Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 718
Filtrar
1.
PLoS Pathog ; 20(10): e1011862, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39361719

RESUMEN

The plant pathogenic bacterium Burkholderia glumae causes bacterial panicle blight (BPB) in rice-growing areas worldwide. It has been widely accepted that an acyl-homoserine lactone (AHL)-type quorum sensing (QS) system encoded by tofI and tofR genes (TofIR QS) is a key regulatory mechanism underlying the bacterial pathogenesis of B. glumae. In addition, qsmR, which encodes an IclR-family regulatory protein, has been considered an important part of TofIR QS. However, the present study with three strains of B. glumae representing different pathogenic strains revealed that this currently accepted paradigm should be modified. We characterized the regulatory function of TofIR QS and qsmR in three different strains of B. glumae, 336gr-1 (virulent), 411gr-6 (hypervirulent) and 257sh-1 (avirulent). In 336gr-1, both TofIR QS and qsmR were critical for the pathogenesis, being consistent with previous studies. However, in the hypervirulent strain 411gr-6, TofIR QS only partially contributes to the virulence, whereas qsmR was critical for pathogenesis like in 336gr-1. Furthermore, we found that a single nucleotide polymorphism causing T50K substitution in the qsmR coding sequence was the cause of the non-pathogenic trait of the naturally avirulent strain 257sh-1. Subsequent analyses of gene expression and transcriptome revealed that TofIR QS is partially controlled by qsmR at the transcriptional level in both virulent strains. Further genetic tests of additional B. glumae strains showed that 11 out of 20 virulent strains retained the ability to produce toxoflavin even after removing the tofI/tofM/tofR QS gene cluster like 411gr-6. In contrast, all the virulent strains tested lost the ability to produce toxoflavin almost completely upon deletion of the qsmR gene. Taking these results together, qsmR, rather than TofIR QS, is a master regulator that determines the pathogenic trait of B. glumae thus a more appropriate pathogen target for successful management of BPB.


Asunto(s)
Proteínas Bacterianas , Burkholderia , Enfermedades de las Plantas , Factores de Transcripción , Acil-Butirolactonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia/genética , Burkholderia/patogenicidad , Burkholderia/metabolismo , Regulación Bacteriana de la Expresión Génica , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Percepción de Quorum/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia
2.
Bioresour Technol ; 413: 131501, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39299345

RESUMEN

A continuous-flow partial nitrification granular sludge (PNGS) coupled Anammox system was constructed for mature landfill leachate (MLL) treatment. Stable NO2--N accumulation was achieved with NH4+-N to NO2--N transformation ratio (NTR) of 98-100 % with influent NH4+-N ranged from 342 ± 29 to 1106 ± 20 mg/L. When treating MLL, particular acyl homoserine lactones (AHLs), cyclic dimeric guanosine monophosphate (c-di-GMP) concentration significantly increased and more extracellular polymeric substances (EPS) were secreted, which adsorbed refractory organics and embedded SiO2 derived from MLL for granulation. A strong and positive correlation was found between PNGS average diameter and EPS, indicating that AHLs and c-di-GMP may play a significant role in the formation and evolution of PNGS via regulating EPS secretion. The PNGS/Anammox system could remove COD and nitrogen simultaneously under different MLL loadings, with COD and total inorganic nitrogen removal efficiency of 28 ± 5 %-71 ± 2 % and 66 ± 2 %-89 ± 1 %, respectively.


Asunto(s)
Nitrificación , Nitrógeno , Aguas del Alcantarillado , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/metabolismo , Reactores Biológicos , Purificación del Agua/métodos , Análisis de la Demanda Biológica de Oxígeno , Acil-Butirolactonas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo
3.
Microb Ecol ; 87(1): 111, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39231820

RESUMEN

In this study, we investigated the effect of detoxifying substances on U(VI) removal by bacteria isolated from mine soil. The results demonstrated that the highest U(VI) removal efficiency (85.6%) was achieved at pH 6.0 and a temperature of 35 °C, with an initial U(VI) concentration of 10 mg/L. For detoxifying substances, signaling molecules acyl homoserine lactone (AHLs, 0.1 µmol/L), anthraquinone-2, 6-disulfonic acid (AQDS, 1 mmol/L), reduced glutathione (GSH, 0.1 mmol/L), selenium (Se, 1 mg/L), montmorillonite (MT, 1 g/L), and ethylenediaminetetraacetic acid (EDTA, 0.1 mmol/L) substantially enhanced the bacterial U(VI) removal by 34.9%, 37.4%, 54.5%, 35.1%, 32.8%, and 47.8% after 12 h, respectively. This was due to the alleviation of U(VI) toxicity in bacteria through detoxifying substances, as evidenced by lower malondialdehyde (MDA) content and higher superoxide dismutase (SOD) and catalase (CAT) activities for bacteria exposed to U(VI) and detoxifying substances, compared to those exposed to U(VI) alone. FTIR results showed that hydroxyl, carboxyl, phosphorus, and amide groups participated in the U(VI) removal. After exposure to U(VI), the relative abundances of Chryseobacterium and Stenotrophomonas increased by 48.5% and 12.5%, respectively, suggesting their tolerance ability to U(VI). Gene function prediction further demonstrated that the detoxifying substances AHLs alleviate U(VI) toxicity by influencing bacterial metabolism. This study suggests the potential application of detoxifying substances in the U(VI)-containing wastewater treatment through bioremediation.


Asunto(s)
Bacterias , Biodegradación Ambiental , Minería , Microbiología del Suelo , Uranio , Uranio/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Acil-Butirolactonas/metabolismo , Glutatión/metabolismo , Contaminantes Radiactivos del Suelo/metabolismo
4.
J Bacteriol ; 206(10): e0013824, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39235221

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa has complex quorum sensing (QS) circuitry, which involves two acylhomoserine lactone (AHL) systems, the LasI AHL synthase and LasR AHL-dependent transcriptional activator system and the RhlI AHL synthase-RhlR AHL-responsive transcriptional activator. There is also a quinoline signaling system [the Pseudomonas quinolone signal (PQS) system]. Although there is a core set of genes regulated by the AHL circuits, there is strain-to-strain variation in the non-core QS regulon. A size reduction of the QS regulon occurs in laboratory evolution experiments with the model strain PAO1. We used transcriptomics to test the hypothesis that reductive evolution in the PAO1 QS regulon can in large part be explained by a null mutation in pqsR, the gene encoding the transcriptional activator of the pqs operon. We found that PqsR had very little influence on the AHL QS regulon. This was a surprising finding because the last gene in the PqsR-dependent pqs operon, pqsE, codes for a protein, which physically interacts with RhlR, and this interaction is required for RhlR-dependent activation of some genes. We used comparative transcriptomics to examine the influence of a pqsE mutation on the QS regulon and identified only three transcripts, which were strictly dependent on PqsE. By using reporter constructs, we showed that the PqsE influence on other genes was dependent on experimental conditions and we have gained some insight about those conditions. This work adds to our understanding of the plasticity of the P. aeruginosa QS regulon and to the role PqsE plays in RhlR-dependent gene activation.IMPORTANCEOver many generations of growth in certain conditions, Pseudomonas aeruginosa undergoes a large reductive evolution in the number of genes activated by quorum sensing. Here, we rule out one plausible route of the reductive evolution: that a mutation in a transcriptional activator PqsR or the PqsR activation of pqsE, which codes for a chaperone for the quorum sensing signal-responsive transcription factor RhlR, explains the finding. We further provide information about the influence of PqsR and PqsE on quorum sensing in P. aeruginosa.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa , Percepción de Quorum , Transducción de Señal , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Acil-Butirolactonas/metabolismo , Quinolonas/metabolismo , Quinolonas/farmacología , Regulón
5.
Microbiol Res ; 287: 127868, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126862

RESUMEN

Pseudomonas protegens can generally produce multiple antibiotics including pyoluteorin (Plt), 2,4-diacetylphloroglucinol (DAPG), and pyrrolnitrin (Prn). In this study, we discovered and characterized a quorum sensing (QS) system, PpqI/R, in P. protegens H78. PpqI/R, encoded by two open reading frames (ORFs) (H78_01960/01961) in P. protegens H78 genome, is a LuxI/R-type QS system. Four long-chain acyl homoserine lactone (AHL) signaling molecules, 3-OH-C10-HSL, 3-OH-C12-HSL, C12-HSL, and 3-OH-C14-HSL, are produced by H78. Biosynthesis of these AHLs is catalyzed by PpqI synthase and activated by the PpqR regulator in H78 and in Escherichia coli when heterologously expressed. PpqR activates ppqI expression by targeting the lux box upstream of the ppqI promoter in cooperation with corresponding AHLs. The four aforementioned AHLs exhibited different capabilities to induce ppqI promoter expression, with 3-OH-C12-HSL showing the highest induction activity. In H78 cells, ppqI/R expression is activated by the two-component system GacS/A and the RNA chaperone Hfq. Differential regulation of the PpqI/R system in secondary metabolism has a negative effect on DAPG biosynthesis and ped operon (involved in volatile organic compound biosynthesis) expression. In contrast, Plt biosynthesis and prn operon expression were positively regulated by PpqI/R. In summary, PpqI/R, the first characterized QS system in P. protegens, is activated by GacS/A and Hfq and controls the expression of secondary metabolites, including antibiotics.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Pseudomonas , Percepción de Quorum , Percepción de Quorum/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pseudomonas/metabolismo , Pseudomonas/genética , Proteína de Factor 1 del Huésped/metabolismo , Proteína de Factor 1 del Huésped/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Floroglucinol/metabolismo , Floroglucinol/análogos & derivados , Acil-Butirolactonas/metabolismo , Fenoles/metabolismo , Pirrolnitrina/metabolismo , Pirroles/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sistemas de Lectura Abierta , Regiones Promotoras Genéticas , Compuestos Heterocíclicos con 3 Anillos/metabolismo
6.
ACS Synth Biol ; 13(9): 3032-3040, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39150992

RESUMEN

As temperature serves as a versatile input signal, thermoresponsive genetic controls have gained significant interest for recombinant protein production and metabolic engineering applications. The conventional thermoresponsive systems normally require the continuous exposure of heat stimuli to trigger the prolonged expression of targeted genes, and the accompanied heat-shock response is detrimental to the bioproduction process. In this study, we present the design of thermoresponsive quorum-sensing (ThermoQS) circuits to make Escherichia coli record transient heat stimuli. By conversion of the heat input into the accumulation of quorum-sensing molecules such as acyl-homoserine lactone derived from Pseudomonas aeruginosa, sustained gene expressions were achieved by a minimal heat stimulus. Moreover, we also demonstrated that we reprogrammed the E. coli Lac operon to make it respond to heat stimuli with an impressive signal-to-noise ratio (S/N) of 15.3. Taken together, we envision that the ThermoQS systems reported in this study are expected to remarkably diminish both design and experimental expenditures for future metabolic engineering applications.


Asunto(s)
Escherichia coli , Respuesta al Choque Térmico , Ingeniería Metabólica , Pseudomonas aeruginosa , Percepción de Quorum , Escherichia coli/genética , Escherichia coli/metabolismo , Percepción de Quorum/genética , Respuesta al Choque Térmico/genética , Ingeniería Metabólica/métodos , Pseudomonas aeruginosa/genética , Regulación Bacteriana de la Expresión Génica , Acil-Butirolactonas/metabolismo
7.
J Hazard Mater ; 478: 135477, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39128153

RESUMEN

In this study, the Pb-resistant Ensifer adhaerens strain S24, which contains quorum sensing (QS) systems responsible for N-acyl homoserine lactone (AHL) production, was investigated for QS system-mediated Pb stabilization and the underlying mechanisms. Whole-genome sequence analysis revealed the QS SinI/R and TraI/R systems in strain S24. Subsequently, strains S24 and the S24∆sinI/R, S24∆traI/R, S24∆traI/R/sinR, and S24∆sinI/R-traI/R/sinR mutants were constructed and compared for QS SinI/SinR-TraI/TraR system-mediated Pb stabilization in the solution and the mechanisms involved. After 5 days of incubation, strain S24 significantly decreased the Pb concentration in the Pb-contaminated solution compared with the mutants. The S24∆sinI/R-traI/R/sinR mutant exhibited reduced Pb stabilization and AHL activity than the other mutants. The S24∆sinI/R-traI/R/sinR mutant had significantly greater Pb concentrations in the solution and lower cell surface-adsorbed and extracellular precipitated Pb (PbS) contents as well as lower expression of H2S-producing genes of metC and sseA than did strain S24. Furthermore, the S24∆sinI/R-traI/R/sinR mutant displayed reduced interactions between the hydroxyl, amino, carboxyl, and ether groups and Pb, compared with strain S24. These findings implied the vital role of the SinI/SinR-TraI/TraR systems in strain S24 for Pb stabilization through enhanced cell surface adsorption and extracellular precipitation in Pb-polluted aquatic environments.


Asunto(s)
Plomo , Percepción de Quorum , Contaminantes Químicos del Agua , Plomo/toxicidad , Plomo/metabolismo , Contaminantes Químicos del Agua/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Acil-Butirolactonas/metabolismo , Mutación
8.
Chemosphere ; 363: 142983, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089336

RESUMEN

Quorum sensing (QS) plays an important role in the social behavior of microbial communities. Anaerobic digestion (AD) is a biological process using anaerobic microorganisms to degrade organic macromolecules into small molecules for biogas and biofertilizer production. In AD, the QS signaling molecule N-acyl homoserine lactones (AHLs) induces bacterial metabolism, improving AD process efficiency. However, there are fewer systematic reports about QS regulation of microbial behavior in AD. In this report, the effects of signaling molecules on extracellular polymer secretion, biofilm formation, granulation of granular sludge and bacterial metabolism in AD were investigated in detail. At present, the regulation behavior of QS on AD is a group phenomenon, and there are few in-depth studies on the regulation pathway. Therefore, we conducted an in-depth analysis of the pure culture system, granular sludge and reactor in the AD. Then we pointed out that the future application potential of QS in the AD may be combined with quorum quenching (QQ) and omics technology, which is of great significance for the future application of AD.


Asunto(s)
Biopelículas , Reactores Biológicos , Percepción de Quorum , Aguas del Alcantarillado , Anaerobiosis , Aguas del Alcantarillado/microbiología , Reactores Biológicos/microbiología , Biopelículas/crecimiento & desarrollo , Acil-Butirolactonas/metabolismo , Bacterias/metabolismo
9.
Mol Plant Pathol ; 25(8): e13467, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39099210

RESUMEN

Ralstonia solanacearum species complex (RSSC) includes soilborne bacterial plant pathogens with worldwide distribution and wide host ranges. Virulence factors are regulated via four hierarchically organized cell-cell contact independent quorum-sensing (QS) signalling systems: the Phc, which uses as signals (R)-methyl 3-hydroxypalmitate [(R)-3-OH PAME] or (R)-methyl 3-hydroxymyristate [(R)-3-OH MAME], the N-acyl homoserine lactone (AHL)-dependent RasI/R and SolI/R systems, and the recently identified anthranilic acid-dependent system. The unique Phc QS system has been extensively studied; however, the role of the two AHL QS systems has only recently been addressed. In this microreview, we present and discuss current data of the SolI/R and RasI/R QS systems in the RSSC. We also present the distribution and frequency of these AHL QS systems in the RSSC, discuss possible ecological roles and evolutive implications. The complex QS hierarchical networks emphasizes the crucial role of cell-cell signalling in the virulence of the RSSC.


Asunto(s)
Acil-Butirolactonas , Percepción de Quorum , Ralstonia solanacearum , Transducción de Señal , Ralstonia solanacearum/patogenicidad , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/fisiología , Acil-Butirolactonas/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo
10.
Int J Biol Macromol ; 278(Pt 1): 134299, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097047

RESUMEN

Quorum sensing (QS) is a cellular communication mechanism in which bacteria secrete and recognize signaling molecules to regulate group behavior. Lipases provide energy for bacterial cell growth but it is unknown whether they influence nutrient-dependent QS by hydrolyzing substrate. A high-yield lipase-producing strain, Burkholderia pyrrocinia WZ10-3, was previously identified in our laboratory, but the composition of its crude enzymes was not elucidated. Here, we identified a key extracellular lipase, Lip1728, in WZ10-3, which accounts for 99 % of the extracellular lipase activity. Lip1728 prefers to hydrolyze triglycerides at sn-1,3 positions, with pNP-C16 being its optimal substrate. Lip1728 exhibited activity at pH 5.0-10.0 and regardless of the presence of metal ions. It had strong resistance to sodium dodecyl sulfate and short-chain alcohols and was activated by phenylmethanesulfonylfluoride (PMSF). Lip1728 knockout significantly affected lipid metabolism and biofilm formation in the presence of olive oil. Finally, oleic acid, a hydrolysate of Lip1728, influenced the production of the signal molecule N-acyl homoserine lactone (AHL) and biofilm formation by downregulating the AHL synthetase gene pyrI. In conclusion, Lip1728, as a key extracellular lipase in B. pyrrocinia WZ10-3, exhibits superior properties that make it suitable for biodiesel production and plays a crucial role in QS.


Asunto(s)
Burkholderia , Lipasa , Percepción de Quorum , Lipasa/metabolismo , Lipasa/genética , Percepción de Quorum/genética , Burkholderia/genética , Burkholderia/enzimología , Burkholderia/fisiología , Biopelículas/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Especificidad por Sustrato , Metabolismo de los Lípidos , Nutrientes/metabolismo , Acil-Butirolactonas/metabolismo
11.
J Environ Manage ; 366: 121867, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39032259

RESUMEN

Biochar has been used to enhance methane generation from anaerobic digestion through establishing direct interspecific electron transfer between microorganisms. However, the microbial communication is still inadequate, thereby limiting further methane production improvement contributed by biochar. This study investigated the roles of quorum-sensing molecules, acylated homoserine lactone (AHL), in anaerobic digestion of waste activated sludge aided by biochar. Results showed that the co-addition of separated biochar and AHL achieved best methane production performance, with the maximal methane yield of 154.7 mL/g volatile suspended solids, which increased by 51.9%, 47.2%, 17.9%, and 39.4% respectively compared to that of control, AHL-loaded biochar, sole AHL, and sole biochar groups. The reason was that the co-addition of separated biochar and AHL promoted the stages of hydrolysis and acidification, promoting the conversion of organic matters and short-chain fatty acids, and optimizing the accumulation of acetate acid. Moreover, the methanogenesis stage also performed best among experimental groups. Correspondingly, the highest activities of electron transfer and coenzyme F420 were obtained, with increase ratios of 33.2% and 27.2% respectively compared to that of control. Furthermore, biochar did more significant effects on the evolution of microbial communities than AHL, and the direct interspecific electron transfer between fermentative bacteria and methanogens were possibly promoted.


Asunto(s)
Carbón Orgánico , Metano , Percepción de Quorum , Metano/metabolismo , Anaerobiosis , Aguas del Alcantarillado , Ácidos Grasos Volátiles/metabolismo , Acil-Butirolactonas/metabolismo
12.
Bioresour Technol ; 408: 131136, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39033827

RESUMEN

The effects of three typical N-acyl-homoserine lactones (AHLs) on the tolerance of biological nitrogen removal (BNR) system to chronic exposure of zinc oxide nanoparticles (NPs) were investigated. C4-HSL successfully delayed the crash time of nitrogen removal performances in the NP-stressed system, while C6-HSL and C10-HSL maintained total nitrogen removal efficiencies throughout the 90-day NP exposure. All three AHLs increased NPs' contents captured in extracellular polymeric substances, alleviating membrane damage and preserving floc structure. The activities of tricarboxylic acid cycle-related enzymes and the relative abundances of BNR-related functional genes and genera were significantly enhanced. Besides, C6-HSL and C10-HSL augmented antioxidant enzyme activities and the abundances of functional genes and metabolites related to antioxidation, flagellar assembly, and chemotaxis, which synergistically reduced the reactive oxygen species' excessive accumulation. The tested AHLs effectively enhanced BNR systems' tolerance to chronic NP exposure, providing inspiration for quorum sensing applications in emerging contaminant removal.


Asunto(s)
Nitrógeno , Percepción de Quorum , Óxido de Zinc , Percepción de Quorum/efectos de los fármacos , Óxido de Zinc/farmacología , Óxido de Zinc/química , Nanopartículas/química , Acil-Butirolactonas/metabolismo , Bacterias/metabolismo , Nanopartículas del Metal/química , Especies Reactivas de Oxígeno/metabolismo , Biodegradación Ambiental
13.
J Environ Manage ; 366: 121792, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002459

RESUMEN

Signal transduction is an important mode of algae-bacteria interaction, in which bacterial quorum sensing (QS) may affect microalgal growth and metabolism. Currently, little is known whether acyl homoserine lactones (AHLs) released by bacteria can affect the pollutant removal by algae-bacteria consortia (ABC). In this study, we constructed ABC using Chlorella vulgaris (Cv) with two AHLs-producing bacteria and investigated their performance in the removal of multiple pollutants, including chemical oxygen demand (COD), total nitrogen (TN), phosphorus (P), and cadmium (Cd). The AHLs-producing bacteria, namely Agrobacterium sp. (Ap) and Ensifer adherens (Ea), were capable of forming a symbiosis with C. vulgaris. Consortia of Cv and Ap with ratio of 2:1 (Cv2-Ap1) showed the optimal growth promotion and higher removal of Cd, COD, TN, and P compared to the C. vulgaris monoculture. Cv2-Ap1 ABC removed 36.1-47.5% of Cd, 94.5%-94.6% COD, 37.1%-56.0% TN, and 90.4%-93.5% P from the culture medium. In addition, increase of intracellular neutral lipids and extracellular protein, as well as the types of functional groups on cell surface contributed to Cd removal and tolerance in the Cv2-Ap1 ABC. Six AHLs were detected in the Cv2-Ap1 culture. Among these, 3OC8-HSL and 3OC12-HSL additions promoted the ABC growth and enhanced their Cd accumulation. These findings may contribute to further understanding of AHL-mediated communication between algae and bacteria and provide support bioremediation efforts of metal-containing wastewater.


Asunto(s)
Acil-Butirolactonas , Cadmio , Cadmio/metabolismo , Acil-Butirolactonas/metabolismo , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crecimiento & desarrollo , Bacterias/metabolismo , Biodegradación Ambiental , Percepción de Quorum , Fósforo/metabolismo , Nitrógeno/metabolismo
14.
Curr Biol ; 34(14): 3226-3232.e5, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38942019

RESUMEN

A dynamic mucous layer containing numerous micro-organisms covers the surface of corals and has multiple functions including both removal of sediment and "food gathering."1 It is likely to also act as the primary barrier to infection; various proteins and compounds with antimicrobial activity have been identified in coral mucus, though these are thought to be largely or exclusively of microbial origin. As in Hydra,2 anti-microbial peptides (AMPs) are likely to play major roles in regulating the microbiomes of corals.3,4 Some eukaryotes employ a complementary but less obvious approach to manipulate their associated microbiome by interfering with quorum signaling, effectively preventing bacteria from coordinating gene expression across a population. Our investigation of immunity in the reef-building coral Acropora millepora,5 however, led to the discovery of a coral gene referred to here as AmNtNH1 that can inactivate a range of acyl homoserine lactones (AHLs), common bacterial quorum signaling molecules, and is induced on immune challenge of adult corals and expressed during the larval settlement process. Closely related proteins are widely distributed within the Scleractinia (hard corals) and some other cnidarians, with multiple paralogs in Acropora, but their closest relatives are bacterial, implying that these are products of one or more lateral gene transfer events post-dating the cnidarian-bilaterian divergence. The deployment by corals of genes used by bacteria to compete with other bacteria reflects a mechanism of microbiome manipulation previously unknown in Metazoa but that may apply more generally.


Asunto(s)
Antozoos , Microbiota , Percepción de Quorum , Animales , Antozoos/microbiología , Antozoos/inmunología , Antozoos/fisiología , Cnidarios/fisiología , Cnidarios/genética , Arrecifes de Coral , Acil-Butirolactonas/metabolismo
15.
ACS Synth Biol ; 13(6): 1956-1962, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38860508

RESUMEN

Escherichia coli, one of the most efficient expression hosts for recombinant proteins, is widely used in chemical, medical, food, and other industries. De novo engineering of gene regulation circuits and cell density-controlled E. coli cell lysis are promising directions for the release of intracellular bioproducts. Here, we developed an E. coli autolytic system, named the quorum sensing-mediated bacterial autolytic (QS-BA) system, by incorporating an acyl-homoserine lactone (AHL)-based YasI/YasR-type quorum sensing circuit from Pseudoalteromonas into E. coli cells. The results showed that the E. coli QS-BA system can release the intracellular bioproducts into the cell culture medium in terms of E. coli cell density, which offers an environmentally-friendly, economical, efficient, and flexible E. coli lysis platform for production of recombinant proteins. The QS-BA system has the potential to serve as an integrated system for the large-scale production of target products in E. coli for medical and industrial applications.


Asunto(s)
Escherichia coli , Percepción de Quorum , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Acil-Butirolactonas/metabolismo , Pseudoalteromonas/metabolismo , Pseudoalteromonas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
16.
Chemosphere ; 362: 142640, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901697

RESUMEN

Exogenous quorum sensing (QS) molecular can regulate the activity and granulation process of anaerobic sludge in anaerobic digestion process, but would be impractical as a standalone operation. Here we demonstrated that application of 1 mg L-1 boric acid assisted in an upflow anaerobic sludge blanket (UASB) reactor recovery from volatile fatty acids (VFAs) accumulation. After VFAs accumulation, the chemical oxygen demand (COD) removal suddenly reduced from 78.98% to 55.86%. The relative abundance of acetoclastic methanogens decreased from 55.79% to 68.28%-23.14%∼25.41%, and lead to the acetate accumulate as high as 1317.03 mg L-1. Granular sludge disintegrated and the average size of sludge decreased to 586.38 ± 42.45 µm. Application of 1 mg L-1 boric acid activated the interspecies QS signal (AI-2) and then induced the secretion of intraspecies QS signal (N-acyl-homoserine lactones, AHLs). AHLs were then stimulated the growth of syntrophic acetate oxidizing bacteria and hydrogenotrophic methanogen. Moreover, the concentration of acetate decreased to 224.50 mg‧L-1, and the COD removal increased to 75.10% after application of 1 mg L-1 boric acid. The activated AI-2 may induce multiple quorum-sensing circuits enhance the level of AI-2 and AHLs in parallel, and in turn assisted in anaerobic digestion recovery from VFAs accumulation.


Asunto(s)
Reactores Biológicos , Ácidos Grasos Volátiles , Percepción de Quorum , Aguas del Alcantarillado , Ácidos Grasos Volátiles/metabolismo , Anaerobiosis , Aguas del Alcantarillado/microbiología , Reactores Biológicos/microbiología , Boro , Eliminación de Residuos Líquidos/métodos , Ácidos Bóricos/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Bacterias/metabolismo , Acil-Butirolactonas/metabolismo
17.
Anal Bioanal Chem ; 416(25): 5431-5443, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38842688

RESUMEN

Bacterial quorum sensing is a chemical language allowing bacteria to interact through the excretion of molecules called autoinducers, like N-acyl-homoserine lactones (AHLs) produced by Gram-negative Burkholderia and Paraburkholderia bacteria known as opportunistic pathogens. The AHLs differ in their acyl-chain length and may be modified by a 3-oxo or 3-hydroxy substituent, or C = C double bonds at different positions. As the bacterial signal specificity depends on all of these chemical features, their structural characterization is essential to have a better understanding of the population regulation and virulence phenomenon. This study aimed at enabling the localization of the C = C double bond on such specialized metabolites while using significantly lower amounts of biological material. The approach is based on LC-MS/MS analyses of bacterial extracts after in-solution derivatization by a photochemical Paternò-Büchi reaction, leading to the formation of an oxetane ring and subsequently to specific fragmentations when performing MS/MS experiments. The in-solution derivatization of AHLs was optimized on several standards, and then the matrix effect of bacterial extracts on the derivatization was assessed. As a proof of concept, the optimized conditions were applied to a bacterial extract enabling the localization of C = C bonds on unsaturated AHLs.


Asunto(s)
Acil-Butirolactonas , Percepción de Quorum , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Acil-Butirolactonas/química , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/análisis , Cromatografía Liquida/métodos , Burkholderia/química , Cromatografía Líquida con Espectrometría de Masas
18.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744663

RESUMEN

Eukaryotic organisms coevolved with microbes from the environment forming holobiotic meta-genomic units. Members of host-associated microbiomes have commensalic, beneficial/symbiotic, or pathogenic phenotypes. More than 100 years ago, Lorenz Hiltner, pioneer of soil microbiology, introduced the term 'Rhizosphere' to characterize the observation that a high density of saprophytic, beneficial, and pathogenic microbes are attracted by root exudates. The balance between these types of microbes decide about the health of the host. Nowadays we know, that for the interaction of microbes with all eukaryotic hosts similar principles and processes of cooperative and competitive functions are in action. Small diffusible molecules like (phyto)hormones, volatiles and quorum sensing signals are examples for mediators of interspecies and cross-kingdom interactions. Quorum sensing of bacteria is mediated by different autoinducible metabolites in a density-dependent manner. In this perspective publication, the role of QS-related activities for the health of hosts will be discussed focussing mostly on N-acyl-homoserine lactones (AHL). It is also considered that in some cases very close phylogenetic relations exist between plant beneficial and opportunistic human pathogenic bacteria. Based on a genome and system-targeted new understanding, sociomicrobiological solutions are possible for the biocontrol of diseases and the health improvement of eukaryotic hosts.


Asunto(s)
Bacterias , Plantas , Percepción de Quorum , Humanos , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Plantas/microbiología , Acil-Butirolactonas/metabolismo , Fenómenos Fisiológicos Bacterianos , Microbiología del Suelo , Microbiota , Simbiosis , Rizosfera
19.
Microbiol Res ; 285: 127781, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795406

RESUMEN

Pantoea agglomerans is considered one of the most ubiquitous and versatile organisms that include strains that induce diseases in various crops and occasionally cause opportunistic infections in humans. To develop effective strategies to mitigate its impact on plant health and agricultural productivity, a comprehensive investigation is crucial for better understanding its pathogenicity. One proposed eco-friendly approach involves the enzymatic degradation of quorum sensing (QS) signal molecules like N-acylhomoserine lactones (AHLs), known as quorum quenching (QQ), offering potential treatment for such bacterial diseases. In this study the production of C4 and 3-oxo-C6HSL was identified in the plant pathogenic P. agglomerans CFBP 11141 and correlated to enzymatic activities such as amylase and acid phosphatase. Moreover, the heterologous expression of a QQ enzyme in the pathogen resulted in lack of AHLs production and the attenuation of the virulence by mean of drastically reduction of soft rot disease in carrots and cherry tomatoes. Additionally, the interference with the QS systems of P. agglomerans CFBP 11141 by two the plant growth-promoting and AHL-degrading bacteria (PGP-QQ) Pseudomonas segetis P6 and Bacillus toyonensis AA1EC1 was evaluated as a potential biocontrol approach for the first time. P. segetis P6 and B. toyonensis AA1EC1 demonstrated effectiveness in diminishing soft rot symptoms induced by P. agglomerans CFBP 11141 in both carrots and cherry tomatoes. Furthermore, the virulence of pathogen notably decreased when co-cultured with strain AA1EC1 on tomato plants.


Asunto(s)
Acil-Butirolactonas , Pantoea , Enfermedades de las Plantas , Percepción de Quorum , Solanum lycopersicum , Pantoea/metabolismo , Pantoea/genética , Pantoea/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Virulencia , Acil-Butirolactonas/metabolismo , Solanum lycopersicum/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
20.
Plant Signal Behav ; 19(1): 2356406, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38785260

RESUMEN

In nature, co-evolution shaped balanced entities of host plants and their associated microorganism. Plants maintain this balance by detecting their associated microorganism and coordinating responses to them. Quorum sensing (QS) is a widespread bacterial cell-to-cell communication mechanism to modulate the collective behavior of bacteria. As a well-characterized QS signal, N-acyl homoserine lactones (AHL) also influence plant fitness. Plants need to coordinate their responses to diverse AHL molecules since they might host bacteria producing various AHL. This opinion paper discusses plants response to a mixture of multiple AHL molecules. The function of various phytohormones and WRKY transcription factors seems to be characteristic for plants' response to multiple AHL. Additionally, the perspectives and possible approaches to facilitate further research and the application of AHL-producing bacteria are discussed.


Asunto(s)
Acil-Butirolactonas , Acil-Butirolactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/microbiología , Plantas/metabolismo , Percepción de Quorum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA