, the Quigley-Hein plaque index (QHI), gingival index (GI), occlusal wear, and survival rate were assessed by examination, radiography and alginate impressions. No significant difference in QHI was observed between the two groups. However, the GI at 12 months and occlusal wear in the RC group were significantly higher than those in the SSC group (p < 0.05). The survival rates were 100% in the SSC group and 82.1% in the RC group (p = 0.047). Cracks and discoloration were also observed in the RCs. Within the limitations of this study, 3D-printed RCs are aesthetically superior to SSCs and clinically easy to repair. However, if clinical effectiveness and safety are improved, RCs could potentially become a viable aesthetic alternative in the future.


Asunto(s)
Coronas , Diente Molar , Impresión Tridimensional , Acero Inoxidable , Diente Primario , Humanos , Femenino , Masculino , Niño , Caries Dental/terapia , Restauración Dental Permanente/métodos , Preescolar , Diseño de Prótesis Dental , Índice Periodontal , Fracaso de la Restauración Dental
7.
J Med Virol ; 96(5): e29655, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38727091

RESUMEN

Viruses can spread through contaminated aerosols and contaminated surface materials, and effective disinfection techniques are essential for virus inactivation. Nonthermal plasma-generated reactive oxygen and nitrogen species can effectively inactivate the coronavirus. We aim to interpret the coronavirus inactivation level and mechanism of surface interaction with materials with and without dielectric barrier discharge (DBD) plasma treatment. Nonthermal plasma, particularly surface-type DBD plasma, can inactivate human coronavirus 229E (HCoV-229E) on porous (paper, wood, mask) and nonporous (plastic, stainless steel, glass, Cu) materials. Virus inactivation was analyzed using a 50% tissue culture infectivity dose (TCID50) using cell line, flow cytometry, and immunofluorescence. Surfaces contaminated with HCoV-229E were treated at different time intervals (0-5 h) with and without plasma exposure (natural decay in ambient air conditions). HCoV-229E persistence conformed to the following order: plastic > cover glass > stainless steel > mask > wood > paper > Cu with and without plasma exposure. HCoV-229E was more stable in plastic, cover glass, and stainless steel in 5 h, and the viable virus titer gradually decreased from its initial log10 order of 6.892 to 1.72, 1.53, and 1.32 TCID50/mL, respectively, under plasma exposure. No virus was observed in Cu after treatment for 5 h. The use of airflow, ambient nitrogen, and argon did not promote virus inactivation. Flow cytometry and immunofluorescence analysis demonstrated a low expression level of spike protein (fluorescence intensity) during plasma treatment and in E and M genes expression compared with the virus control.


Asunto(s)
Coronavirus Humano 229E , Gases em Plasma , Inactivación de Virus , Humanos , Coronavirus Humano 229E/efectos de los fármacos , Coronavirus Humano 229E/fisiología , Inactivación de Virus/efectos de los fármacos , Gases em Plasma/farmacología , Línea Celular , Porosidad , Desinfección/métodos , Acero Inoxidable
8.
Dental Press J Orthod ; 29(2): e2423282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38775601

RESUMEN

OBJECTIVE: This study aimed to compare the insertion torque (IT), flexural strength (FS) and surface alterations between stainless steel (SS-MIs) and titanium alloy (Ti-MIs) orthodontic mini-implants. METHODS: Twenty-four MIs (2 x 10 mm; SS-MIs, n = 12; Ti-MIs, n = 12) were inserted on artificial bone blocks of 20 lb/ft3 (20 PCF) and 40 lb/ft3 (40 PCF) density. The maximum IT was recorded using a digital torque meter. FS was evaluated at 2, 3 and 4 mm-deflection. Surface topography and chemical composition of MIs were assessed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). General linear and mixed models were used to assess the effect of the MI type, bone density and deflection on the evaluated outcomes. RESULTS: The IT of Ti-MIs was 1.1 Ncm greater than that obtained for the SS-MIs (p= 0.018). The IT for MIs inserted in 40 PCF test blocks was 5.4 Ncm greater than that for those inserted in 20 PCF test blocks (p < 0.001). SS-MIs inserted in higher density bone (40 PCF) had significantly higher flexural strength than the other groups, at 2 mm (98.7 ± 5.1 Ncm), 3 mm (112.0 ± 3.9 Ncm) and 4 mm (120.0 ± 3.4 Ncm) of deflection (p< 0.001). SEM evidenced fractures in the Ti-MIs. EDS revealed incorporation of 18% of C and 2.06% of O in the loaded SS-MIs, and 3.91% of C in the loaded Ti-MIs. CONCLUSIONS: Based on the findings of this in vitro study, it seems that SS-MIs offer sufficient stability and exhibit greater mechanical strength, compared to Ti-MIs when inserted into higher density bone.


Asunto(s)
Aleaciones Dentales , Implantes Dentales , Resistencia Flexional , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Métodos de Anclaje en Ortodoncia , Acero Inoxidable , Propiedades de Superficie , Titanio , Torque , Titanio/química , Acero Inoxidable/química , Métodos de Anclaje en Ortodoncia/instrumentación , Métodos de Anclaje en Ortodoncia/métodos , Aleaciones Dentales/química , Técnicas In Vitro , Espectrometría por Rayos X , Análisis del Estrés Dental , Humanos , Estrés Mecánico , Densidad Ósea
9.
J Indian Soc Pedod Prev Dent ; 42(1): 37-45, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616425

RESUMEN

PURPOSE: The purpose of this clinical trial was to assess and compare the clinical outcomes of Bioflx crowns (BFCs) with stainless steel crowns (SSCs) in primary molars (PMs). MATERIALS AND METHODS: This prospective split-mouth randomized controlled clinical trial was conducted between March 2022 and June 2023. Thirty-eight patients (17 females and 21 males) with a mean age of 5.21 years participated in this study. Each child (n = 38) received both SSC and BFC. Clinical and radiographic follow-up was performed at baseline, 3, 6, and 12 months using the modified United States Public Health System scoring criteria to evaluate various parameters. RESULTS: At the 3 and 6 months' follow-up, no significant difference was observed between the two groups. However, at 1-year follow-up, a statistically significant difference (P < 0.05) was evident in the frequency between the two groups for the criteria of crown retention after cementation and anatomic form of the crown, indicating a preference for SSC over prototype 1 BFC. CONCLUSION: The 12-month results indicate that BFC performed similarly to the established SSC for the restoration of PMs providing better esthetics.


Asunto(s)
Boca , Acero Inoxidable , Niño , Femenino , Masculino , Humanos , Preescolar , Estudios Prospectivos , Coronas , Diente Molar
10.
Food Microbiol ; 121: 104531, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637091

RESUMEN

The present study aimed to assess the occurrence and counts of Staphylococcus aureus in Brazilian artisanal cheeses (BAC) produced in five regions of Brazil: Coalho and Manteiga (Northeast region); Colonial and Serrano (South); Caipira (Central-West); Marajó (North); and Minas Artisanal cheeses, from Araxá, Campos das Vertentes, Cerrado, Serro and Canastra microregions (Southeast). The resistance to chlorine-based sanitizers, ability to attach to stainless steel surfaces, and antibiogram profile of a large set of S. aureus strains (n = 585) were assessed. Further, a total of 42 isolates were evaluated for the presence of enterotoxigenic genes (sea, seb, sec, sed, see, seg, sei, sej, and ser) and submitted to typing using pulsed-field gel electrophoresis (PFGE). BAC presented high counts of S. aureus (3.4-6.4 log CFU/g), varying from 25 to 62.5%. From the S. aureus strains (n = 585) assessed, 16% could resist 200 ppm of sodium hypochlorite, whereas 87.6% produced strong ability to attach to stainless steel surfaces, corroborating with S. aureus ability to persist and spread in the environment. Furthermore, the relatively high frequency (80.5%) of multidrug-resistant S. aureus and the presence of enterotoxin genes in 92.6% of the strains is of utmost attention. It reveals the lurking threat of SFP that can survive when conditions are favorable. The presence of enterotoxigenic and antimicrobial-resistant strains of S. aureus in cheese constitutes a potential risk to public health. This result calls for better control of cheese contamination sources, and taking hygienic measures is necessary for food safety. More attention should be paid to animal welfare and hygiene practices in some dairy farms during manufacturing to enhance the microbiological quality of traditional cheese products.


Asunto(s)
Queso , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Staphylococcus aureus/genética , Queso/microbiología , Brasil , Microbiología de Alimentos , Acero Inoxidable/análisis , Enterotoxinas/genética , Leche/microbiología
11.
Food Microbiol ; 121: 104491, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637093

RESUMEN

The effect of lactocin AL705, bacteriocin produced by Latilactobacillus (Lat.) curvatus CRL1579 against Listeria biofilms on stainless steel (SS) and polytetrafluoroethylene (PTFE) coupons at 10 °C was investigated. L. monocytogenes FBUNT showed the greatest adhesion on both surfaces associated to the hydrophobicity of cell surface. Partially purified bacteriocin (800 UA/mL) effectively inhibited L. monocytogenes preformed biofilm through displacement strategy, reducing the pathogen by 5.54 ± 0.26 and 4.74 ± 0.05 log cycles at 3 and 6 days, respectively. The bacteriocin-producer decreased the pathogen biofilm by ∼2.84 log cycles. Control and Bac- treated samples reached cell counts of 7.05 ± 0.18 and 6.79 ± 0.06 log CFU/cm2 after 6 days of incubation. Confocal scanning laser microscopy (CLSM) allowed visualizing the inhibitory effect of lactocin AL705 on L. monocytogenes preformed biofilms under static and hydrodynamic flow conditions. A greater effect of the bacteriocin was found at 3 days independently of the surface matrix and pathogen growth conditions at 10 °C. As a more realistic approach, biofilm displacement strategy under continuous flow conditions showed a significant loss of biomass, mean thickness and substratum coverage of pathogen biofilm. These findings highlight the anti-biofilm capacity of lactocin AL705 and their potential application in food industries.


Asunto(s)
Bacteriocinas , Listeria monocytogenes , Listeria , Biopelículas , Bacteriocinas/farmacología , Lactobacillus , Acero Inoxidable/análisis , Microbiología de Alimentos
12.
Colloids Surf B Biointerfaces ; 238: 113908, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677153

RESUMEN

In response to the critical demand for advancements in coronary artery stents, this study addresses the challenges associated with arterial recoil and restenosis post-angioplasty and the imperative to encourage rapid re-endothelialization for minimizing thrombosis risks. We employed an innovative approach inspired by mussel adhesion, incorporating placental anticoagulant protein (AnnexinV) on stent design. The introduction of a post-translationally modified catecholic amino acid L-3,4-dihydroxyphenylalanine (L-Dopa), mimicking mussel characteristics, allowed for effective surface modification of Stainless steel stents through genetic code engineering in AnnexinV (AnxDopa). The efficacy of AnxDopa was analyzed through microscale thermophoresis and flow cytometry, confirming AnxDopa's exceptional binding with phosphatidylserine and activated platelets. AnxDopa coated stainless steel demonstrates remarkable bio-, hemo-, and immuno-compatibility, preventing smooth muscle cell proliferation, platelet adhesion, and fibrin formation. It acts as an interface between the stent and biological fluid, which facilitates the anticoagulation and rapid endothelialization. Surface modification of SS verified through XPS analysis and contact angle measurement attests to the efficacy of AnxDopa mediated surface modification. The hydrophilic nature of the AnxDopa-coated surface enhanced the endothelialization through increased protein absorption. This approach represents a significant stride in developing coronary stents with improved biocompatibility and reduced restenosis risks, offering valuable contributions to scientific and clinical realms alike.


Asunto(s)
Materiales Biocompatibles Revestidos , Stents , Humanos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Vasos Coronarios/efectos de los fármacos , Adhesividad Plaquetaria/efectos de los fármacos , Anticoagulantes/farmacología , Anticoagulantes/química , Propiedades de Superficie , Proliferación Celular/efectos de los fármacos , Acero Inoxidable/química , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/citología , Animales , Levodopa/química , Levodopa/farmacología
13.
ACS Appl Bio Mater ; 7(5): 2966-2981, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38652577

RESUMEN

This study presents a facile fabrication of 58S bioactive glass (BG)-polymer composite coatings on a 316L stainless steel (SS) substrate using the electrophoretic deposition technique. The suspension characteristics and deposition kinetics of BG, along with three different polymers, namely ethylcellulose (EC), poly(acrylic acid) (PAA), and polyvinylpyrrolidone (PVP), have been utilized to fabricate the coatings. Among all coatings, 58S BG and EC polymers are selected as the final composite coating (EC6) owing to their homogeneity and good adhesion. EC6 coating exhibits a thickness of ∼18 µm and an average roughness of ∼2.5 µm. Herein, EC6 demonstrates better hydroxyapatite formation compared to PAA and PVP coatings in simulated body fluid-based mineralization studies for a period of 28 days. Corrosion studies of EC6 in phosphate-buffered saline further confirm the higher corrosion resistance properties after 14 days. In vitro cytocompatibility studies using human placental mesenchymal stem cells demonstrate an increase in cellular viability, attachment, and higher proliferation compared to the bare SS substrate. EC6 coatings promote osteogenic differentiation, which is confirmed via the upregulation of the OPN and OCN genes. Moreover, the EC6 sample exhibits improved antibacterial properties against Escherichia coli and Staphylococcus aureus compared to the uncoated ones. The findings of this work emphasize the potential of electrophoretically fabricated BG-EC composite coatings on SS substrates for orthopedic applications.


Asunto(s)
Materiales Biocompatibles Revestidos , Vidrio , Ensayo de Materiales , Polímeros , Acero Inoxidable , Acero Inoxidable/química , Humanos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Vidrio/química , Polímeros/química , Polímeros/farmacología , Corrosión , Tamaño de la Partícula , Propiedades de Superficie , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Electroforesis , Supervivencia Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Pruebas de Sensibilidad Microbiana , Proliferación Celular/efectos de los fármacos
14.
Sci Rep ; 14(1): 8882, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632263

RESUMEN

Wearable long-term monitoring applications are becoming more and more popular in both the consumer and the medical market. In wearable ECG monitoring, the data quality depends on the properties of the electrodes and on how they interface with the skin. Dry electrodes do not require any action from the user. They usually do not irritate the skin, and they provide sufficiently high-quality data for ECG monitoring purposes during low-intensity user activity. We investigated prospective motion artifact-resistant dry electrode materials for wearable ECG monitoring. The tested materials were (1) porous: conductive polymer, conductive silver fabric; and (2) solid: stainless steel, silver, and platinum. ECG was acquired from test subjects in a 10-min continuous settling test and in a 48-h intermittent long-term test. In the settling test, the electrodes were stationary, whereas both stationary and controlled motion artifact tests were included in the long-term test. The signal-to-noise ratio (SNR) was used as the figure of merit to quantify the results. Skin-electrode interface impedance was measured to quantify its effect on the ECG, as well as to leverage the dry electrode ECG amplifier design. The SNR of all electrode types increased during the settling test. In the long-term test, the SNR was generally elevated further. The introduction of electrode movement reduced the SNR markedly. Solid electrodes had a higher SNR and lower skin-electrode impedance than porous electrodes. In the stationary testing, stainless steel showed the highest SNR, followed by platinum, silver, conductive polymer, and conductive fabric. In the movement testing, the order was platinum, stainless steel, silver, conductive polymer, and conductive fabric.


Asunto(s)
Artefactos , Acero Inoxidable , Humanos , Platino (Metal) , Plata , Estudios Prospectivos , Electrocardiografía/métodos , Impedancia Eléctrica , Electrodos , Polímeros
15.
Anal Chim Acta ; 1302: 342516, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38580411

RESUMEN

Conventional plate electrodes were commonly used in electrochemical flow injection analysis and only part of molecules diffused to the plane of electrodes could be detected, which would limit the performance of electrochemical detection. In this study, a low-cost native stainless steel wire mesh (SSWM) electrode was integrated into a 3D-printed device for electrochemical flow injection analysis with a pass-through mode, which is different compared with previous flow-through mode. This strategy was applied for sensitive analysis of hydrogen peroxide (H2O2) released from cells. Under the optimal conditions (the applied potentials, the flow rate and the sample volume), the device exhibits high sensitivity toward H2O2. Linear relationships could be achieved between electrochemical responses and the concentration of H2O2 ranging from 1 nM to 1 mM. The excellent analytical performance of the SSWM-based device could be attributed to the pass-through mode based on the mesh microstructure and intrinsic catalytic properties for H2O2 by stainless steel. This approach could be further successfully extended for screening of H2O2 released from HeLa cells with electrochemical responses linear to the number of cells in a range of 3 - 1.35 × 104 cells with an injection volume of 30 µL. This study revealed the potential of mesh electrodes in electrochemical flow injection analysis for cellular function and pathology and its possible extension in cell counting and on-line analysis.


Asunto(s)
Análisis de Inyección de Flujo , Peróxido de Hidrógeno , Humanos , Células HeLa , Peróxido de Hidrógeno/análisis , Acero Inoxidable , Técnicas Electroquímicas , Electrodos
16.
Eur J Orthop Surg Traumatol ; 34(4): 2147-2153, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564013

RESUMEN

INTRODUCTION: Distal femur fractures account for 3-6% of all femur fractures. Internal fixation of most distal femur fractures with an anatomic lateral locking plate should permit some motion at the metaphyseal portion of the fracture when secondary bone healing is planned by the operating surgeon. While several studies have been performed evaluating union rates for distal femur fractures with stainless steel and titanium plates, the timing of callus formation between stainless steel and titanium implants used as bridge plates for distal femur fractures (AO/OTA 33-A and -C) has been investigated to a lesser extent. We hypothesize that callus will be visualized earlier with post-operative radiographs with titanium versus stainless steel bridge plates. METHODS: We retrospectively reviewed a consecutive cohort of patients over 18 years of age with acute AO/OTA 33-A and 33-C fracture patterns treated with an isolated stainless steel or titanium lateral bridge plate within 4 weeks of injury by a single fellowship-trained orthopedic trauma surgeon from 2011 to 2020 at one academic Level 1 trauma center. An independent, fellowship-trained orthopedic trauma attending surgeon reviewed anterior-posterior (AP) and lateral radiographs from every available post-operative clinic visit and graded them using the Modified Radiographic Score for Tibia (mRUST). RESULTS: Twenty-five subjects were included in the study with 10 with stainless steel and 15 with titanium plates. There were no significant differences in demographics between both groups, including age, sex, BMI, injury classification, open versus closed, mechanism, and laterality. Statistically significant increased mRUST scores, indicating increased callus formation, were seen on 12-week radiographs (8.4 vs. 11.9, p = 0.02) when titanium bridge plates were used. There were no statistically significant differences in mRUST scores at 6 or 24-weeks, but scores in the titanium group were higher in at every timepoint. DISCUSSION: In conclusion, we observed greater callus formation at 12 weeks after internal fixation of 33-A and 33-C distal femur fractures treated with titanium locked lateral distal femoral bridge plates compared to stainless steel plates. Our data suggest that titanium metallurgy may have quicker callus formation compared to stainless steel if an isolated, lateral locked bridge plate is chosen for distal femur fracture fixation.


Asunto(s)
Placas Óseas , Callo Óseo , Fracturas del Fémur , Fijación Interna de Fracturas , Acero Inoxidable , Titanio , Humanos , Fracturas del Fémur/cirugía , Fracturas del Fémur/diagnóstico por imagen , Fracturas del Fémur/fisiopatología , Estudios Retrospectivos , Fijación Interna de Fracturas/instrumentación , Fijación Interna de Fracturas/métodos , Masculino , Callo Óseo/diagnóstico por imagen , Femenino , Persona de Mediana Edad , Adulto , Radiografía , Curación de Fractura/fisiología , Anciano , Fracturas Femorales Distales
17.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38609348

RESUMEN

AIM: Evaluate the efficacy of sponge wipe sampling at recovering potential bacterial surrogates for Category A and B non-spore-forming bacterial bioterrorism agents from hard, nonporous surfaces. METHODS: A literature survey identified seven nonpathogenic bacteria as potential surrogates for selected Category A and B non-spore-forming bacterial agents. Small (2 × 4 cm) and large (35.6 × 35.6 cm) coupons made from either stainless steel, plastic, or glass, were inoculated and utilized to assess persistence and surface sampling efficiency, respectively. Three commercially available premoistened sponge wipes (3M™, Sani-Stick®, and Solar-Cult®) were evaluated. RESULTS: Mean recoveries from persistence testing indicated that three microorganisms (Yersinia ruckeri, Escherichia coli, and Serratia marcescens) demonstrated sufficient persistence across all tested material types. Sampling of large inoculated (≥107 CFU per sample) coupons resulted in mean recoveries ranging from 6.6 to 3.4 Log10 CFU per sample. Mean recoveries for the Solar-Cult®, 3M™ sponge wipes, and Sani-Sticks® across all test organisms and all material types were ≥5.7, ≥3.7, and ≥3.4 Log10 CFU per sample, respectively. Mean recoveries for glass, stainless steel, and ABS plastic across all test organisms and all sponge types were ≥3.8, ≥3.7, and ≥3.4 Log10 CFU per sample, respectively. CONCLUSIONS: Recovery results suggest that sponge wipe sampling can effectively be used to recover non-spore-forming bacterial cells from hard, nonporous surfaces such as stainless steel, ABS plastic, and glass.


Asunto(s)
Bioterrorismo , Acero Inoxidable , Bacterias/aislamiento & purificación , Plásticos , Escherichia coli/aislamiento & purificación , Serratia marcescens/aislamiento & purificación , Vidrio , Recuento de Colonia Microbiana , Armas Biológicas
18.
Medicina (Kaunas) ; 60(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38541166

RESUMEN

Background and Objectives: Spring-assisted surgery is a popular option for the treatment of non-syndromic craniosynostosis. The main drawback of this procedure is the need for a second surgery for spring removal, which could be avoided if a distractor material could be metabolised over time. Iron-Manganese alloys (FeMn) have a good trade-off between degradation rate and strength; however, their biocompatibility is still debated. Materials and Methods: In this study, the neuro-compatibility of Fe-20Mn (wt.%) was assessed using standard assays. PC-12 cells were exposed to Fe-20Mn (wt.%) and stainless steel via indirect contact. To examine the cytotoxicity, a Cell Tox Green assay was carried out after 1, 2, and 3 days of incubation. Following differentiation, a neurite morphological examination after 1 and 7 days of incubation time was carried out. The degradation response in modified Hank's solution at 1, 3, and 7 days was investigated, too. Results: The cytotoxicity assay showed a higher toxicity of Fe-20Mn than stainless steel at earlier time points; however, at the latest time point, no differences were found. Neurite morphology was similar for cells exposed to Fe-20Mn and stainless steel. Conclusions: In conclusion, the Fe-20Mn alloy shows promising neuro-compatibility. Future studies will focus on in vivo studies to confirm the cellular response to Fe-20Mn.


Asunto(s)
Implantes Absorbibles , Acero Inoxidable , Humanos , Ensayo de Materiales , Aleaciones
19.
Int J Food Microbiol ; 416: 110676, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507974

RESUMEN

Listeria monocytogenes biofilms present a significant challenge in the food industry. This study explores the impact of different acidic conditions of culture media and food matrices on the development and removal of biofilms developed on stainless steel surfaces by wild-type (WT) L. monocytogenes strains as well as in two mutant derivatives, ΔsigB and ΔagrA, that have defects in the general stress response and quorum sensing, respectively. Additionally, the study investigates the efficacy of nanoencapsulated carvacrol as an antimicrobial against L. monocytogenes biofilms developed in Tryptic Soy Broth (TSB) culture media acidified to different pH conditions (3.5, 4.5, 5.5, 6.5), and in food substrates (apple juice, strained yogurt, vegetable soup, semi-skimmed milk) having the same pH levels. No biofilm formation was observed for all L. monocytogenes strains at pH levels of 3.5 and 4.5 in both culture media and food substrates. However, at pH 5.5 and 6.5, increased biofilm levels were observed in both the culture media and food substrates, with the WT strain showing significantly higher biofilm formation (3.04-6.05 log CFU cm-2) than the mutant strains (2.30-5.48 log CFU cm-2). For both applications, the nanoencapsulated carvacrol demonstrated more potent antimicrobial activity against biofilms developed at pH 5.5 with 2.23 to 3.61 log reductions, compared to 1.58-2.95 log reductions at pH 6.5, with mutants being more vulnerable in acidic environments. In food substrates, nanoencapsulated carvacrol induced lower log reductions (1.58-2.90) than the ones in TSB (2.02-3.61). These findings provide valuable insights into the impact of different acidic conditions on the development of L. monocytogenes biofilms on stainless steel surfaces and the potential application of nanoencapsulated carvacrol as a biofilm control agent in food processing environments.


Asunto(s)
Antiinfecciosos , Cimenos , Listeria monocytogenes , Acero Inoxidable/análisis , Biopelículas , Medios de Cultivo , Microbiología de Alimentos , Recuento de Colonia Microbiana
20.
Sci Total Environ ; 924: 171600, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461986

RESUMEN

The electric field-assisted composting system (EACS) is an emerging technology that can enhance composting efficiency, but little attention has been given to electrode materials. Herein, an EACS was established to investigate the effects of electrode materials on humic substance formation and heavy metal speciation. Excitation-emission matrix analysis showed that carbon-felt and stainless-steel electrodes increased humic acid (HA) by 48.57 % and 47.53 %, respectively. In the EACS with the carbon-felt electrode, the bioavailability factors (BF) of Cu and Cr decreased by 18.00 % and 7.61 %, respectively. Despite that the stainless-steel electrodes decreased the BF of As by 11.26 %, the leaching of Cr, Ni, Cu, and Fe from the electrode itself is an inevitable concern. Microbial community analyses indicated that the electric field increased the abundance of Actinobacteria and stimulated the multiplication of heavy metal-tolerant bacteria. Redundancy analysis indicates that OM, pH, and current significantly affect the evolution of heavy metal speciation in the EACS. This study first evaluated the metal leaching risk of stainless-steel electrode, and confirmed that carbon-felt electrode is environment-friendly material with high performance and low risk in future research with EACS.


Asunto(s)
Compostaje , Metales Pesados , Suelo/química , Metales Pesados/análisis , Sustancias Húmicas/análisis , Acero Inoxidable , Bacterias , Carbono
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA