Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.440
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125632

RESUMEN

The behavior and presence of actin-regulating proteins are characteristic of various clinical diseases. Changes in these proteins significantly impact the cytoskeletal and regenerative processes underlying pathological changes. Pituitary adenylate cyclase-activating polypeptide (PACAP), a cytoprotective neuropeptide abundant in the nervous system and endocrine organs, plays a key role in neuron differentiation and migration by influencing actin. This study aims to elucidate the role of PACAP as an actin-regulating polypeptide, its effect on actin filament formation, and the underlying regulatory mechanisms. We examined PACAP27, PACAP38, and PACAP6-38, measuring their binding to actin monomers via fluorescence spectroscopy and steady-state anisotropy. Functional polymerization tests were used to track changes in fluorescent intensity over time. Unlike PACAP27, PACAP38 and PACAP6-38 significantly reduced the fluorescence emission of Alexa488-labeled actin monomers and increased their anisotropy, showing nearly identical dissociation equilibrium constants. PACAP27 showed weak binding to globular actin (G-actin), while PACAP38 and PACAP6-38 exhibited robust interactions. PACAP27 did not affect actin polymerization, but PACAP38 and PACAP6-38 accelerated actin incorporation kinetics. Fluorescence quenching experiments confirmed structural changes upon PACAP binding; however, all studied PACAP fragments exhibited the same effect. Our findings indicate that PACAP38 and PACAP6-38 strongly bind to G-actin and significantly influence actin polymerization. Further studies are needed to fully understand the biological significance of these interactions.


Asunto(s)
Actinas , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Espectrometría de Fluorescencia , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/química , Actinas/metabolismo , Actinas/química , Animales , Espectrometría de Fluorescencia/métodos , Citoesqueleto/metabolismo , Unión Proteica , Citoesqueleto de Actina/metabolismo , Humanos , Cinética
2.
Int J Biol Macromol ; 278(Pt 1): 134556, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128762

RESUMEN

Structural insight eludes on how full-length gelsolin depolymerizes and caps filamentous (F-)actin, while the same entity can nucleate polymerization of G-actins. Analyzing small angle X-ray scattering (SAXS) data, we deciphered assemblies which enable these contrasting processes. Mixing Ca2+-gelsolin with F-actin in high salt F-buffer resulted in depolymerization of ordered F-actin rods to smaller sized species which became monodispersed upon dialysis with low salt G-buffer. These entities were the ternary (GA2) and binary (GA) complexes of gelsolin and actin with radius of gyration and maximum linear dimension of 4.55 and 4.68 nm, and 15 and 16 nm, respectively. Using size exclusion chromatography in-line with SAXS, we confirmed that initially GA and GA2 species are formed as seen upon depolymerization of F-actin followed by dialysis. Interestingly, while GA2 could seed formation of native-like F-actin in both G- and F-buffer, GA failed in G-buffer. Thus, GA2 and GA are the central species formed via depolymerization or towards nucleation. SAXS profile referenced modeling revealed that: 1) in GA, actin is bound to the C-terminal half of gelsolin, and 2) in GA2, second actin binds to the open N-terminal half accompanied by dramatic rearrangements across g1-g2 and g3-g4 linkers.


Asunto(s)
Actinas , Calcio , Gelsolina , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Gelsolina/química , Actinas/química , Calcio/química , Modelos Moleculares , Unión Proteica , Animales , Conformación Proteica
3.
Curr Opin Cell Biol ; 90: 102419, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39178734

RESUMEN

The dynamic actin cytoskeleton contributes to many critical biological processes by providing the structural support underlying the morphology of most cells, facilitating intracellular transport, and generating forces required for cell motility and division. To execute many of these functions, actin monomers polymerize into polarized filaments that display different structural and biochemical properties at each end. Filament dynamics are regulated by diverse regulatory proteins which collaborate to dictate rates of elongation and disassembly, particularly at the fast-growing barbed (plus) end. This review highlights the biochemical mechanisms of six barbed end regulatory proteins: formin, profilin, capping protein, IQGAP1, cyclase-associated protein, and twinfilin. We discuss how individual proteins influence actin dynamics and how several intriguing complex assemblies influence the polymerization fate of actin filaments. Understanding these mechanisms offers insights into how actin is regulated in essential cell processes and dysregulated in disease.


Asunto(s)
Citoesqueleto de Actina , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Humanos , Animales , Actinas/metabolismo , Actinas/química
4.
J Chem Phys ; 161(7)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166892

RESUMEN

Depletion interactions are thought to significantly contribute to the organization of intracellular structures in the crowded cytosol. The strength of depletion interactions depends on physical parameters such as the depletant number density and the depletant size ratio. Cells are known to dynamically regulate these two parameters by varying the copy number of proteins of a wide distribution of sizes. However, mammalian cells are also known to keep the total protein mass density remarkably constant, to within 0.5% throughout the cell cycle. We thus ask how the strength of depletion interactions varies when the total depletant mass is held fixed, a.k.a. fixed-mass depletion. We answer this question via scaling arguments, as well as by studying depletion effects on networks of reconstituted semiflexible actin in silico and in vitro. We examine the maximum strength of the depletion interaction potential U∗ as a function of q, the size ratio between the depletant and the matter being depleted. We uncover a scaling relation U∗ ∼ qζ for two cases: fixed volume fraction φ and fixed mass density ρ. For fixed volume fraction, we report ζ < 0. For the fixed mass density case, we report ζ > 0, which suggests that the depletion interaction strength increases as the depletant size ratio is increased. To test this prediction, we prepared our filament networks at fixed mass concentrations with varying sizes of the depletant molecule poly(ethylene glycol) (PEG). We characterize the depletion interaction strength in our simulations via the mesh size. In experiments, we observe two distinct actin network morphologies, which we call weakly bundled and strongly bundled. We identify a mass concentration where different PEG depletant sizes lead to weakly bundled or strongly bundled morphologies. For these conditions, we find that the mesh size and intra-bundle spacing between filaments across the different morphologies do not show significant differences, while the dynamic light scattering relaxation time and storage modulus between the two states do show significant differences. Our results demonstrate the ability to tune actin network morphology and mechanics by controlling depletant size and give insights into depletion interaction mechanisms under the fixed-depletant-mass constraint relevant to living cells.


Asunto(s)
Actinas , Actinas/química , Actinas/metabolismo , Polietilenglicoles/química , Animales , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo
5.
Elife ; 132024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093938

RESUMEN

The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0-6.3 nm) than the MAD within typical helices (4.3-5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.


Asunto(s)
Factores Despolimerizantes de la Actina , Actinas , Unión Proteica , Actinas/metabolismo , Actinas/química , Factores Despolimerizantes de la Actina/metabolismo , Factores Despolimerizantes de la Actina/química , Microscopía de Fuerza Atómica , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Conformación Proteica , Modelos Moleculares , Animales
6.
Soft Matter ; 20(31): 6266-6274, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39054893

RESUMEN

A correlation between the mechanical properties of cells and various diseases has been emerging in recent years. Atomic force microscopy (AFM) has been widely used to measure a single cell's apparent Young's modulus by treating it as a fully elastic object. More recently, quantitative characterization of the complete viscoelasticity of single cells has become possible. We performed AFM-based nano-indentation experiments on hemocytes isolated from third instar larvae to determine their viscoelasticity and found that live hemocytes, like many other cells, follow a scale-free power-law rheology (PLR) akin to soft glasses. Further, we examined the changes in the rheological response of hemocytes in the presence of pathogenic protein aggregates known to cause neurodegenerative diseases such as Huntington's disorder and amyotrophic lateral sclerosis. Our results show that cells lose their fluidity and appear more solid-like in the presence of certain aggregates, in a manner correlated to actin reorganization. More solid-like cells also display reduced intracellular transport through clathrin-mediated endocytosis (CME). However, the cell's rheology remains largely unaffected and is similar to that of wild-type (WT) hemocytes, if aggregates do not perturb the actin organization and CME. Moreover, the fluid-like nature was significantly recovered when actin organization was rescued by overexpressing specific actin interacting proteins or chaperones. Our study, for the first time, underscores a direct correlation between parameters governing glassy dynamics, actin organization and CME.


Asunto(s)
Hemocitos , Reología , Animales , Hemocitos/metabolismo , Agregado de Proteínas , Viscosidad , Endocitosis , Actinas/metabolismo , Actinas/química , Análisis de la Célula Individual , Microscopía de Fuerza Atómica
7.
Cell Rep Methods ; 4(7): 100815, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986612

RESUMEN

The ability of cells to sense and respond to mechanical forces is critical in many physiological and pathological processes. However, determining the mechanisms by which forces affect protein function inside cells remains challenging. Motivated by in vitro demonstrations of fluorescent proteins (FPs) undergoing reversible mechanical switching of fluorescence, we investigated whether force-sensitive changes in FP function could be visualized in cells. Guided by a computational model of FP mechanical switching, we develop a formalism for its detection in Förster resonance energy transfer (FRET)-based biosensors and demonstrate its occurrence in cellulo within a synthetic actin crosslinker and the mechanical linker protein vinculin. We find that in cellulo mechanical switching is reversible and altered by manipulation of cell force generation, external stiffness, and force-sensitive bond dynamics of the biosensor. This work describes a framework for assessing FP mechanical stability and provides a means of probing force-sensitive protein function inside cells.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Proteínas Luminiscentes , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/química , Técnicas Biosensibles/métodos , Humanos , Vinculina/metabolismo , Vinculina/química , Actinas/metabolismo , Actinas/química , Fenómenos Biomecánicos
8.
Molecules ; 29(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38998944

RESUMEN

Actin, which plays a crucial role in cellular structure and function, interacts with various binding proteins, notably myosin. In mammals, actin is composed of six isoforms that exhibit high levels of sequence conservation and structural similarity overall. As a result, the selection of actin isoforms was considered unimportant in structural studies of their binding with myosin. However, recent high-resolution structural research discovered subtle structural differences in the N-terminus of actin isoforms, suggesting the possibility that each actin isoform may engage in specific interactions with myosin isoforms. In this study, we aimed to explore this possibility, particularly by understanding the influence of different actin isoforms on the interaction with myosin 7A. First, we compared the reported actomyosin structures utilizing the same type of actin isoforms as the high-resolution filamentous skeletal α-actin (3.5 Å) structure elucidated using cryo-EM. Through this comparison, we confirmed that the diversity of myosin isoforms leads to differences in interaction with the actin N-terminus, and that loop 2 of the myosin actin-binding sites directly interacts with the actin N-terminus. Subsequently, with the aid of multiple sequence alignment, we observed significant variations in the length of loop 2 across different myosin isoforms. We predicted that these length differences in loop 2 would likely result in structural variations that would affect the interaction with the actin N-terminus. For myosin 7A, loop 2 was found to be very short, and protein complex predictions using skeletal α-actin confirmed an interaction between loop 2 and the actin N-terminus. The prediction indicated that the positively charged residues present in loop 2 electrostatically interact with the acidic patch residues D24 and D25 of actin subdomain 1, whereas interaction with the actin N-terminus beyond this was not observed. Additionally, analyses of the actomyosin-7A prediction models generated using various actin isoforms consistently yielded the same results regardless of the type of actin isoform employed. The results of this study suggest that the subtle structural differences in the N-terminus of actin isoforms are unlikely to influence the binding structure with short loop 2 myosin 7A. Our findings are expected to provide a deeper understanding for future high-resolution structural binding studies of actin and myosin.


Asunto(s)
Actinas , Miosinas , Unión Proteica , Isoformas de Proteínas , Actinas/química , Actinas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Miosinas/química , Miosinas/metabolismo , Sitios de Unión , Animales , Modelos Moleculares , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Humanos
9.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999987

RESUMEN

The actin cytoskeleton is one of the most important players in cell motility, adhesion, division, and functioning. The regulation of specific microfilament formation largely determines cellular functions. The main actin-binding protein in animal cells is tropomyosin (Tpm). The unique structural and functional diversity of microfilaments is achieved through the diversity of Tpm isoforms. In our work, we studied the properties of the cytoplasmic isoforms Tpm1.8 and Tpm1.9. The results showed that these isoforms are highly thermostable and differ in the stability of their central and C-terminal fragments. The properties of these isoforms were largely determined by the 6th exons. Thus, the strength of the end-to-end interactions, as well as the affinity of the Tpm molecule for F-actin, differed between the Tpm1.8 and Tpm1.9 isoforms. They were determined by whether an alternative internal exon, 6a or 6b, was included in the Tpm isoform structure. The strong interactions of the Tpm1.8 and Tpm1.9 isoforms with F-actin led to the formation of rigid actin filaments, the stiffness of which was measured using an optical trap. It is quite possible that the structural and functional features of the Tpm isoforms largely determine the appearance of these isoforms in the rigid actin structures of the cell cortex.


Asunto(s)
Citoesqueleto de Actina , Actinas , Isoformas de Proteínas , Tropomiosina , Tropomiosina/metabolismo , Tropomiosina/química , Tropomiosina/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Citoesqueleto de Actina/metabolismo , Animales , Actinas/metabolismo , Actinas/química , Citoplasma/metabolismo , Humanos , Exones , Unión Proteica , Estabilidad Proteica
10.
Proc Natl Acad Sci U S A ; 121(29): e2408156121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38980907

RESUMEN

After ATP-actin monomers assemble filaments, the ATP's [Formula: see text]-phosphate is hydrolyzedwithin seconds and dissociates over minutes. We used all-atom molecular dynamics simulations to sample the release of phosphate from filaments and study residues that gate release. Dissociation of phosphate from Mg2+ is rate limiting and associated with an energy barrier of 20 kcal/mol, consistent with experimental rates of phosphate release. Phosphate then diffuses within an internal cavity toward a gate formed by R177, as suggested in prior computational studies and cryo-EM structures. The gate is closed when R177 hydrogen bonds with N111 and is open when R177 forms a salt bridge with D179. Most of the time, interactions of R177 with other residues occlude the phosphate release pathway. Machine learning analysis reveals that the occluding interactions fluctuate rapidly, underscoring the secondary role of backdoor gate opening in Pi release, in contrast with the previous hypothesis that gate opening is the primary event.


Asunto(s)
Citoesqueleto de Actina , Adenosina Trifosfato , Simulación de Dinámica Molecular , Fosfatos , Fosfatos/metabolismo , Fosfatos/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Adenosina Trifosfato/metabolismo , Actinas/metabolismo , Actinas/química , Enlace de Hidrógeno , Magnesio/metabolismo , Magnesio/química , Microscopía por Crioelectrón
11.
Nature ; 632(8024): 437-442, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38843827

RESUMEN

Humans express 15 formins that play crucial roles in actin-based processes, including cytokinesis, cell motility and mechanotransduction1,2. However, the lack of structures bound to the actin filament (F-actin) has been a major impediment to understanding formin function. Whereas formins are known for their ability to nucleate and elongate F-actin3-7, some formins can additionally depolymerize, sever or bundle F-actin. Two mammalian formins, inverted formin 2 (INF2) and diaphanous 1 (DIA1, encoded by DIAPH1), exemplify this diversity. INF2 shows potent severing activity but elongates weakly8-11 whereas DIA1 has potent elongation activity but does not sever4,8. Using cryo-electron microscopy (cryo-EM) we show five structural states of INF2 and two of DIA1 bound to the middle and barbed end of F-actin. INF2 and DIA1 bind differently to these sites, consistent with their distinct activities. The formin-homology 2 and Wiskott-Aldrich syndrome protein-homology 2 (FH2 and WH2, respectively) domains of INF2 are positioned to sever F-actin, whereas DIA1 appears unsuited for severing. These structures also show how profilin-actin is delivered to the fast-growing barbed end, and how this is followed by a transition of the incoming monomer into the F-actin conformation and the release of profilin. Combined, the seven structures presented here provide step-by-step visualization of the mechanisms of F-actin severing and elongation by formins.


Asunto(s)
Citoesqueleto de Actina , Actinas , Forminas , Animales , Humanos , Ratones , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestructura , Actinas/química , Actinas/metabolismo , Actinas/ultraestructura , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Sitios de Unión , Microscopía por Crioelectrón , Forminas/química , Forminas/metabolismo , Forminas/ultraestructura , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/ultraestructura , Modelos Moleculares , Profilinas/química , Profilinas/metabolismo , Profilinas/ultraestructura , Unión Proteica
12.
Protein J ; 43(4): 675-682, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38824467

RESUMEN

Actin is present in the cytoplasm and nucleus of every eukaryotic cell. In the cytoplasm, framework and motor functions of actin are associated with its ability to polymerize to form F-actin. In the nucleus, globular actin plays a significant functional role. For a globular protein, actin has a uniquely large number of proteins with which it interacts. Bioinformatics analysis of the actin interactome showed that only a part of actin-binding proteins are both cytoplasmic and nuclear. There are proteins that interact only with cytoplasmic, or only with nuclear actin. The first pool includes proteins associated with the formation, regulation, and functioning of the actin cytoskeleton predominate, while nuclear actin-binding proteins are involved in the majority of key nuclear processes, from regulation of transcription to DNA damage response. Bioinformatics analysis of the structure of actin-binding proteins showed that these are mainly intrinsically disordered proteins, many of which are part of membrane-less organelles. Interestingly, although the number of intrinsically disordered actin-binding proteins in the nucleus is greater than in the cytoplasm, the drivers for the formation of the membrane-less organelles in the cytoplasm are significantly (four times) greater than in the nucleus.


Asunto(s)
Actinas , Núcleo Celular , Biología Computacional , Citoplasma , Proteínas de Microfilamentos , Biología Computacional/métodos , Actinas/metabolismo , Actinas/química , Actinas/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Unión Proteica
13.
Curr Opin Cell Biol ; 89: 102381, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38905917

RESUMEN

The actin cortex, commonly described as a thin 2-dimensional layer of actin filaments beneath the plasma membrane, is beginning to be recognized as part of a more dynamic and three-dimensional composite material. In this review, we focus on the elements that contribute to the three-dimensional architecture of the actin cortex. We also argue that actin-rich structures such as filopodia and stress fibers can be viewed as specialized integral parts of the 3D actin cortex. This broadens our definition of the cortex, shifting from its simplified characterization as a thin, two-dimensional layer of actin filaments.


Asunto(s)
Citoesqueleto de Actina , Actinas , Animales , Actinas/metabolismo , Actinas/química , Humanos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Seudópodos/metabolismo , Seudópodos/química , Membrana Celular/metabolismo , Membrana Celular/química
14.
Integr Biol (Camb) ; 162024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38900169

RESUMEN

Cells dynamically remodel their internal structures by modulating the arrangement of actin filaments (AFs). In this process, individual AFs exhibit stochastic behavior without knowing the macroscopic higher-order structures they are meant to create or disintegrate, but the mechanism allowing for such stochastic process-driven remodeling of subcellular structures remains incompletely understood. Here we employ percolation theory to explore how AFs interacting only with neighboring ones without recognizing the overall configuration can nonetheless create a substantial structure referred to as stress fibers (SFs) at particular locations. We determined the interaction probabilities of AFs undergoing cellular tensional homeostasis, a fundamental property maintaining intracellular tension. We showed that the duration required for the creation of SFs is shortened by the increased amount of preexisting actin meshwork, while the disintegration occurs independently of the presence of actin meshwork, suggesting that the coexistence of tension-bearing and non-bearing elements allows cells to promptly transition to new states in accordance with transient environmental changes. The origin of this asymmetry between creation and disintegration, consistently observed in actual cells, is elucidated through a minimal model analysis by examining the intrinsic nature of mechano-signal transmission. Specifically, unlike the symmetric case involving biochemical communication, physical communication to sense environmental changes is facilitated via AFs under tension, while other free AFs dissociated from tension-bearing structures exhibit stochastic behavior. Thus, both the numerical and minimal models demonstrate the essence of intracellular percolation, in which macroscopic asymmetry observed at the cellular level emerges not from microscopic asymmetry in the interaction probabilities of individual molecules, but rather only as a consequence of the manner of the mechano-signal transmission. These results provide novel insights into the role of the mutual interplay between distinct subcellular structures with and without tension-bearing capability. Insight: Cells continuously remodel their internal elements or structural proteins in response to environmental changes. Despite the stochastic behavior of individual structural proteins, which lack awareness of the larger subcellular structures they are meant to create or disintegrate, this self-assembly process somehow occurs to enable adaptation to the environment. Here we demonstrated through percolation simulations and minimal model analyses that there is an asymmetry in the response between the creation and disintegration of subcellular structures, which can aid environmental adaptation. This asymmetry inherently arises from the nature of mechano-signal transmission through structural proteins, namely tension-mediated information exchange within cells, despite the stochastic behavior of individual proteins lacking asymmetric characters in themselves.


Asunto(s)
Citoesqueleto de Actina , Modelos Biológicos , Procesos Estocásticos , Fibras de Estrés , Citoesqueleto de Actina/química , Fibras de Estrés/fisiología , Fibras de Estrés/metabolismo , Simulación por Computador , Mecanotransducción Celular/fisiología , Estrés Mecánico , Humanos , Animales , Actinas/metabolismo , Actinas/química
15.
J Am Chem Soc ; 146(26): 17747-17756, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38889317

RESUMEN

Unveiling molecular mechanisms that dominate protein phase dynamics has been a pressing need for deciphering the intricate intracellular modulation machinery. While ions and biomacromolecules have been widely recognized for modulating protein phase separations, effects of small molecules that essentially constitute the cytosolic chemical atmosphere on the protein phase behaviors are rarely understood. Herein, we report that vitamin C (VC), a key small molecule for maintaining a reductive intracellular atmosphere, drives reentrant phase transitions of myosin II/F-actin (actomyosin) cytoskeletons. The actomyosin bundle condensates dissemble in the low-VC regime and assemble in the high-VC regime in vitro or inside neuronal cells, through a concurrent myosin II protein aggregation-dissociation process with monotonic VC concentration increase. Based on this finding, we employ in situ single-cell and single-vesicle electrochemistry to demonstrate the quantitative modulation of catecholamine transmitter vesicle exocytosis by intracellular VC atmosphere, i.e., exocytotic release amount increases in the low-VC regime and decreases in the high-VC regime. Furthermore, we show how VC regulates cytomembrane-vesicle fusion pore dynamics through counteractive or synergistic effects of actomyosin phase transitions and the intracellular free calcium level on membrane tensions. Our work uncovers the small molecule-based reversive protein phase regulatory mechanism, paving a new way to chemical neuromodulation and therapeutic repertoire expansion.


Asunto(s)
Actinas , Ácido Ascórbico , Exocitosis , Ácido Ascórbico/química , Ácido Ascórbico/farmacología , Exocitosis/efectos de los fármacos , Actinas/metabolismo , Actinas/química , Transición de Fase , Animales , Miosina Tipo II/metabolismo , Miosina Tipo II/antagonistas & inhibidores , Técnicas Electroquímicas , Actomiosina/metabolismo , Actomiosina/química , Ratas
16.
Langmuir ; 40(24): 12649-12670, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38837748

RESUMEN

Actin, found in all eukaryotic cells as globular (G) or filamentous (F) actin, undergoes polymerization, with G-actin units changing shape to become F-actin. Thermal proteins, or proteinoids, are created by heating amino acids (160-200 °C), forming polymeric chains. These proteinoids can swell in an aqueous solution at around 50 °C, producing hollow microspheres filled with a solution, exhibiting voltage spikes. Our research explores the signaling properties of proteinoids, actin filaments, and hybrid networks combining actin and proteinoids. Proteinoids replicate brain excitation dynamics despite lacking specific membranes or ion channels. We investigate enhancing conductivity and spiking by using pure actin, yielding improved coordination in networks compared with individual filaments or proteinoids. Temperature changes (20 short-peptide supramolecular C to 80 °C) regulate conduction states, demonstrating external control over emergent excitability in protobrain systems. Adding actin to proteinoids reduces spike timing variability, providing a more uniform feature distribution. These findings support theoretical models proposing cytoskeletal matrices for functional specification in synthetic protocell brains, promoting stable interaction complexity. The study concludes that life-like signal encoding can emerge spontaneously within biological polymer scaffolds, incorporating abiotic chemistry.


Asunto(s)
Citoesqueleto de Actina , Actinas , Microesferas , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Temperatura , Animales
17.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791524

RESUMEN

Actin filaments, as key components of the cytoskeleton, have aroused great interest due to their numerous functional roles in eukaryotic cells, including intracellular electrical signaling. The aim of this research is to characterize the alternating current (AC) conduction characteristics of both globular and polymerized actin and quantitatively compare their values to those theoretically predicted earlier. Actin filaments have been demonstrated to act as conducting bionanowires, forming a signaling network capable of transmitting ionic waves in cells. We performed conductivity measurements for different concentrations of actin, considering both unpolymerized and polymerized actin to identify potential differences in their electrical properties. These measurements revealed two relevant characteristics: first, the polymerized actin, arranged in filaments, has a lower impedance than its globular counterpart; second, an increase in the actin concentration leads to higher conductivities. Furthermore, from the data collected, we developed a quantitative model to represent the electrical properties of actin in a buffer solution. We hypothesize that actin filaments can be modeled as electrical resistor-inductor-capacitor (RLC) circuits, where the resistive contribution is due to the viscous ion flows along the filaments; the inductive contribution is due to the solenoidal flows along and around the helix-shaped filament and the capacitive contribution is due to the counterion layer formed around each negatively charged filament.


Asunto(s)
Citoesqueleto de Actina , Conductividad Eléctrica , Animales , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/química , Actinas/metabolismo , Actinas/química , Polimerizacion
18.
J Phys Chem B ; 128(19): 4590-4601, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38701111

RESUMEN

Cofilin, a key actin-binding protein, orchestrates the dynamics of the actomyosin network through its actin-severing activity and by promoting the recycling of actin monomers. Recent experiments suggest that cofilin forms functionally distinct oligomers via thiol post-translational modifications (PTMs) that promote actin nucleation and assembly. Despite these advances, the structural conformations of cofilin oligomers that modulate actin activity remain elusive because there are combinatorial ways to oxidize thiols in cysteines to form disulfide bonds rapidly. This study employs molecular dynamics simulations to investigate human cofilin 1 as a case study for exploring cofilin dimers via disulfide bond formation. Utilizing a biasing scheme in simulations, we focus on analyzing dimer conformations conducive to disulfide bond formation. Additionally, we explore potential PTMs arising from the examined conformational ensemble. Using the free energy profiling, our simulations unveil a range of probable cofilin dimer structures not represented in current Protein Data Bank entries. These candidate dimers are characterized by their distinct population distributions and relative free energies. Of particular note is a dimer featuring an interface between cysteines 139 and 147 residues, which demonstrates stable free energy characteristics and intriguingly symmetrical geometry. In contrast, the experimentally proposed dimer structure exhibits a less stable free energy profile. We also evaluate frustration quantification based on the energy landscape theory in the protein-protein interactions at the dimer interfaces. Notably, the 39-39 dimer configuration emerges as a promising candidate for forming cofilin tetramers, as substantiated by frustration analysis. Additionally, docking simulations with actin filaments further evaluate the stability of these cofilin dimer-actin complexes. Our findings thus offer a computational framework for understanding the role of thiol PTM of cofilin proteins in regulating oligomerization, and the subsequent cofilin-mediated actin dynamics in the actomyosin network.


Asunto(s)
Citoesqueleto de Actina , Disulfuros , Simulación de Dinámica Molecular , Disulfuros/química , Humanos , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Cofilina 1/química , Cofilina 1/metabolismo , Multimerización de Proteína , Actinas/química , Actinas/metabolismo , Factores Despolimerizantes de la Actina/química , Factores Despolimerizantes de la Actina/metabolismo , Termodinámica
19.
J Vis Exp ; (207)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38801255

RESUMEN

Efficient methods for the extraction of features of interest remain one of the biggest challenges for the interpretation of cryo-electron tomograms. Various automated approaches have been proposed, many of which work well for high-contrast datasets where the features of interest can be easily detected and are clearly separated from one another. Our inner ear stereocilia cryo-electron tomographic datasets are characterized by a dense array of hexagonally packed actin filaments that are frequently cross-connected. These features make automated segmentation very challenging, further aggravated by the high-noise environment of cryo-electron tomograms and the high complexity of the densely packed features. Using prior knowledge about the actin bundle organization, we have placed layers of a highly simplified ball-and-stick actin model to first obtain a global fit to the density map, followed by regional and local adjustments of the model. We show that volumetric model building not only allows us to deal with the high complexity, but also provides precise measurements and statistics about the actin bundle. Volumetric models also serve as anchoring points for local segmentation, such as in the case of the actin-actin cross connectors. Volumetric model building, particularly when further augmented by computer-based automated fitting approaches, can be a powerful alternative when conventional automated segmentation approaches are not successful.


Asunto(s)
Actinas , Microscopía por Crioelectrón , Microscopía por Crioelectrón/métodos , Actinas/química , Tomografía con Microscopio Electrónico/métodos , Animales , Oído Interno/diagnóstico por imagen , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestructura
20.
J Agric Food Chem ; 72(21): 11885-11899, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38747409

RESUMEN

Actin, a multifunctional protein highly expressed in eukaryotes, is widely distributed throughout cells and serves as a crucial component of the cytoskeleton. Its presence is integral to maintaining cell morphology and participating in various biological processes. As an irreplaceable component of myofibrillar proteins, actin, including G-actin and F-actin, is highly related to food quality. Up to now, purification of actin at a moderate level remains to be overcome. In this paper, we have reviewed the structures and functions of actin, the methods to obtain actin, and the relationships between actin and food texture, color, and flavor. Moreover, actin finds applications in diverse fields such as food safety, bioengineering, and nanomaterials. Developing an actin preparation method at the industrial level will help promote its further applications in food science, nutrition, and safety.


Asunto(s)
Actinas , Calidad de los Alimentos , Actinas/metabolismo , Actinas/química , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA