Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
2.
Front Cell Infect Microbiol ; 14: 1395716, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716195

RESUMEN

Objective: The relationship between macrophages and the gut microbiota in patients with atherosclerosis remains poorly defined, and effective biological markers are lacking. This study aims to elucidate the interplay between gut microbial communities and macrophages, and to identify biomarkers associated with the destabilization of atherosclerotic plaques. The goal is to enhance our understanding of the underlying molecular pathways and to pave new avenues for diagnostic approaches and therapeutic strategies in the disease. Methods: This study employed Weighted Gene Co-expression Network Analysis (WGCNA) and differential expression analysis on atherosclerosis datasets to identify macrophage-associated genes and quantify the correlation between these genes and gut microbiota gene sets. The Random Forest algorithm was utilized to pinpoint PLEK, IRF8, BTK, CCR1, and CD68 as gut microbiota-related macrophage genes, and a nomogram was constructed. Based on the top five genes, a Non-negative Matrix Factorization (NMF) algorithm was applied to construct gut microbiota-related macrophage clusters and analyze their potential biological alterations. Subsequent single-cell analyses were conducted to observe the expression patterns of the top five genes and the interactions between immune cells. Finally, the expression profiles of key molecules were validated using clinical samples from atherosclerosis patients. Results: Utilizing the Random Forest algorithm, we ultimately identified PLEK, IRF8, CD68, CCR1, and BTK as gut microbiota-associated macrophage genes that are upregulated in atherosclerotic plaques. A nomogram based on the expression of these five genes was constructed for use as an auxiliary tool in clinical diagnosis. Single-cell analysis confirmed the specific expression of gut microbiota-associated macrophage genes in macrophages. Clinical samples substantiated the high expression of PLEK in unstable atherosclerotic plaques. Conclusion: Gut microbiota-associated macrophage genes (PLEK, IRF8, CD68, CCR1, and BTK) may be implicated in the pathogenesis of atherosclerotic plaques and could serve as diagnostic markers to aid patients with atherosclerosis.


Asunto(s)
Algoritmos , Aterosclerosis , Biomarcadores , Microbioma Gastrointestinal , Aprendizaje Automático , Macrófagos , Placa Aterosclerótica , Receptores CCR1 , Análisis de la Célula Individual , Humanos , Macrófagos/metabolismo , Macrófagos/microbiología , Placa Aterosclerótica/microbiología , Biomarcadores/metabolismo , Análisis de la Célula Individual/métodos , Receptores CCR1/metabolismo , Receptores CCR1/genética , Aterosclerosis/microbiología , Aterosclerosis/genética , Antígenos de Diferenciación Mielomonocítica/metabolismo , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia Tirosina Quinasa/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Molécula CD68 , Factores Reguladores del Interferón
3.
J Gene Med ; 26(5): e3687, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38690623

RESUMEN

BACKGROUND: Bones undergo a constant remodeling, a process involving osteoclast-mediated bone resorption and osteoblast-mediated bone formation, crucial for maintaining healthy bone mass. We previously observed that miR-185 depletion may promote bone formation by regulating Bgn expression and the BMP/Smad signaling pathway. However, the effects of miR-185-5p on the osteoclasts and bone remodeling have not been elucidated, warranting further exploration. METHODS: Tartrate-resistant acid phosphatase staining was utilized to assess the differentiation ability of bone marrow mononuclear macrophages (BMMs) from mmu-miR-185 gene knockout (KO) mice and wild-type (WT) mice. A reverse transcriptase-quantitative PCR was conducted to compare differences in miR-185-5p and osteoclast marker molecules, including Trap, Dcstamp, Ctsk and Nfatc1, between the KO group and WT group BMMs. Western blot analysis was employed to observe the expression of osteoclast marker molecules. A cell-counting kit-8 was used to analyze cell proliferation ability. Transwell experiments were conducted to detect cell migration. Dual-luciferase reporter assays were employed to confirm whether Btk is a downstream target gene of miR-185-5p. RESULTS: miR-185 depletion promoted osteoclast differentiation in bone marrow-derived monocytes/macrophages. Overexpression of miR-185-5p in RAW264.7 cells inhibited differentiation and migration of osteoclasts. Furthermore, Btk was identified as a downstream target gene of miR-185-5p, suggesting that miR-185-5p may inhibit osteoclast differentiation and migration by targeting Btk. CONCLUSIONS: miR-185 regulates osteoclasts differentiation, with overexpression of miR-185-5p inhibiting osteoclast differentiation and migration in vitro. Additionally, miR-185-5p may modulate osteoclastic differentiation and migration by regulating Btk expression.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Diferenciación Celular , Movimiento Celular , Ratones Noqueados , MicroARNs , Osteoclastos , Animales , MicroARNs/genética , MicroARNs/metabolismo , Osteoclastos/metabolismo , Osteoclastos/citología , Diferenciación Celular/genética , Movimiento Celular/genética , Ratones , Agammaglobulinemia Tirosina Quinasa/metabolismo , Agammaglobulinemia Tirosina Quinasa/genética , Proliferación Celular/genética , Regulación de la Expresión Génica , Macrófagos/metabolismo , Transducción de Señal , Osteogénesis/genética
4.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791284

RESUMEN

Bruton's Tyrosine Kinase (BTK) inhibitors have become one of the most vital drugs in the therapy of chronic lymphocytic leukemia (CLL). Inactivation of BTK disrupts the B-cell antigen receptor (BCR) signaling pathway, which leads to the inhibition of the proliferation and survival of CLL cells. BTK inhibitors (BTKi) are established as leading drugs in the treatment of both treatment-naïve (TN) and relapsed or refractory (R/R) CLL. Furthermore, BTKi demonstrate outstanding efficacy in high-risk CLL, including patients with chromosome 17p deletion, TP53 mutations, and unmutated status of the immunoglobulin heavy-chain variable region (IGHV) gene. Ibrutinib is the first-in-class BTKi which has changed the treatment landscape of CLL. Over the last few years, novel, covalent (acalabrutinib, zanubrutinib), and non-covalent (pirtobrutinib) BTKi have been approved for the treatment of CLL. Unfortunately, continuous therapy with BTKi contributes to the acquisition of secondary resistance leading to clinical relapse. In recent years, it has been demonstrated that the predominant mechanisms of resistance to BTKi are mutations in BTK or phospholipase Cγ2 (PLCG2). Some differences in the mechanisms of resistance to covalent BTKi have been identified despite their similar mechanism of action. Moreover, novel mutations resulting in resistance to non-covalent BTKi have been recently suggested. This article summarizes the clinical efficacy and the latest data regarding resistance to all of the registered BTKi.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Resistencia a Antineoplásicos , Leucemia Linfocítica Crónica de Células B , Inhibidores de Proteínas Quinasas , Humanos , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia Tirosina Quinasa/metabolismo , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Resistencia a Antineoplásicos/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/uso terapéutico , Pirimidinas/farmacología , Pirazoles/uso terapéutico , Pirazoles/farmacología , Piperidinas/uso terapéutico , Piperidinas/farmacología , Adenina/análogos & derivados , Fosfolipasa C gamma/metabolismo , Fosfolipasa C gamma/genética , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Mutación
5.
Immunogenetics ; 76(3): 189-202, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38683392

RESUMEN

Hypogammaglobulinemia without B-cells is a subgroup of inborn errors of immunity (IEI) which is characterized by a significant decline in all serum immunoglobulin isotypes, coupled with a pronounced reduction or absence of B-cells. Approximately 80 to 90% of individuals exhibit genetic variations in Bruton's agammaglobulinemia tyrosine kinase (BTK), whereas a minority of cases, around 5-10%, are autosomal recessive agammaglobulinemia (ARA). Very few cases are grouped into distinct subcategories. We evaluated phenotypically and genetically 27 patients from 13 distinct families with hypogammaglobinemia and no B-cells. Genetic analysis was performed via whole-exome and Sanger sequencing. The most prevalent genetic cause was mutations in BTK. Three novel mutations in the BTK gene include c.115 T > C (p. Tyr39His), c.685-686insTTAC (p.Asn229llefs5), and c.163delT (p.Ser55GlnfsTer2). Our three ARA patients include a novel homozygous stop-gain mutation in the immunoglobulin heavy constant Mu chain (IGHM) gene, a novel frameshift mutation of the B-cell antigen receptor complex-associated protein (CD79A) gene, a novel bi-allelic stop-gain mutation in the transcription factor 3 (TCF3) gene. Three patients with agammaglobulinemia have an autosomal dominant inheritance pattern, which includes a missense variant in PIK3CD, a novel missense variant in PIK3R1 and a homozygous silent mutation in the phosphoinositide-3-kinase regulatory subunit (RASGRP1) gene. This study broadens the genetic spectrum of hypogammaglobulinemia without B-cells and presented a few novel variants within the Iranian community, which may also have implications in other Middle Eastern populations. Notably, disease control was better in the second affected family member in families with multiple cases.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Agammaglobulinemia , Linfocitos B , Mutación , Sistema de Registros , Humanos , Agammaglobulinemia/genética , Agammaglobulinemia/inmunología , Masculino , Linfocitos B/inmunología , Femenino , Agammaglobulinemia Tirosina Quinasa/genética , Niño , Preescolar , Adolescente , Lactante , Linaje , Fosfatidilinositol 3-Quinasa Clase Ia
6.
J Phys Chem B ; 128(12): 2874-2884, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38502552

RESUMEN

Targeted covalent inhibitors (TCIs) have witnessed a significant resurgence in recent years, particularly in the kinase drug discovery field for treating diverse clinical indications. The inhibition of Bruton's tyrosine kinase (BTK) for treating B-cell cancers is a classic example where TCIs such as ibrutinib have had breakthroughs in targeted therapy. However, selectivity remains challenging, and the emergence of resistance mutations is a critical concern for clinical efficacy. Computational methods that can accurately predict the impact of mutations on inhibitor binding affinity could prove helpful in informing targeted approaches─providing insights into drug resistance mechanisms. In addition, such systems could help guide the systematic evaluation and impact of mutations in disease models for optimal experimental design. Here, we have employed in silico physics-based methods to understand the effects of mutations on the binding affinity and conformational dynamics of select TCIs of BTK. The TCIs studied include ibrutinib, acalabrutinib, and zanubrutinib─all of which are FDA-approved drugs for treating multiple forms of leukemia and lymphoma. Our results offer useful molecular insights into the structural determinants, thermodynamics, and conformational energies that impact ligand binding for this biological target of clinical relevance.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/genética , Conformación Molecular , Mutación , /farmacología
7.
Curr Hematol Malig Rep ; 19(3): 120-137, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38536576

RESUMEN

PURPOSE OF REVIEW: The treatment of Waldenström macroglobulinemia (WM) has evolved over the past decade. With the seminal discoveries of MYD88 and CXCR warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) mutations in WM cells, our understanding of the disease biology and treatment has improved. The development of a new class of agents, Bruton tyrosine kinase inhibitors (BTKi), has substantially impacted the treatment paradigm of WM. Herein, we review the current and emerging BTKi and the evidence for their use in WM. RECENT FINDINGS: Clinical trials have established the role of covalent BTKi in the treatment of WM. Their efficacy is compromised among patients who harbor CXCR4WHIM mutation or MYD88WT genotype. The development of BTKC481 mutation-mediated resistance to covalent BTKi may lead to disease refractoriness. Novel, non-covalent, next-generation BTKi are emerging, and preliminary results of the early phase clinical trials show promising activity in WM, even among patients refractory to a covalent BTKi. Covalent BTK inhibitors have demonstrated meaningful outcomes in treatment-naïve (TN) and relapsed refractory (R/R) WM, particularly among those harboring the MYD88L265P mutation. The next-generation BTKi demonstrate improved selectivity, resulting in a more favorable toxicity profile. In WM, BTKi are administered until progression or the development of intolerable toxicity. Consequently, the potential for acquired resistance, the emergence of cumulative toxicities, and treatment-related financial burden are critical challenges associated with the continuous therapy approach. By circumventing BTK C481 mutations that alter the binding site to covalent BTKi, the non-covalent BTKi serve as alternative agents in the event of acquired resistance. Head-to-head comparative trials with the conventional chemoimmunotherapies are lacking. The findings of the RAINBOW trial (NCT046152), comparing the dexamethasone, rituximab, and cyclophosphamide (DRC) regimen to the first-generation, ibrutinib are awaited, but more studies are needed to draw definitive conclusions on the comparative efficacy of chemoimmunotherapy and BTKi. Complete response is elusive with BTKi, and combination regimens to improve upon the efficacy and limit the treatment duration are also under evaluation in WM.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Inhibidores de Proteínas Quinasas , Macroglobulinemia de Waldenström , Macroglobulinemia de Waldenström/tratamiento farmacológico , Macroglobulinemia de Waldenström/genética , Humanos , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Resultado del Tratamiento , Mutación , Manejo de la Enfermedad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
8.
Science ; 383(6682): eadi5798, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38301010

RESUMEN

Increasing use of covalent and noncovalent inhibitors of Bruton's tyrosine kinase (BTK) has elucidated a series of acquired drug-resistant BTK mutations in patients with B cell malignancies. Here we identify inhibitor resistance mutations in BTK with distinct enzymatic activities, including some that impair BTK enzymatic activity while imparting novel protein-protein interactions that sustain B cell receptor (BCR) signaling. Furthermore, we describe a clinical-stage BTK and IKZF1/3 degrader, NX-2127, that can bind and proteasomally degrade each mutant BTK proteoform, resulting in potent blockade of BCR signaling. Treatment of chronic lymphocytic leukemia with NX-2127 achieves >80% degradation of BTK in patients and demonstrates proof-of-concept therapeutic benefit. These data reveal an oncogenic scaffold function of mutant BTK that confers resistance across clinically approved BTK inhibitors but is overcome by BTK degradation in patients.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Resistencia a Antineoplásicos , Factor de Transcripción Ikaros , Leucemia Linfocítica Crónica de Células B , Inhibidores de Proteínas Quinasas , Proteolisis , Humanos , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia Tirosina Quinasa/metabolismo , Factor de Transcripción Ikaros/metabolismo , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Mutación , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal , Proteolisis/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos
9.
Blood ; 143(17): 1702-1712, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38211337

RESUMEN

ABSTRACT: Mutations in MYD88 (95%-97%) and CXCR4 (30%-40%) are common in Waldenström macroglobulinemia (WM). TP53 is altered in 20% to 30% of patients with WM, particularly those previously treated. Mutated MYD88 activates hematopoietic cell kinase that drives Bruton tyrosine kinase (BTK) prosurvival signaling. Both nonsense and frameshift CXCR4 mutations occur in WM. Nonsense variants show greater resistance to BTK inhibitors. Covalent BTK inhibitors (cBTKi) produce major responses in 70% to 80% of patients with WM. MYD88 and CXCR4 mutation status can affect time to major response, depth of response, and/or progression-free survival (PFS) in patients with WM treated with cBTKi. The cBTKi zanubrutinib shows greater response activity and/or improved PFS in patients with WM with wild-type MYD88, mutated CXCR4, or altered TP53. Risks for adverse events, including atrial fibrillation, bleeding diathesis, and neutropenia can differ based on which BTKi is used in WM. Intolerance is also common with cBTKi, and dose reduction or switchover to another cBTKi can be considered. For patients with acquired resistance to cBTKis, newer options include pirtobrutinib or venetoclax. Combinations of BTKis with chemoimmunotherapy, CXCR4, and BCL2 antagonists are discussed. Algorithms for positioning BTKis in treatment naïve or previously treated patients with WM, based on genomics, disease characteristics, and comorbidities, are presented.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Inhibidores de Proteínas Quinasas , Macroglobulinemia de Waldenström , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/genética , Genómica/métodos , Mutación , Factor 88 de Diferenciación Mieloide/genética , Piperidinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/efectos adversos , Pirazoles/uso terapéutico , Pirazoles/efectos adversos , Pirimidinas/uso terapéutico , Receptores CXCR4/genética , Receptores CXCR4/antagonistas & inhibidores , Macroglobulinemia de Waldenström/tratamiento farmacológico , Macroglobulinemia de Waldenström/genética
10.
J Clin Oncol ; 42(4): 467-480, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38079587

RESUMEN

PURPOSE: A genetic classifier termed LymphGen accurately identifies diffuse large B-cell lymphoma (DLBCL) subtypes vulnerable to Bruton's tyrosine kinase inhibitors (BTKis), but is challenging to implement in the clinic and fails to capture all DLBCLs that benefit from BTKi-based therapy. Here, we developed a novel CD5 gene expression signature as a biomarker of response to BTKi-based therapy in DLBCL. METHODS: CD5 immunohistochemistry (IHC) was performed on 404 DLBCLs to identify CD5 IHC+ and CD5 IHC- cases, which were subsequently characterized at the molecular level through mutational and transcriptional analyses. A 60-gene CD5 gene expression signature (CD5sig) was constructed using genes differentially expressed between CD5 IHC+ and CD5 IHC- non-germinal center B-cell-like (non-GCB DLBCL) DLBCLs. This CD5sig was applied to external DLBCL data sets, including pretreatment biopsies from patients enrolled in the PHOENIX study (n = 584) to define the extent to which the CD5sig could identify non-GCB DLBCLs that benefited from the addition of ibrutinib to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). RESULTS: CD5 expression was observed in 12% of non-GCB DLBCLs. CD5+ DLBCLs displayed transcriptional features of B-cell receptor (BCR) activation and were enriched for BCR-activating mutations known to correlate with BTKi sensitivity. However, most CD5+ DLBCLs lacked canonical BCR-activating mutations or were LymphGen-unclassifiable (LymphGen-Other). The CD5sig recapitulated these findings in multiple independent data sets, indicating its utility in identifying DLBCLs with genetic and nongenetic bases for BCR dependence. Supporting this notion, CD5sig+ DLBCLs derived a selective survival advantage from the addition of ibrutinib to R-CHOP in the PHOENIX study, independent of LymphGen classification. CONCLUSION: CD5sig is a useful biomarker to identify DLBCLs vulnerable to BTKi-based therapies and complements current biomarker approaches by identifying DLBCLs with genetic and nongenetic bases for BTKi sensitivity.


Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia Tirosina Quinasa/metabolismo , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Linfocitos B/patología , Rituximab/uso terapéutico , Vincristina/uso terapéutico , Biomarcadores , Doxorrubicina/uso terapéutico , Ciclofosfamida/uso terapéutico , Prednisona/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Pronóstico
11.
Clin Cancer Res ; 30(3): 471-473, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38055246

RESUMEN

Acquired mutations in BTK, PLCG2, and BCL2 are associated with resistance to continuous targeted agent therapy in chronic lymphocytic leukemia (CLL). Here, we discuss new evidence that limiting the duration of CLL therapy may prevent the evolution of such resistance mutations, potentially facilitating effective retreatment strategies. See related article by Jain et al., p. 498.


Asunto(s)
Antineoplásicos , Leucemia Linfocítica Crónica de Células B , Humanos , Agammaglobulinemia Tirosina Quinasa/genética , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Resistencia a Antineoplásicos/genética , Mutación , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
12.
Neurol Clin ; 42(1): 155-163, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37980113

RESUMEN

Multiple sclerosis (MS) can cause significant disability to patients via relapse-associated worsening and progression independent of relapses. The causes of neuronal and myelin damage can include lymphocyte-mediated inflammation and microglial activation. Bruton's tyrosine kinase (BTK) is an enzyme that mediates B cell activation and the proinflammatory phenotype of microglia. Inhibiting BTK provides a novel therapeutic target for MS but also has a complicated pharmacology based on binding specificity, CNS penetration, half-life, and enzyme inhibition characteristics. Multiple agents are being studied in phase 3 trials, and each agent will have unique efficacy and safety profiles that must be considered individually.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia Tirosina Quinasa/metabolismo
13.
J Mol Graph Model ; 126: 108623, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716293

RESUMEN

Drug resistance to Bruton's Tyrosine Kinase (BTK) inhibitors presents a challenge in treating B-cell malignancies, and the mechanism behind drug resistance remains unclear. In this study, we focused on the BTK L528W mutation and investigated the underlying mechanisms of resistance to ibrutinib (including prototype and its active metabolite from, PCI-45227) using a combination of bioinformatics analysis, and molecular dynamics (MD) simulations. Protein stability of wild type (WT) BTK and L528W mutant was predicted using DUET, PoPMuSiC, and I-Mutant2.0. We performed MD simulations of six systems, apo-WT, metabolite-WT, prototype-WT and their mutants, to analyze the significant conformational and BTK-inhibitor binding affinity changes induced by the L528W mutation. Results show that the L528W mutation reduces the conformational stability of BTK compared to the WT. Principal component analysis (PCA) based free energy landscape (FEL) analysis shows that the L528W mutant ensemble tends to form more conformation clusters and exhibit higher levels of local minima than the WT counterpart. The interaction analysis reveal that the L528W mutation disrupts the strong hydrogen bond between Cys481 and inhibitors and reduces the number of hydrogen bonds between inhibitors and BTK in the L528W mutant complex structures compared to the WT. Porcupine plot analysis in association with cross-correlation analysis show the high-intensity flexible motion exhibited by the P-loop region. MM/GBSA calculations show that the L528W mutation in metabolite-BTK and prototype-BTK complexes increases binding free energy compared to the WT, with a reduction in binding affinity confirmed by per-residue energy decomposition. Specifically, the binding free energy increases from -57.86 kcal/mol to -48.26 kcal/mol for the metabolite-BTK complex and from -62.04 kcal/mol to -50.55 kcal/mol for the prototype-BTK complex. Overall, our study finds that the L528W mutation reduces BTK stability, decreases binding affinity, and leads to drug resistance and potential disease recurrence.


Asunto(s)
Resistencia a Antineoplásicos , Simulación de Dinámica Molecular , Agammaglobulinemia Tirosina Quinasa/genética , Mutación , Resistencia a Antineoplásicos/genética
14.
Genes (Basel) ; 14(12)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38137005

RESUMEN

Bruton's tyrosine kinase (BTK) plays a key role in the B-cell receptor (BCR) signaling pathway and confers anti-apoptotic and proliferative properties to malignant B-cells in chronic lymphocytic leukemia (CLL). Small molecule BTK inhibitors were designed to bind BTK's active site and block downstream signaling. These drugs have now been used in the treatment of thousands of patients with CLL, the most common form of leukemia in the western hemisphere. However, adverse effects of early generations of BTK inhibitors and resistance to treatment have led to the development of newer, more selective and non-covalent BTK inhibitors. As the use of these newer generation BTK inhibitors has increased, novel BTK resistance mutations have come to light. This review aims to discuss previously known and novel BTK mutations, their mechanisms of resistance, and their relationship with patient treatment. Also discussed here are future studies that are needed to investigate the underlying cause allowing these mutations to occur and how they incite resistance. New treatments on the horizon that attempt to maneuver around these resistance mutations can be met with new resistance mutations, creating an unmet need for patients with CLL. Novel therapies and combinations that address all forms of resistance are discussed.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Leucemia Linfocítica Crónica de Células B , Humanos , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia Tirosina Quinasa/metabolismo , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Mutación , Transducción de Señal
15.
Immun Inflamm Dis ; 11(10): e1049, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37904676

RESUMEN

BACKGROUND: X-linked agammaglobulinemia (XLA) is the most common form of agammaglobulinemia and is caused by mutations in Btk, which encodes Bruton tyrosine kinase (BTK). CASE DESCRIPTION: We describe a 36-year-old male who presented as an infant with hypogammaglobulinemia and sinopulmonary infections and was initially diagnosed with common variable immunodeficiency. Genetic testing showed he was hemizygous for Btk c.240G > A. This synonymous variant affecting the last nucleotide of exon 3 leads to aberrant splicing of most but not all mRNA transcripts. CONCLUSION: We demonstrated reduced BTK protein expression confirming the pathogenicity of the variant and related our findings to genotype-phenotype relationship studies ina XLA caused by synonymous mutations.


Asunto(s)
Agammaglobulinemia , Masculino , Lactante , Humanos , Adulto , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia/complicaciones , Agammaglobulinemia/diagnóstico , Agammaglobulinemia/genética , Proteínas Tirosina Quinasas/genética , Mutación Silenciosa
16.
Front Immunol ; 14: 1252765, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37809070

RESUMEN

Background: Bruton's tyrosine kinase (BTK) is a cytoplasmic protein involved in the B cell development. X-linked agammaglobulinemia (XLA) is caused by mutation in the BTK gene, which results in very low or absent B cells. Affected males have markedly reduced immunoglobulin levels, which render them susceptible to recurrent and severe bacterial infections. Methods: Patients suspected with X-linked agammaglobulinemia were enrolled during the period of 2010-2018. Clinical summary, and immunological profiles of these patients were recorded. Peripheral blood samples were collected for monocyte BTK protein expression detection and BTK genetic analysis. The medical records between January 2020 and June 2023 were reviewed to investigate COVID-19 in XLA. Results: Twenty-two patients (from 16 unrelated families) were molecularly diagnosed as XLA. Genetic testing revealed fifteen distinct mutations, including four splicing mutations, four missense mutations, three nonsense mutations, three short deletions, and one large indel mutation. These mutations scattered throughout the BTK gene and mostly affected the kinase domain. All mutations including five novel mutations were predicted to be pathogenic or deleterious by in silico prediction tools. Genetic testing confirmed that eleven mothers and seven sisters were carriers for the disease, while three mutations were de novo. Flow cytometric analysis showed that thirteen patients had minimal BTK expression (0-15%) while eight patients had reduced BTK expression (16-64%). One patient was not tested for monocyte BTK expression due to insufficient sample. Pneumonia (n=13) was the most common manifestation, while Pseudomonas aeruginosa was the most frequently isolated pathogen from the patients (n=4). Mild or asymptomatic COVID-19 was reported in four patients. Conclusion: This report provides the first overview of demographic, clinical, immunological and genetic data of XLA in Malaysia. The combination of flow cytometric assessment and BTK genetic analysis provides a definitive diagnosis for XLA patients, especially with atypical clinical presentation. In addition, it may also allow carrier detection and assist in genetic counselling and prenatal diagnosis.


Asunto(s)
Agammaglobulinemia , COVID-19 , Masculino , Embarazo , Femenino , Humanos , Proteínas Tirosina Quinasas/genética , Malasia , COVID-19/genética , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia/diagnóstico , Agammaglobulinemia/genética
17.
Anal Cell Pathol (Amst) ; 2023: 3377316, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638060

RESUMEN

Lung cancer is one of the most lethal malignant tumors in the world. Non-small cell lung cancer (NSCLC) is the most common pathological subtype. However, the molecular mechanism of NSCLC progress is still unclear. We extracted the expression data of the Bruton's tyrosine kinase (BTK) gene in NSCLC tissues from the TCGA database. The results of paired t-test showed that the BTK gene was significantly underexpressed in NSCLC tissues. To further verify the above results, we detected the expression of the BTK gene in NSCLC cell lines A549, H1299, and H1650 at the RNA and protein levels by real-time fluorescent quantitative polymerase chain reaction and Western Blot analysis, respectively. The results showed that BTK was low expressed in NSCLC tissues and cells. More importantly, the expression of the BTK gene is also significantly related to the patient's age, gender, tumor range (T), lymph node invasion (N), tumor stage, and prognosis, and its expression level gradually decreases with the progress of the disease. It is speculated that BTK may be an independent prognostic factor of NSCLC. Our experimental results are consistent with the above clinical correlation analysis results. Overexpression of BTK can significantly inhibit the proliferation, migration, and invasion of NSCLC cells and can block the G0/G1 tumor cell cycle, indicating that overexpression of BTK can inhibit the growth, migration, and invasion of NSCLC cells.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Agammaglobulinemia Tirosina Quinasa/genética , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/genética , Proliferación Celular/genética , Neoplasias Pulmonares/genética
18.
Front Biosci (Landmark Ed) ; 28(6): 124, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37395037

RESUMEN

BACKGROUND: Bruton's tyrosine kinase (BTK) is a non-receptor type tyrosine kinase originally identified as the genetic signature responsible for X-linked agammaglobulinemia (XLA) when mutated. Its functional form is required for B lymphocyte maturation in both humans and mice, whereas loss-of-function causes a different form of developmental defect in the fruit fly, Drosophila melanogaster. METHODS: Ibrutinib and other therapeutic inhibitors of BTK have been extensively used to successfully treat various leukemias and lymphomas. Btk29A type 2 is the ortholog of BTK in the fruit fly. We show that feeding wild-type flies an ibrutinib-containing diet induces phenocopying of Btk29A mutants, i.e., failure in the fusion of left and right halves of the dorsal cuticles, partial loss of wing tissues and dysregulation of germ cell production. RESULTS: We have previously reported that Btk29A phosphorylates Drosophila Arm (ß-catenin), and ibrutinib reduces phosphorylation at Tyrosine142 of endogenously expressed ß-catenin in Cos7 cells transfected with Btk29A type 2 cDNA. CONCLUSIONS: Thus, Drosophila is suitable for screens of novel BTK inhibitor candidates and offers a unique in vivo system in which the mode of action of BTK inhibitors can be examined at the molecular, cellular, and organismal levels.


Asunto(s)
Drosophila melanogaster , Proteínas Tirosina Quinasas , Humanos , Animales , Ratones , Drosophila melanogaster/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , beta Catenina/metabolismo , Drosophila/metabolismo , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia Tirosina Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA