Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.525
Filtrar
1.
Theranostics ; 14(13): 5262-5280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39267793

RESUMEN

Rationale: Tissue regeneration of skin and bone is an energy-intensive, ATP-consuming process that, if impaired, can lead to the development of chronic clinical pictures. ATP levels in the extracellular space including the exudate of wounds, especially chronic wounds, are low. This deficiency can be compensated by inorganic polyphosphate (polyP) supplied via the blood platelets to the regenerating site. Methods: The contribution of the different forms of energy derived from polyP (metabolic energy, mechanical energy and heat) to regeneration processes was dissected and studied both in vitro and in patients. ATP is generated metabolically during the enzymatic cleavage of the energy-rich anhydride bonds between the phosphate units of polyP, involving the two enzymes alkaline phosphatase (ALP) and adenylate kinase (ADK). Exogenous polyP was administered after incorporation into compressed collagen or hydrogel wound coverages to evaluate its regenerative activity for chronic wound healing. Results: In a proof-of-concept study, fast healing of chronic wounds was achieved with the embedded polyP, supporting the crucial regeneration-promoting activity of ATP. In the presence of Ca2+ in the wound exudate, polyP undergoes a coacervation process leading to a conversion of fibroblasts into myofibroblasts, a crucial step supporting cell migration during regenerative tissue repair. During coacervation, a switch from an endothermic to an exothermic, heat-generating process occurs, reflecting a shift from an entropically- to an enthalpically-driven thermodynamic reaction. In addition, mechanical forces cause the appearance of turbulent flows and vortices during liquid-liquid phase separation. These mechanical forces orient the cellular and mineralic (hydroxyapatite crystallite) components, as shown using mineralizing SaOS-2 cells as a model. Conclusion: Here we introduce the energetic triad: metabolic energy (ATP), thermal energy and mechanical energy as a novel theranostic biomarker, which contributes essentially to a successful application of polyP for regeneration processes.


Asunto(s)
Adenosina Trifosfato , Polifosfatos , Cicatrización de Heridas , Polifosfatos/metabolismo , Polifosfatos/farmacología , Humanos , Cicatrización de Heridas/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Metabolismo Energético/efectos de los fármacos , Calor , Fosfatasa Alcalina/metabolismo , Adenilato Quinasa/metabolismo , Masculino
2.
Proc Natl Acad Sci U S A ; 121(35): e2410662121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39163334

RESUMEN

Proteins perform their biological functions through motion. Although high throughput prediction of the three-dimensional static structures of proteins has proved feasible using deep-learning-based methods, predicting the conformational motions remains a challenge. Purely data-driven machine learning methods encounter difficulty for addressing such motions because available laboratory data on conformational motions are still limited. In this work, we develop a method for generating protein allosteric motions by integrating physical energy landscape information into deep-learning-based methods. We show that local energetic frustration, which represents a quantification of the local features of the energy landscape governing protein allosteric dynamics, can be utilized to empower AlphaFold2 (AF2) to predict protein conformational motions. Starting from ground state static structures, this integrative method generates alternative structures as well as pathways of protein conformational motions, using a progressive enhancement of the energetic frustration features in the input multiple sequence alignment sequences. For a model protein adenylate kinase, we show that the generated conformational motions are consistent with available experimental and molecular dynamics simulation data. Applying the method to another two proteins KaiB and ribose-binding protein, which involve large-amplitude conformational changes, can also successfully generate the alternative conformations. We also show how to extract overall features of the AF2 energy landscape topography, which has been considered by many to be black box. Incorporating physical knowledge into deep-learning-based structure prediction algorithms provides a useful strategy to address the challenges of dynamic structure prediction of allosteric proteins.


Asunto(s)
Simulación de Dinámica Molecular , Conformación Proteica , Proteínas/química , Adenilato Quinasa/química , Adenilato Quinasa/metabolismo , Regulación Alostérica , Aprendizaje Profundo
3.
Sci Adv ; 10(32): eado5504, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121211

RESUMEN

Phosphoryl transfer is a fundamental reaction in cellular signaling and metabolism that requires Mg2+ as an essential cofactor. While the primary function of Mg2+ is electrostatic activation of substrates, such as ATP, the full spectrum of catalytic mechanisms exerted by Mg2+ is not known. In this study, we integrate structural biology methods, molecular dynamic (MD) simulations, phylogeny, and enzymology assays to provide molecular insights into Mg2+-dependent structural reorganization in the active site of the metabolic enzyme adenylate kinase. Our results demonstrate that Mg2+ induces a conformational rearrangement of the substrates (ATP and ADP), resulting in a 30° adjustment of the angle essential for reversible phosphoryl transfer, thereby optimizing it for catalysis. MD simulations revealed transitions between conformational substates that link the fluctuation of the angle to large-scale enzyme dynamics. The findings contribute detailed insight into Mg2+ activation of enzymes and may be relevant for reversible and irreversible phosphoryl transfer reactions.


Asunto(s)
Adenilato Quinasa , Dominio Catalítico , Magnesio , Simulación de Dinámica Molecular , Magnesio/metabolismo , Magnesio/química , Adenilato Quinasa/metabolismo , Adenilato Quinasa/química , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Conformación Proteica , Adenosina Difosfato/metabolismo , Adenosina Difosfato/química
4.
Structure ; 32(9): 1519-1527.e3, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38889721

RESUMEN

Protein dynamics are essential to biological function, and methods to determine such structural rearrangements constitute a frontier in structural biology. Synchrotron radiation can track real-time protein dynamics, but accessibility to dedicated high-flux single X-ray pulse time-resolved beamlines is scarce and protein targets amendable to such characterization are limited. These limitations can be alleviated by triggering the reaction by laser-induced activation of a caged compound and probing the structural dynamics by fast-readout detectors. In this work, we established time-resolved X-ray solution scattering (TR-XSS) at the CoSAXS beamline at the MAX IV Laboratory synchrotron. Laser-induced activation of caged ATP initiated phosphoryl transfer in the adenylate kinase (AdK) enzyme, and the reaction was monitored up to 50 ms with a 2-ms temporal resolution achieved by the detector readout. The time-resolved structural signal of the protein showed minimal radiation damage effects and excellent agreement to data collected by a single X-ray pulse approach.


Asunto(s)
Adenosina Trifosfato , Adenilato Quinasa , Sincrotrones , Adenilato Quinasa/química , Adenilato Quinasa/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Difracción de Rayos X/métodos , Modelos Moleculares , Rayos Láser , Conformación Proteica
5.
J Phys Chem B ; 128(22): 5293-5309, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38808573

RESUMEN

Given the fact that the cellular interior is crowded by many different kinds of macromolecules, it is important that in vitro studies be carried out in the presence of mixed crowder systems. In this regard, we have used binary crowders formed by the combination of some of the commonly used crowding agents, namely, Ficoll 70, Dextran 70, Dextran 40, and PEG 8000 (PEG 8), to study how these affect enzyme activity, dynamics, and crowder diffusion. The enzyme chosen is AK3L1, an isoform of adenylate kinase. To investigate its dynamics, we have carried out three single point mutations (A74C, A132C, and A209C) with the cysteine residues being labeled with a coumarin-based solvatochromic probe [CPM: (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin)]. Both enzyme activity and dynamics decreased in the binary mixtures as compared with the sum of the individual crowders, suggesting a reduction in excluded volume (in the mixture). To gain deeper insights into the binary mixtures, fluorescence correlation spectroscopy studies were carried out using fluorescein isothiocyanate-labeled Dextran 70 and tetramethylrhodamine-labeled AK3L1 as the diffusion probes. Diffusion in binary mixtures was observed to be much more constrained (relative to the sum of the individual crowders) for the labeled enzyme as compared to the labeled crowder showing different environments being faced by the two species. This was further confirmed during imaging of the phase-separated droplets formed in the binary mixtures having PEG as one of the crowding agents. The interior of these droplets was found to be rich in crowders and densely packed, as shown by confocal and digital holographic microscopy images, with the enzymes predominantly residing outside these droplets, that is, in the relatively less crowded regions. Taken together, our data provide important insights into various aspects of the simplest form of mixed crowding, that is, composed of just two components, and also hint at the enhanced complexity that the cellular interior presents toward having a detailed and comprehensive understanding of the same.


Asunto(s)
Adenilato Quinasa , Polietilenglicoles , Difusión , Adenilato Quinasa/metabolismo , Adenilato Quinasa/química , Adenilato Quinasa/genética , Polietilenglicoles/química , Ficoll/química , Dextranos/química , Dextranos/metabolismo , Espectrometría de Fluorescencia , Mutación Puntual , Cumarinas/química , Cumarinas/metabolismo
6.
Mol Pharm ; 21(7): 3634-3642, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805365

RESUMEN

Drying protein-based drugs, usually via lyophilization, can facilitate storage at ambient temperature and improve accessibility but many proteins cannot withstand drying and must be formulated with protective additives called excipients. However, mechanisms of protection are poorly understood, precluding rational formulation design. To better understand dry proteins and their protection, we examine Escherichia coli adenylate kinase (AdK) lyophilized alone and with the additives trehalose, maltose, bovine serum albumin, cytosolic abundant heat soluble protein D, histidine, and arginine. We apply liquid-observed vapor exchange NMR to interrogate the residue-level structure in the presence and absence of additives. We pair these observations with differential scanning calorimetry data of lyophilized samples and AdK activity assays with and without heating. We show that the amino acids do not preserve the native structure as well as sugars or proteins and that after heating the most stable additives protect activity best.


Asunto(s)
Adenilato Quinasa , Escherichia coli , Liofilización , Trehalosa , Liofilización/métodos , Adenilato Quinasa/metabolismo , Trehalosa/química , Albúmina Sérica Bovina/química , Excipientes/química , Rastreo Diferencial de Calorimetría , Maltosa/química , Histidina/química , Arginina/química , Espectroscopía de Resonancia Magnética
7.
Appl Physiol Nutr Metab ; 49(8): 1100-1114, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710106

RESUMEN

This study investigated sex-specific differences in high-energy phosphate, glycolytic, and mitochondrial enzyme activities and also metabolite transporter protein levels in the skeletal muscles of adult (5 months old), middle-aged (12 months old), and advanced-aged (24 months old) mice. While gastrocnemius glycogen content increased with age regardless of sex, gastrocnemius triglyceride levels increased only in advanced-aged female mice. Aging decreased creatine kinase and adenylate kinase activities in the plantaris muscle of both sexes and in the soleus muscle of male mice but not in female mice. Irrespective of sex, phosphofructokinase and lactate dehydrogenase (LDH) activities decreased in the plantaris and soleus muscles. Additionally, hexokinase activity in the plantaris muscle and LDH activity in the soleus muscle decreased to a greater extent in aged male mice compared with those in aged female mice. Mitochondrial enzyme activities increased in the plantaris muscle of aged female mice but did not change in male mice. The protein content of the glucose transporter 4 in the aged plantaris muscle and fatty acid translocase/cluster of differentiation 36 increased in the aged plantaris and soleus muscles of both sexes, with a significantly higher content in female mice. These findings suggest that females possess a better ability to maintain metabolic enzyme activity and higher levels of metabolite transport proteins in skeletal muscle during aging, despite alterations in lipid metabolism. Our data provide a basis for studying muscle metabolism in the context of age-dependent metabolic perturbations and diseases that affect females and males differently.


Asunto(s)
Envejecimiento , Músculo Esquelético , Animales , Músculo Esquelético/metabolismo , Femenino , Masculino , Envejecimiento/metabolismo , Ratones , Glucógeno/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Adenilato Quinasa/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Factores Sexuales , Creatina Quinasa/metabolismo , Hexoquinasa/metabolismo , Triglicéridos/metabolismo , Fosfofructoquinasas/metabolismo , Glucólisis/fisiología
8.
Sci China Life Sci ; 67(8): 1697-1714, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38761355

RESUMEN

The complexities of energy transfer mechanisms in the flagella of mammalian sperm flagella have been intensively investigated and demonstrate significant diversity across species. Enzymatic shuttles, particularly adenylate kinase (AK) and creatine kinase (CK), are pivotal in the efficient transfer of intracellular ATP, showing distinct tissue- and species-specificity. Here, the expression profiles of AK and CK were investigated in mice and found to fall into four subgroups, of which Subgroup III AKs were observed to be unique to the male reproductive system and conserved across chordates. Both AK8 and AK9 were found to be indispensable to male reproduction after analysis of an infertile male cohort. Knockout mouse models showed that AK8 and AK9 were central to promoting sperm motility. Immunoprecipitation combined with mass spectrometry revealed that AK8 and AK9 interact with the radial spoke (RS) of the axoneme. Examination of various human and mouse sperm samples with substructural damage, including the presence of multiple RS subunits, showed that the head of radial spoke 3 acts as an adapter for AK9 in the flagellar axoneme. Using an ATP probe together with metabolomic analysis, it was found that AK8 and AK9 cooperatively regulated ATP transfer in the axoneme, and were concentrated at sites associated with energy consumption in the flagellum. These findings indicate a novel function for RS beyond its structural role, namely, the regulation of ATP transfer. In conclusion, the results expand the functional spectrum of AK proteins and suggest a fresh model regarding ATP transfer within mammalian flagella.


Asunto(s)
Adenosina Trifosfato , Adenilato Quinasa , Axonema , Ratones Noqueados , Motilidad Espermática , Cola del Espermatozoide , Animales , Adenilato Quinasa/metabolismo , Masculino , Ratones , Axonema/metabolismo , Motilidad Espermática/fisiología , Cola del Espermatozoide/metabolismo , Adenosina Trifosfato/metabolismo , Humanos , Metabolismo Energético , Espermatozoides/metabolismo , Flagelos/metabolismo , Creatina Quinasa/metabolismo , Infertilidad Masculina/metabolismo , Infertilidad Masculina/genética
9.
Bioorg Chem ; 148: 107432, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744169

RESUMEN

Adenylate kinase (AK) plays a crucial role in the metabolic monitoring of cellular adenine nucleotide homeostasis by catalyzing the reversible transfer of a phosphate group between ATP and AMP, yielding two ADP molecules. By regulating the nucleotide levels and energy metabolism, the enzyme is considered a disease modifier and potential therapeutic target for various human diseases, including malignancies and inflammatory and neurodegenerative disorders. However, lacking approved drugs targeting AK hinders broad studies on this enzyme's pathological importance and therapeutic potential. In this work, we determined the effect of a series of dinucleoside polyphosphate derivatives, commercially available (11 compounds) and newly synthesized (8 compounds), on the catalytic activity of human adenylate kinase isoenzyme 1 (hAK1). The tested compounds belonged to the following groups: (1) diadenosine polyphosphates with different phosphate chain lengths, (2) base-modified derivatives, and (3) phosphate-modified derivatives. We found that all the investigated compounds inhibited the catalytic activity of hAK1, yet with different efficiencies. Three dinucleoside polyphosphates showed IC50 values below 1 µM, and the most significant inhibitory effect was observed for P1-(5'-adenosyl) P5-(5'-adenosyl) pentaphosphate (Ap5A). To understand the observed differences in the inhibition efficiency of the tested dinucleoside polyphosphates, the molecular docking of these compounds to hAK1 was performed. Finally, we conducted a quantitative structure-activity relationship (QSAR) analysis to establish a computational prediction model for hAK1 modulators. Two PLS-regression-based models were built using kinetic data obtained from the AK1 activity analysis performed in both directions of the enzymatic reaction. Model 1 (AMP and ATP synthesis) had a good prediction power (R2 = 0.931, Q2 = 0.854, and MAE = 0.286), while Model 2 (ADP synthesis) exhibited a moderate quality (R2 = 0.913, Q2 = 0.848, and MAE = 0.370). These studies can help better understand the interactions between dinucleoside polyphosphates and adenylate kinase to attain more effective and selective inhibitors in the future.


Asunto(s)
Adenilato Quinasa , Fosfatos de Dinucleósidos , Relación Estructura-Actividad Cuantitativa , Humanos , Fosfatos de Dinucleósidos/química , Fosfatos de Dinucleósidos/síntesis química , Fosfatos de Dinucleósidos/farmacología , Fosfatos de Dinucleósidos/metabolismo , Cinética , Estructura Molecular , Adenilato Quinasa/metabolismo , Adenilato Quinasa/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química
10.
Med Oncol ; 41(6): 138, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38705935

RESUMEN

Breast cancer (BC) is associated with type 2 diabetes mellitus (T2DM) and obesity. Glucagon-like peptide (GLP)-1 regulates post-prandial insulin secretion, satiety, and gastric emptying. Several GLP-1 analogs have been FDA-approved for the treatment of T2DM and obesity. Moreover, GLP-1 regulates various metabolic activities across different tissues by activating metabolic signaling pathways like adenosine monophosphate (AMP) activated protein kinase (AMPK), and AKT. Rewiring metabolic pathways is a recognized hallmark of cancer, regulated by several cancer-related pathways, including AKT and AMPK. As GLP-1 regulates AKT and AMPK, we hypothesized that it alters BC cells' metabolism, thus inhibiting proliferation. The effect of the GLP-1 analogs exendin-4 (Ex4) and liraglutide on viability, AMPK signaling and metabolism of BC cell lines were assessed. Viability of BC cells was evaluated using colony formation and MTT/XTT assays. Activation of AMPK and related signaling effects were evaluated using western blot. Metabolism effects were measured for glucose, lactate and ATP. Exendin-4 and liraglutide activated AMPK in a cAMP-dependent manner. Blocking Ex4-induced activation of AMPK by inhibition of AMPK restored cell viability. Interestingly, Ex4 and liraglutide reduced the levels of glycolytic metabolites and decreased ATP production, suggesting that GLP-1 analogs impair glycolysis. Notably, inhibiting AMPK reversed the decline in ATP levels, highlighting the role of AMPK in this process. These results establish a novel signaling pathway for GLP-1 in BC cells through cAMP and AMPK modulation affecting proliferation and metabolism. This study suggests that GLP-1 analogs should be considered for diabetic patients with BC.


Asunto(s)
Neoplasias de la Mama , Exenatida , Péptido 1 Similar al Glucagón , Liraglutida , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Exenatida/farmacología , Femenino , Liraglutida/farmacología , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/análogos & derivados , Línea Celular Tumoral , Proteínas Quinasas Activadas por AMP/metabolismo , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Efecto Warburg en Oncología/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ponzoñas/farmacología , Adenilato Quinasa/metabolismo , Péptidos/farmacología
11.
Exp Neurol ; 377: 114798, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670251

RESUMEN

Mitochondrial dysfunction is closely related to brain injury and neurological dysfunction in ischemic stroke. Adenylate kinase 4 (AK4) plays a critical role in energy metabolism and mitochondrial homeostasis. However, the underlying mechanisms remain unclear. In the present study, we demonstrated an important role of AK4 in mitochondrial dysfunction in the early cerebral ischemia. Early focal cerebral ischemia induced decrease of AK4 protein expression in ischemic hemispheric brain tissue in mice. Exposure of cultured primary neuron to oxygen-glucose deprivation (OGD) also induced AK4 downregulation. Overexpression of AK4 in neuron using adeno-associated virus (AAV-AK4) in mice promoted neuronal survival reflected by decreased infarction volume and TUNEL staining. AK4 overexpression inhibited mitochondrial decline and downregulation of energy metabolism-associated proteins (p-AMPK and ATP1A3) induced by MCAO. Moreover, AK4 knock-in using lentivirus carried AK4 vector (LV-AK4) induced energy metabolism shift from glycolysis to oxidation in neuron. Using transmission electron microscope and western blot, we revealed that AK4 overexpression promoted mitophagy and mitophagy-associated proteins expression PINK1 and Parkin after MCAO. Mass spectrometry and co-immunoprecipitation revealed an interaction between AK4 and PKM2. Mechanistically, AK4 indirectly decreased PKM2 expression via enhancing its ubiquitination by increasing the interaction between PKM2 and its ubiquitin E3 ligase Parkin, and inhibits Parkin downregulation. In conclusion, our data demonstrate that AK4/ Parkin /PKM axis prevents cerebral ischemia damage via regulation of neuronal energy metabolism model and mitophagy. AK4 was a new target for intervention of early ischemic neuron injury.


Asunto(s)
Adenilato Quinasa , Isquemia Encefálica , Metabolismo Energético , Ratones Endogámicos C57BL , Mitofagia , Neuronas , Ubiquitina-Proteína Ligasas , Animales , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Metabolismo Energético/fisiología , Ratones , Neuronas/metabolismo , Neuronas/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Masculino , Mitofagia/fisiología , Adenilato Quinasa/metabolismo , Proteínas de Unión a Hormona Tiroide , Transducción de Señal/fisiología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Células Cultivadas , Piruvato Quinasa
12.
Blood ; 144(3): 283-295, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38598835

RESUMEN

ABSTRACT: Chromosomal translocation (4;14), an adverse prognostic factor in multiple myeloma (MM), drives overexpression of the histone methyltransferase nuclear receptor binding SET domain protein 2 (NSD2). A genome-wide CRISPR screen in MM cells identified adenylate kinase 2 (AK2), an enzyme critical for high-energy phosphate transfer from the mitochondria, as an NSD2-driven vulnerability. AK2 suppression in t(4;14) MM cells decreased nicotinamide adenine dinucleotide phosphate (NADP[H]) critical for conversion of ribonucleotides to deoxyribonucleosides, leading to replication stress, DNA damage, and apoptosis. Driving a large genome-wide increase in chromatin methylation, NSD2 overexpression depletes S-adenosylmethionine, compromising the synthesis of creatine from its precursor, guanidinoacetate. Creatine supplementation restored NADP(H) levels, reduced DNA damage, and rescued AK2-deficient t(4;14) MM cells. As the creatine phosphate shuttle constitutes an alternative means for mitochondrial high-energy phosphate transport, these results indicate that NSD2-driven creatine depletion underlies the hypersensitivity of t(4;14) MM cells to AK2 loss. Furthermore, AK2 depletion in t(4;14) cells impaired protein folding in the endoplasmic reticulum, consistent with impaired use of mitochondrial adenosine triphosphate (ATP). Accordingly, AK2 suppression increased the sensitivity of MM cells to proteasome inhibition. These findings delineate a novel mechanism in which aberrant transfer of carbon to the epigenome creates a metabolic vulnerability, with direct therapeutic implications for t(4;14) MM.


Asunto(s)
Adenilato Quinasa , N-Metiltransferasa de Histona-Lisina , Mieloma Múltiple , Translocación Genética , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Adenilato Quinasa/metabolismo , Adenilato Quinasa/genética , Cromosomas Humanos Par 14/genética , Epigenoma , Cromosomas Humanos Par 4/genética , Carbono/metabolismo , Línea Celular Tumoral , Proteínas Represoras
13.
Immunity ; 57(5): 1087-1104.e7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38640930

RESUMEN

Macrophages are critical to turn noninflamed "cold tumors" into inflamed "hot tumors". Emerging evidence indicates abnormal cholesterol metabolites in the tumor microenvironment (TME) with unclear function. Here, we uncovered the inducible expression of cholesterol-25-hydroxylase (Ch25h) by interleukin-4 (IL-4) and interleukin-13 (IL-13) via the transcription factor STAT6, causing 25-hydroxycholesterol (25HC) accumulation. scRNA-seq analysis confirmed that CH25Hhi subsets were enriched in immunosuppressive macrophage subsets and correlated to lower survival rates in pan-cancers. Targeting CH25H abrogated macrophage immunosuppressive function to enhance infiltrating T cell numbers and activation, which synergized with anti-PD-1 to improve anti-tumor efficacy. Mechanically, lysosome-accumulated 25HC competed with cholesterol for GPR155 binding to inhibit the kinase mTORC1, leading to AMPKα activation and metabolic reprogramming. AMPKα also phosphorylated STAT6 Ser564 to enhance STAT6 activation and ARG1 production. Together, we propose CH25H as an immunometabolic checkpoint, which manipulates macrophage fate to reshape CD8+ T cell surveillance and anti-tumor response.


Asunto(s)
Hidroxicolesteroles , Lisosomas , Macrófagos , Microambiente Tumoral , Animales , Hidroxicolesteroles/metabolismo , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Humanos , Lisosomas/metabolismo , Microambiente Tumoral/inmunología , Factor de Transcripción STAT6/metabolismo , Adenilato Quinasa/metabolismo , Ratones Endogámicos C57BL , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Transducción de Señal , Reprogramación Metabólica
14.
Reprod Biomed Online ; 48(5): 103765, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38492416

RESUMEN

RESEARCH QUESTION: Is the novel homozygous nonsense variant of AK7 associated with multiple morphological abnormalities of the sperm flagella (MMAF), a specific type of oligoasthenoteratozoospermia leading to male infertility? DESIGN: Whole-exome sequencing and Sanger sequencing were performed to identify potential gene variants. Immunoblotting and immunofluorescence were applied to confirm the relationship between mutated genes and disease phenotypes. The concentration of reactive oxygen species and the rate of apoptosis were measured to evaluate the mitochondrial function of spermatozoa. Transmission electron microscopy and scanning electron microscopy were employed to observe sperm ultrastructure. RESULTS: A novel homozygous nonsense variant of AK7, c.1153A>T (p. Lys385*), was identified in two infertile siblings with asthenoteratozoospermia through whole-exome sequencing. Both immunoblotting and immunofluorescence assays showed practically complete absence of AK7 in the patient's spermatozoa. Additionally, the individual with the novel AK7 variant exhibited a phenotype characterized by severe oxidative stress and apoptosis caused by mitochondrial metabolic dysfunction of spermatozoa. Notably, remarkable flagellar defects with multiple axonemes in uniflagellate spermatozoa, accompanied by mitochondrial vacuolization, were observed; this has not been reported previously in patients with other AK7 variants. CONCLUSIONS: This study found that a novel identified homozygous nonsense variant of AK7 may be associated with MMAF-related asthenoteratozoospermia. The observed functional associations between mitochondria and sperm flagellar assembly provide evidence for potential mutual regulation between AK7 and flagella-associated proteins during spermatogenesis.


Asunto(s)
Adenilato Quinasa , Astenozoospermia , Cola del Espermatozoide , Adulto , Humanos , Masculino , Astenozoospermia/genética , Astenozoospermia/patología , Codón sin Sentido , Secuenciación del Exoma , Homocigoto , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Mitocondrias/ultraestructura , Mitocondrias/genética , Mitocondrias/patología , Linaje , Cola del Espermatozoide/patología , Cola del Espermatozoide/ultraestructura , Espermatozoides/ultraestructura , Espermatozoides/anomalías , Adenilato Quinasa/genética
15.
Biochemistry ; 63(5): 599-609, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38357768

RESUMEN

Adenylate kinases (AKs) have evolved AMP-binding and lid domains that are encoded as continuous polypeptides embedded at different locations within the discontinuous polypeptide encoding the core domain. A prior study showed that AK homologues of different stabilities consistently retain cellular activity following circular permutation that splits a region with high energetic frustration within the AMP-binding domain into discontinuous fragments. Herein, we show that mesophilic and thermophilic AKs having this topological restructuring retain activity and substrate-binding characteristics of the parental AK. While permutation decreased the activity of both AK homologues at physiological temperatures, the catalytic activity of the thermophilic AK increased upon permutation when assayed >30 °C below the melting temperature of the native AK. The thermostabilities of the permuted AKs were uniformly lower than those of native AKs, and they exhibited multiphasic unfolding transitions, unlike the native AKs, which presented cooperative thermal unfolding. In addition, proteolytic digestion revealed that permutation destabilized each AK in differing manners, and mass spectrometry suggested that the new termini within the AMP-binding domain were responsible for the increased proteolysis sensitivity. These findings illustrate how changes in contact order can be used to tune enzyme activity and alter folding dynamics in multidomain enzymes.


Asunto(s)
Adenilato Quinasa , Péptidos , Adenilato Quinasa/química , Secuencia de Aminoácidos , Temperatura
16.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38339168

RESUMEN

Differentiation-inducing factor 1 (DIF-1), found in Dictyostelium discoideum, has antiproliferative and glucose-uptake-promoting activities in mammalian cells. DIF-1 is a potential lead for the development of antitumor and/or antiobesity/antidiabetes drugs, but the mechanisms underlying its actions have not been fully elucidated. In this study, we searched for target molecules of DIF-1 that mediate the actions of DIF-1 in mammalian cells by identifying DIF-1-binding proteins in human cervical cancer HeLa cells and mouse 3T3-L1 fibroblast cells using affinity chromatography and liquid chromatography-tandem mass spectrometry and found mitochondrial malate dehydrogenase (MDH2) to be a DIF-1-binding protein in both cell lines. Since DIF-1 has been shown to directly inhibit MDH2 activity, we compared the effects of DIF-1 and the MDH2 inhibitor LW6 on the growth of HeLa and 3T3-L1 cells and on glucose uptake in confluent 3T3-L1 cells in vitro. In both HeLa and 3T3-L1 cells, DIF-1 at 10-40 µM dose-dependently suppressed growth, whereas LW6 at 20 µM, but not at 2-10 µM, significantly suppressed growth in these cells. In confluent 3T3-L1 cells, DIF-1 at 10-40 µM significantly promoted glucose uptake, with the strongest effect at 20 µM DIF-1, whereas LW6 at 2-20 µM significantly promoted glucose uptake, with the strongest effect at 10 µM LW6. Western blot analyses showed that LW6 (10 µM) and DIF-1 (20 µM) phosphorylated and, thus, activated AMP kinase in 3T3-L1 cells. Our results suggest that MDH2 inhibition can suppress cell growth and promote glucose uptake in the cells, but appears to promote glucose uptake more strongly than it suppresses cell growth. Thus, DIF-1 may promote glucose uptake, at least in part, via direct inhibition of MDH2 and a subsequent activation of AMP kinase in 3T3-L1 cells.


Asunto(s)
Glucosa , Malato Deshidrogenasa , Animales , Humanos , Ratones , Células 3T3-L1/efectos de los fármacos , Células 3T3-L1/metabolismo , Adenilato Quinasa/metabolismo , Dictyostelium/metabolismo , Glucosa/metabolismo , Células HeLa/efectos de los fármacos , Células HeLa/metabolismo , Malato Deshidrogenasa/antagonistas & inhibidores , Malato Deshidrogenasa/metabolismo , Mamíferos/metabolismo
17.
Sci Rep ; 14(1): 2082, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267514

RESUMEN

The recent scarcity of fishmeal and other resources means that studies on the intrinsic mechanisms of nutrients in the growth and development of aquatic animals at the molecular level have received widespread attention. The target of rapamycin (TOR) pathway has been reported to receive signals from nutrients and environmental stresses, and regulates cellular anabolism and catabolism to achieve precise regulation of cell growth and physiological activities. In this study, we cloned and characterized the full-length cDNA sequence of the TOR gene of Macrobrachium rosenbergii (MrTOR). MrTOR was expressed in all tissues, with higher expression in heart and muscle tissues. In situ hybridization also indicated that MrTOR was expressed in muscle, mainly around the nucleus. RNA interference decreased the expression levels of MrTOR and downstream protein synthesis-related genes (S6K, eIF4E, and eIF4B) (P < 0.05) and the expression and enzyme activity of the lipid synthesis-related enzyme, fatty acid synthase (FAS), and increased enzyme activity of the lipolysis-related enzyme, lipase (LPS). In addition, amino acid injection significantly increased the transcript levels of MrTOR and downstream related genes (S6K, eIF4E, eIF4B, and FAS), as well as triglyceride and total cholesterol tissue levels and FAS activity. Starvation significantly increased transcript levels and enzyme activities of adenylate-activated protein kinase and LPS and decreased transcript levels and enzyme activities of FAS, as well as transcript levels of MrTOR and its downstream genes (P < 0.05), whereas amino acid injection alleviated the starvation-induced decreases in transcript levels of these genes. These results suggested that arginine and leucine activated the TOR signaling pathway, promoted protein and lipid syntheses, and alleviated the pathway changes induced by starvation.


Asunto(s)
Proteínas Musculares , Palaemonidae , Animales , Palaemonidae/genética , Factor 4E Eucariótico de Iniciación , Lipopolisacáridos , Ácido Graso Sintasas , Adenilato Quinasa , Arginina
18.
Sci Rep ; 14(1): 1899, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253650

RESUMEN

The hormone GDF15 is secreted in response to cellular stressors. Metformin elevates circulating levels of GDF15, an action important for the drug's beneficial effects on body weight. Metformin can also inhibit mammalian respiratory complex I, leading to decreases in ATP:AMP ratio, activation of AMP Kinase (AMPK), and increased GDF15 production. We undertook studies using a range of mice with tissue-specific loss of Gdf15 (namely gut, liver and global deletion) to determine the relative contributions of two classical metformin target tissues, the gut and liver, to the elevation of GDF15 seen with metformin. In addition, we performed comparative studies with another pharmacological agent, the AMP kinase pan-activator, MK-8722. Deletion of Gdf15 from the intestinal epithelium significantly reduced the circulating GDF15 response to oral metformin, whereas deletion of Gdf15 from the liver had no effect. In contrast, deletion of Gdf15 from the liver, but not the gut, markedly reduced circulating GDF15 responses to MK-8722. Further, our data show that, while GDF15 restricts high-fat diet-induced weight gain, the intestinal production of GDF15 is not necessary for this effect. These findings add to the body of evidence implicating the intestinal epithelium in key aspects of the pharmacology of metformin action.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento , Metformina , Animales , Ratones , Adenilato Quinasa/metabolismo , Transporte Biológico , Mucosa Intestinal , Hígado , Mamíferos , Metformina/farmacología , Factor 15 de Diferenciación de Crecimiento/metabolismo
19.
Exp Mol Med ; 56(2): 273-288, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297165

RESUMEN

Autophagy is an essential quality control mechanism for maintaining organellar functions in eukaryotic cells. Defective autophagy in pancreatic beta cells has been shown to be involved in the progression of diabetes through impaired insulin secretion under glucolipotoxic stress. The underlying mechanism reveals the pathologic role of the hyperactivation of mechanistic target of rapamycin (mTOR), which inhibits lysosomal biogenesis and autophagic processes. Moreover, accumulating evidence suggests that oxidative stress induces Ca2+ depletion in the endoplasmic reticulum (ER) and cytosolic Ca2+ overload, which may contribute to mTOR activation in perilysosomal microdomains, leading to autophagic defects and ß-cell failure due to lipotoxicity. This review delineates the antagonistic regulation of autophagic flux by mTOR and AMP-dependent protein kinase (AMPK) at the lysosomal membrane, and both of these molecules could be activated by perilysosomal calcium signaling. However, aberrant and persistent Ca2+ elevation upon lipotoxic stress increases mTOR activity and suppresses autophagy. Therefore, normalization of autophagy is an attractive therapeutic strategy for patients with ß-cell failure and diabetes.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Calcio , Adenilato Quinasa , Autofagia , Serina-Treonina Quinasas TOR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA