Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
1.
Anal Chem ; 96(42): 16695-16705, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39369390

RESUMEN

Given the promising prospect of aggregation-induced emission luminogens (AIEgens) in fluorescence assays, it is interesting and significant to endow AIEgens with molecular recognition capability (such as enzyme-like activity). Here, an AIE nanomaterial with intrinsic enzyme-like activity (named as "AIEzyme") is designed and synthesized via a facile coordination polymerization of Zr4+ and AIE ligands. AIEzyme possesses enhanced and stable fluorescence in different solvents because of the AIE effect of ligands in the rigid structure of a coordination polymer. On the other hand, the organophosphorus hydrolase (OPH)-mimicking activity of AIEzyme exhibits excellent affinity and specific activity. Interestingly, the OPH-like activity can quench the inherent fluorescence of AIEzyme by the hydrolysate of a typical organophosphorus nerve agent (OPNA), diethyl-4-nitrophenylphosphate. Due to the sensitive activity-induced quenching effect for AIE, the self-reporting fluorescence assay method based on AIEzyme was established, which shows ultrahigh sensitivity, high selectivity, good storage stability, and acceptable reliability for a real sample assay. Moreover, the simultaneous colorimetric method broadens the detection range and the application scenarios. The proposed assay method avoided the interference of O2 during detection because the OPH-like activity does not derive from the generation of ROS. As a bonus, AIEzyme can also be used for the degradation of OPNAs by OPH-like activity, and the process can be self-monitored by AIE quenching. This work would provide a new opportunity for expanding the application of AIEgens and artificial enzymes by endowing AIEgens with enzyme-like activity.


Asunto(s)
Arildialquilfosfatasa , Agentes Nerviosos , Agentes Nerviosos/análisis , Agentes Nerviosos/química , Agentes Nerviosos/metabolismo , Arildialquilfosfatasa/metabolismo , Arildialquilfosfatasa/química , Nanoestructuras/química , Espectrometría de Fluorescencia , Colorantes Fluorescentes/química
2.
Neuropharmacology ; 261: 110171, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39362626

RESUMEN

A benzodiazepine, diazepam, has been the leading antidote for seizures caused by nerve agents, the most toxic chemical weapons of mass destruction, since the 1960s. However, its limitations have often brought questions about its usefulness. Extensive effort has been devoted into exploring alternatives, such as other benzodiazepines, anticholinergics, or glutamate antagonists. However, only few showed clear clinical benefit. The only two options to ultimately reach clinical milestones are Avizafone, a water-soluble prodrug of diazepam adopted by the French and UK armed forces, and intramuscular midazolam, adopted by the US Army. The recently FDA-approved new intramuscular application of midazolam brought several advantages, such as rapid onset of action, short duration with predictable pharmacokinetics, increased water solubility for aqueous injectable solutions, and prolonged storage stability. Herein, we discuss the pitfalls and prospects of using midazolam as a substitute in anticonvulsant therapy with a particular focus on military purposes in combat casualty care. We have also considered and discussed several other alternatives that are currently at the experimental level. Recent studies have shown the superiority of midazolam over other benzodiazepines in the medical management of poisoned casualties. While its use in emergency care is straightforward, the proper dose for soldiers under battlefield conditions is questionable due to its sedative effects.


Asunto(s)
Anticonvulsivantes , Diazepam , Midazolam , Agentes Nerviosos , Convulsiones , Midazolam/administración & dosificación , Convulsiones/tratamiento farmacológico , Convulsiones/inducido químicamente , Humanos , Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/uso terapéutico , Animales , Diazepam/administración & dosificación
3.
Chem Biol Interact ; 403: 111225, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39233266

RESUMEN

Following inhalation exposure to organophosphorus nerve agents, symptoms rapidly develop and severe respiratory symptoms, such as bronchorrhea and bronchoconstriction are the leading causes of lethality. Nerve agent-induced lung injury is little investigated and the standard treatment for symptomatic relief targets the enzyme acetylcholinesterase and muscarinic acetylcholine and GABAergic receptors. In the present study, cellular responses in lung tissue during the acute (40 min) and extended phase (24 h) following severe exposure to the nerve agent VX have been investigated using an ex vivo rat precision-cut lung slice model including electrostimulation to induce a cholinergic response. Changes in protein amount, cell viability, together with, inflammatory and oxidative stress markers have been determined in both the lung tissue and incubation medium. During the acute phase, VX caused significantly increased airway contraction and decreased airway relaxation. Five micromolar of VX did not affect the sample protein levels and cell viability in lung tissue. Among seven markers of cellular responses investigated in the lung tissue, increased levels of heme oxygenase-1 and matrix metalloproteinase-9 together with decreased levels of glutathione in the incubation medium were observed in the acute phase following VX-exposure compared to electrostimulation only. No difference in cellular response was observed following VX-exposure for 24 h compared to the air control. In comparison, LPS-exposure resulted in time-dependent changes in all markers of inflammation and oxidative response. In conclusion, the present study demonstrated VX-specific patterns of oxidative responses in the lung, as well as, signs of inflammatory response and remodelling of extracellular matrix. These potential mechanisms of tissue injury should be further investigated for their potential as additional therapeutic targets during the acute phase of intoxication.


Asunto(s)
Supervivencia Celular , Pulmón , Agentes Nerviosos , Compuestos Organotiofosforados , Animales , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Compuestos Organotiofosforados/farmacología , Ratas , Agentes Nerviosos/toxicidad , Masculino , Supervivencia Celular/efectos de los fármacos , Metaloproteinasa 9 de la Matriz/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Ratas Wistar , Glutatión/metabolismo
4.
J Med Syst ; 48(1): 82, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235718

RESUMEN

INTRODUCTION: Chemical mass casualty incidents (MCIs) pose a substantial threat to public health and safety, with the capacity to overwhelm healthcare infrastructure and create societal disorder. Computer simulation systems are becoming an established mechanism to validate these plans due to their versatility, cost-effectiveness and lower susceptibility to ethical problems. METHODS: We created a computer simulation model of an urban subway sarin attack analogous to the 1995 Tokyo sarin incident. We created and combined evacuation, dispersion and victim models with the SIMEDIS computer simulator. We analyzed the effect of several possible approaches such as evacuation policy ('Scoop and Run' vs. 'Stay and Play'), three strategies (on-site decontamination and stabilization, off-site decontamination and stabilization, and on-site stabilization with off-site decontamination), preliminary triage, victim distribution methods, transport supervision skill level, and the effect of search and rescue capacity. RESULTS: Only evacuation policy, strategy and preliminary triage show significant effects on mortality. The total average mortality ranges from 14.7 deaths in the combination of off-site decontamination and Scoop and Run policy with pretriage, to 24 in the combination of onsite decontamination with the Stay and Play and no pretriage. CONCLUSION: Our findings suggest that in a simulated urban chemical MCI, a Stay and Play approach with on-site decontamination will lead to worse outcomes than a Scoop and Run approach with hospital-based decontamination. Quick transport of victims in combination with on-site antidote administration has the potential to save the most lives, due to faster hospital arrival for definitive care.


Asunto(s)
Simulación por Computador , Planificación en Desastres , Incidentes con Víctimas en Masa , Triaje , Humanos , Planificación en Desastres/organización & administración , Triaje/organización & administración , Descontaminación/métodos , Sarín , Agentes Nerviosos
5.
J Chromatogr A ; 1736: 465385, 2024 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-39326381

RESUMEN

The present study explores the potential of silica solid phase extraction for gas chromatography mass spectrometric analyses of A- and V-series nerve agents. Owing to the presence of basic amidine and amine moieties, these analyte undergo strong ionic interactions with inherently acidic silica surfaces, producing poor recoveries. Subtle optimizations in the elution composition empowered the analytes to overcome the retention barriers from sorbent surfaces. Acetone containing 10 % (v/v) NH4OH effectively minimized strong analyte-sorbent interactions allowing good to excellent recoveries. Recoveries for A-series agents ranged from 88 to 96 %. VX, which is reported to be poorly recoverable from such sorbent matrices offered best data so far, reaching up to 74 % under optimized conditions. The method detection limits for the selected analytes in mass spectrometric analysis ranged from 47 to 171 ng/ml. Strong affinities of analytes towards silica sorbent were further exploited to expand the scope of analysis and establish the method's efficacy for a wide range of organic matrices. The applicability of the method to the real world applications was also validated in blind spiking exercises in diverse organic liquid samples received in 48th, 50th and 52nd proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons (OPCW).


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Límite de Detección , Agentes Nerviosos , Dióxido de Silicio , Extracción en Fase Sólida , Dióxido de Silicio/química , Extracción en Fase Sólida/métodos , Agentes Nerviosos/química , Agentes Nerviosos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Adsorción , Compuestos Organotiofosforados/análisis , Compuestos Organotiofosforados/química , Acetona/química
6.
Chem Biol Interact ; 403: 111219, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39222902

RESUMEN

Current medical countermeasures (MCMs) for nerve agent poisoning have limited efficacy, and can cause serious adverse effects, prompting the requirement for new broad-spectrum therapeutics. Human plasma-derived butyrylcholinseterase (huBChE) is a promising novel bioscavenger MCM which has shown potential in animal studies, however, is economically prohibitive to manufacture at scale. This study addresses current challenges for the economical production of a bioactive and long-acting recombinant huBChE (rBChE) in mammalian cells by being the first to directly compare novel rBChE design strategies. These include co-expression of a proline rich attachment domain (PRAD) and fusion of BChE with a protein partner. Additionally, a pre-purification screening method developed in this study enables parallel comparison of the expression efficiency, activity and broad-spectrum binding to nerve agents for ten novel rBChE molecular designs. All designed rBChE demonstrated functionality to act as broad-spectrum MCMs to G, V and A series nerve agents. Expression using the ExpiCHO™ Max protocol provided greatest expression levels and activity for all constructs, with most rBChE expressing poorly in Expi293™. Fc- or hSA-fused rBChE significantly outperformed constructs designed to mimic huBChE, including PRAD-BChE, and proved an effective strategy to significantly improve enzyme activity and expression. Choice of protein partner, directionality and the addition of a linker also impacted fusion rBChE activity and expression. Overall, hSA fused rBChE provided greatest expression yield and activity, with BChE-hSA the best performing construct. The purified and characterised BChE-hSA demonstrated similar functionality to huBChE to be inhibited by GD, VX and A-234, supporting the findings of the pre-screening study and validating its capacity to assess and streamline the selection process for rBChE constructs in a cost-effective manner. Collectively, these outcomes contribute to risk mitigation in early-stage development, providing a systematic method to compare rBChE designs and a focus for future development.


Asunto(s)
Butirilcolinesterasa , Proteínas Recombinantes , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/genética , Butirilcolinesterasa/química , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Contramedidas Médicas , Agentes Nerviosos/metabolismo , Agentes Nerviosos/química , Animales , Diseño de Fármacos
7.
J Hazard Mater ; 478: 135508, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39182297

RESUMEN

Chemical nerve agents are hazardous compounds that terrorists can exploit to pose a significant threat to public safety and national security. The nucleophilic behaviour of these agents enables their interaction with acetyl cholinesterase in the body, leading to paralysis and potentially fatal consequences. Therefore, developing robust and efficient detection methods for these agents is crucial for preventing their misuse. In this manuscript, (E)-12-(1-hydrazineylideneethyl)benzo[f]pyrido[1,2-a]indole-6,11-dione (HBID) is developed as a novel colorimetric and fluorometric probe for the detection of specific chemical nerve agent simulants in both liquid and vapor phase. HBID reacts rapidly with diethyl chlorophosphate (DCP), a common nerve agent simulant, leading to a significant increase in the fluorescence intensity. Under optimized conditions, HBID exhibits high sensitivity, good recyclability, fast response and low limit of detection (0.092 µM). NMR and mass spectral studies suggest that the reaction involves the nucleophilic addition of HBID to DCP, forming a phosphate ester. Additionally, the developed sensor demonstrates viscosity-sensitive AIE phenomena thus greatly expanding its potential applications in biological systems. This sensitivity enables precise detection and visualization of viscosity changes within cellular environments, making the sensor an invaluable tool for studying complex biological processes. The developed probe also detects pH within biologically relevant range (4-6). In practical applications, the probe-treated strips efficiently detected DCP vapor in real time, showing a noticeable fluorescence response. Further, the probe has a strong potential to detect the presence of DCP in the soil samples.


Asunto(s)
Agentes Nerviosos , Agentes Nerviosos/análisis , Agentes Nerviosos/química , Colorantes Fluorescentes/química , Colorimetría/métodos , Organofosfatos/química , Organofosfatos/análisis , Espectrometría de Fluorescencia , Límite de Detección , Reproducibilidad de los Resultados , Sustancias para la Guerra Química/análisis , Sustancias para la Guerra Química/química , Indoles/química , Fluorometría/métodos , Compuestos Organofosforados
8.
ACS Sens ; 9(8): 3921-3927, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39133300

RESUMEN

Luminescence-based sensing provides a method for the rapid detection of nerve agents. Previous approaches have generally focused on sensing materials containing a nucleophilic group that can react with the electrophilic phosphorus atom found in nerve agents. Herein we report an alternative approach for the detection of phosphonofluoridate-based G-series nerve agents that utilizes the fact they contain hydrogen fluoride. We have developed silylated sensing materials based on an excited-state intramolecular proton transfer (ESIPT) reporter compound, 2-[benzo[d]thiazol-2-yl]phenol. Thin films of differently silylated 2-[benzo[d]thiazol-2-yl]phenol were found to react with the hydrogen fluoride found in di-iso-propyl fluorophosphate (DFP), a simulant of sarin (G-series nerve agent), and turn on the ESIPT emission of the reporter compound. The use of the ESIPT emission reduced the impact of background fluorescence and improved the sensitivity of the detection. The effectiveness of the approach was dependent on the stability of the silyl protecting group used, with the least sterically hindered (trimethylsilyl) found to be too unstable to the ambient environment while the most sterically hindered, e.g., tri-iso-propylsilyl and tert-butyldiphenylsilyl were found to be insufficiently reactive to be useful in a real detection scenario. The sensing material composed of the tert-butyl dimethylsilyl protected 2-[benzo[d]thiazol-2-yl]phenol was found to have the best balance between stability under ambient conditions, and reactivity and selectivity to hydrogen fluoride. In a 3 s exposure, it could detect hydrogen fluoride down to a concentration of around 23 ppm in DFP with 99% purity.


Asunto(s)
Ácido Fluorhídrico , Agentes Nerviosos , Protones , Ácido Fluorhídrico/química , Agentes Nerviosos/análisis , Agentes Nerviosos/química , Éteres/química
9.
Environ Monit Assess ; 196(9): 829, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167268

RESUMEN

In the presented study, an efficient and fast analytical method was developed for the determination of parathion ethyl as sarin simulant by gas chromatography-mass spectrometry (GC-MS). Dispersive solid phase extraction (DSPE) was performed to concentrate parathion ethyl from soil, plant and water samples. Reduced graphene oxide-iron (II, III) oxide (rGO-Fe3O4) nanocomposite was used as an adsorbent to collect the target analyte from the aqueous sample solutions. After the optimization of extraction/preconcentration parameters, optimum conditions for adsorbent amount, eluent type, mixing type/period, eluent volume and initial sample volume were determined as 15 mg, acetonitrile, vortex/30 s, 100 µL and 10 mL, respectively. Under the optimum conditions, analytical performance of the developed DSPE-GC-MS method was evaluated in terms of limit of detection (LOD), limit of quantitation (LOQ) and dynamic range. Dynamic range, LOD and LOQ values were figured out to be 0.94-235.15 µg/kg, 0.41 µg/kg and 1.36 µg/kg (mass based), respectively. Satisfactory percent recovery results (90.3-125% for soil, 93.5-108.7% for plant, 88.5-112.9% for tap water) were achieved for soil, plant and tap water samples which proved the accuracy and applicability of the developed method. It is predicted that the DSPE-GC-MS method can be accurately used for the detection of sarin in soil, plant and water samples taken from war territories.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Sarín , Contaminantes del Suelo , Suelo , Extracción en Fase Sólida , Contaminantes Químicos del Agua , Extracción en Fase Sólida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Sarín/análisis , Contaminantes del Suelo/análisis , Suelo/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Paratión/análisis , Agentes Nerviosos/análisis , Plantas/química , Límite de Detección , Grafito/química
10.
Arch Toxicol ; 98(10): 3397-3407, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39004640

RESUMEN

The risk of the use of toxic chemicals for unlawful acts has been a matter of concern for different governments and multilateral agencies. The Organisation for the Prohibition of Chemical Weapons (OPCW), which oversees the implementation of the Chemical Weapons Convention (CWC), considering recent events employing chemical warfare agents as means of assassination, has recently included in the CWC "Annex on Chemicals" some organophosphorus compounds that are regarded as acting in a similar fashion to the classical G- and V-series of nerve agents, inhibiting the pivotal enzyme acetylcholinesterase. Therefore, knowledge of the activity of the pyridinium oximes, the sole class of clinically available acetylcholinesterase reactivators to date, is plainly justified. In this paper, continuing our research efforts in medicinal chemistry on this class of toxic chemicals, we synthesized an A-230 nerve agent surrogate and applied a modified Ellman's assay to evaluate its ability to inhibit our enzymatic model, acetylcholinesterase from Electrophorus eel, and if the clinically available antidotes are able to rescue the enzyme activity for the purpose of relating the findings to the previously disclosed in silico data for the authentic nerve agent and other studies with similar A-series surrogates. Our experimental data indicates that pralidoxime is the most efficient compound for reactivating acetylcholinesterase inhibited by A-230 surrogate, which is the opposite of the in silico data previously disclosed.


Asunto(s)
Acetilcolinesterasa , Sustancias para la Guerra Química , Inhibidores de la Colinesterasa , Reactivadores de la Colinesterasa , Agentes Nerviosos , Oximas , Compuestos de Piridinio , Oximas/farmacología , Acetilcolinesterasa/metabolismo , Reactivadores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/toxicidad , Compuestos de Piridinio/farmacología , Sustancias para la Guerra Química/toxicidad , Agentes Nerviosos/toxicidad , Compuestos de Pralidoxima/farmacología , Compuestos Organotiofosforados/toxicidad , Animales , Antídotos/farmacología
11.
Anal Methods ; 16(25): 4066-4073, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38881395

RESUMEN

Nerve agents have posed a huge threat to national and human security, and their sensitive detection is crucial. Herein, based on the oxidation of Ce4+ and the aggregation-induced emission (AIE) of glutathione-protected gold nanoclusters (GSH-Au NCs), a cascade reaction was designed to prepare oxidized 3,3',5,5'-tetramethylbenzidine (oxTMB) and GSH-Au NCs crosslinked by Ce3+ (Ce3+-GSH-Au NCs). oxTMB had a broad UV-visible absorption range (500-700 nm) and was capable of quenching the fluorescence of Ce3+-GSH-Au NCs at 590 nm through the internal filtration effect (IFE). Thiocholine (TCh), the hydrolysis product of acetylthiocholine chloride (ATCl) catalyzed by acetylcholinesterase (AChE), reduced oxTMB completely, resulting in a decrease in the absorption of oxTMB and the recovery of IFE-quenched fluorescence of Ce3+-GSH-Au NCs. Nerve agent sarin (GB) hindered the production of TCh and the reduction of oxTMB by inhibiting the AChE activity, leading to the fluorescence of Ce3+-GSH-Au NCs being quenched again. The dual-output sensing system (AChE + ATCl + oxTMB + Ce3+-GSH-Au NCs) exhibited a low limit of detection to GB (2.46 nM for colorimetry and 1.18 nM for fluorimetry) and excellent selectivity toward common interferences being unable to inhibit AChE. Moreover, the intelligent logic gate constructed based on the sensing system showed promising applications in the field of smart sensing of nerve agents.


Asunto(s)
Acetilcolinesterasa , Oro , Nanopartículas del Metal , Agentes Nerviosos , Sarín , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Sarín/química , Sarín/análisis , Agentes Nerviosos/química , Agentes Nerviosos/análisis , Oro/química , Nanopartículas del Metal/química , Técnicas Biosensibles/métodos , Cerio/química , Glutatión/química , Humanos , Bencidinas/química , Espectrometría de Fluorescencia/métodos , Límite de Detección
12.
J Hazard Mater ; 471: 134400, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691927

RESUMEN

VX, a well-known organophosphorus nerve agent (OPNA), poses a significant threat to public safety if employed by terrorists. Obtaining complete metabolites is critical to unequivocally confirm its alleged use/exposure and elucidate its whole-molecular metabolism. However, the nitrogenous VX metabolites containing 2-diisopropylaminoethyl moiety from urinary excretion remain unknown. Therefore, this study applied a newly developed untargeted workflow platform to discover and identify them using VX-exposed guinea pigs as animal models. 2-(N,N-diisopropylamino)ethanesulfonic acid (DiPSA) was revealed as a novel nitrogenous VX metabolite in urine, and 2-(Diisopropylaminoethyl) methyl sulfide (DAEMS) was confirmed as another in plasma, indicating that VX metabolism differed between urine and plasma. It is the first report of a nitrogenous VX metabolite in urine and a complete elucidation of the VX metabolic pathway. DiPSA was evaluated as an excellent VX exposure biomarker. The whole-molecule VX metabolism in urine was characterized entirely for the first time via the simultaneous quantification of DiPSA and two known P-based biomarkers. About 52.1% and 32.4% of VX were excreted in urine as P-based and nitrogenous biomarkers within 24 h. These findings provide valuable insights into the unambiguous detection of OPNA exposure/intoxication and human and environmental exposure risk assessment.


Asunto(s)
Sustancias para la Guerra Química , Compuestos Organotiofosforados , Animales , Compuestos Organotiofosforados/orina , Compuestos Organotiofosforados/metabolismo , Cobayas , Sustancias para la Guerra Química/metabolismo , Masculino , Biomarcadores/orina , Agentes Nerviosos/metabolismo
13.
Toxicol Lett ; 397: 103-116, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703967

RESUMEN

Animal research continues to serve a critical role in the testing and development of medical countermeasures. The Göttingen minipig, developed for laboratory research, may provide many benefits for addressing research questions within chemical defense. Targeted development of the Göttingen minipig model could reduce reliance upon non-human primates, and improve study design, statistical power, and throughput to advance medical countermeasures for regulatory approval and fielding. In this vein, we completed foundational pharmacokinetics and physiological safety studies of intramuscularly administered atropine sulfate, pralidoxime chloride (2-PAM), and diazepam across a broad range of doses (1-6 autoinjector equivalent) using adult male Göttingen minipigs (n=11; n=4-8/study) surgically implanted with vascular access ports and telemetric devices to monitor cardiovascular, respiratory, arterial pressure, and temperature signals. Pharmacokinetic data were orderly and the concentration maximum mirrored available human data at comparably scaled doses clearly for atropine, moderately for 2-PAM, and poorly for diazepam. Time to peak concentration approximated 2, 7, and 20 min for atropine, 2-PAM, and diazepam, respectively, and the elimination half-life of these drugs approximated 2 hr (atropine), 3 hr (2-PAM), and 8 hr (diazepam). Atropine sulfate dose-dependently increased the magnitude and duration of tachycardia and decreased the PR and ST intervals (consistent with findings obtained from other species). Mild hypothermia was observed at the highest diazepam dose. Göttingen minipigs appear to provide a ready and appropriate large animal alternative to non-human primates, and further development and evaluation of novel nerve agent medical countermeasures and treatment strategies in this model are justified.


Asunto(s)
Atropina , Diazepam , Porcinos Enanos , Animales , Porcinos , Masculino , Diazepam/farmacocinética , Diazepam/farmacología , Atropina/farmacocinética , Atropina/farmacología , Agentes Nerviosos/farmacocinética , Agentes Nerviosos/toxicidad , Relación Dosis-Respuesta a Droga , Inyecciones Intramusculares , Semivida , Frecuencia Cardíaca/efectos de los fármacos , Telemetría , Modelos Animales , Compuestos de Pralidoxima
14.
Toxicol Lett ; 397: 42-47, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723915

RESUMEN

Organophosphate pesticide poisoning challenges health care systems worldwide. Furthermore, nerve agents remain a continuous threat. The treatment options for organophosphate poisoning have virtually been unchanged for decades, relying on symptomatic treatment and the use of oximes to indirectly restore neuromuscular function. Hence, compounds targeting directly nicotinic acetylcholine receptors (nAChRs) might substantially improve treatment options. The current study investigated a series of bispyridinium analogues with a trimethylene or 2,2'-diethyloxy linker in a rat hemidiaphragm model, using indirect field stimulation. Methyl- and ethyl-substituted bispyridinium analogues restored neuromuscular function up to 37 ± 17% (MB419, a 3-methyl analogue) at a stimulation frequency of 20 Hz. The bispyridinium analogues with a 2- or 3-methyl group, or a 2- or 3-ethyl group, tended towards a higher restoration of neuromuscular function than those with a 4-methyl or 4-ethyl group, respectively. The current data can be used for future studies to optimize structure-based molecular modeling of compounds targeting the nAChR.


Asunto(s)
Diafragma , Agentes Nerviosos , Compuestos de Piridinio , Animales , Diafragma/efectos de los fármacos , Diafragma/inervación , Agentes Nerviosos/toxicidad , Masculino , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/química , Transmisión Sináptica/efectos de los fármacos , Relación Estructura-Actividad , Unión Neuromuscular/efectos de los fármacos , Ratas , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Ratas Wistar , Intoxicación por Organofosfatos/tratamiento farmacológico , Oximas/farmacología , Oximas/química , Ratas Sprague-Dawley , Estructura Molecular
15.
Toxicol Lett ; 397: 151-162, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38759939

RESUMEN

Poisoning with organophosphorus compounds, which can lead to a cholinergic crisis due to the inhibition of acetylcholinesterase and the subsequent accumulation of acetylcholine (ACh) in the synaptic cleft, is a serious problem for which treatment options are currently insufficient. Our approach to broadening the therapeutic spectrum is to use agents that interact directly with desensitized nicotinic acetylcholine receptors (nAChRs) in order to induce functional recovery after ACh overstimulation. Although MB327, one of the most prominent compounds investigated in this context, has already shown positive properties in terms of muscle force recovery, this compound is not suitable for use as a therapeutic agent due to its insufficient potency. By means of in silico studies based on our recently presented allosteric binding pocket at the nAChR, i.e. the MB327-PAM-1 binding site, three promising MB327 analogs with a 4-aminopyridinium ion partial structure (PTM0056, PTM0062, and PTM0063) were identified. In this study, we present the synthesis and biological evaluation of a series of new analogs of the aforementioned compounds with a 4-aminopyridinium ion partial structure (PTM0064-PTM0072), as well as hydroxy-substituted analogs of MB327 (PTMD90-0012 and PTMD90-0015) designed to substitute entropically unfavorable water clusters identified during molecular dynamics simulations. The compounds were characterized in terms of their binding affinity towards the aforementioned binding site by applying the UNC0642 MS Binding Assays and in terms of their muscle force reactivation in rat diaphragm myography. More potent compounds were identified compared to MB327, as some of them showed a higher affinity towards MB327-PAM-1 and also a higher recovery of neuromuscular transmission at lower compound concentrations. To improve the treatment of organophosphate poisoning, direct targeting of nAChRs with appropriate compounds is a key step, and this study is an important contribution to this research.


Asunto(s)
Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/efectos de los fármacos , Animales , Masculino , Agentes Nerviosos/toxicidad , Ratas Wistar , Ratas , Intoxicación por Organofosfatos/tratamiento farmacológico , Diafragma/efectos de los fármacos , Diafragma/metabolismo , Relación Estructura-Actividad , Compuestos de Piridinio/farmacología , Compuestos de Piridinio/síntesis química , Compuestos de Piridinio/química , Contracción Muscular/efectos de los fármacos , Unión Neuromuscular/efectos de los fármacos , Sitios de Unión
16.
Artículo en Inglés | MEDLINE | ID: mdl-38735125

RESUMEN

Protein adducts are vital targets for exploring organophosphorus nerve agents (OPNAs) exposure and identification, that can be used to characterize the chemical burden and initiate chemical safety measures. However, the use of protein adducts as biomarkers of OPNA exposure has developed slowly. To further promote the development of biomarkers in chemical forensics, it is crucial to expand the range of modified peptides and active sites, and describe the characteristics of OPNA adducts at specific reaction sites. This study utilized multi-species and multi-source albumins as the protein targets. We identified 56 peptides in albumins from various species (including human, horse, rat and pig), that were modified by at least two OPNAs. Diverse modification characteristics were observed in response to certain agents: including (1) multiple sites on the same peptide modified by one or more agents, (2) different reactivities at the same site in homologous albumins, and (3) different preferences at the same active sites associated with differences in the biological matrix during exposure. Our studies provided an empirical reference with rationalized underpinnings supported by estimated conformation energetics through molecular modeling. We employed different peptide markers for detection of protein adducts, as (one would do) in forensic screening for identification and quantification of chemical damage. Three characteristic peptides were screened and analyzed in human albumin, including Y287ICENQDSISSK, K438VPQVS443TPTLVEVSR, and Y162LY164EIAR. Stable fragment ions with neutral loss were found from their tandem MS/MS spectra, which were used as characteristic ions for identification and extraction of modified peptides in enzymatic digestion mixtures. Coupling these observations with computer simulations, we found that the structural stability of albumin and albumin-adduct complexes (as well as the effective force that promotes stability of different adducts) changes in the interval before and after adduct formation. In pig albumin, five active peptides existed stably in vivo and in vitro. Most of them can be detected within 30 min after OPNA exposure, and the detection window can persist about half a month. These early findings provided the foundation and rationale for utilizing pig albumin as a sampling target for rapid analysis in future forensic work.


Asunto(s)
Agentes Nerviosos , Compuestos Organofosforados , Animales , Humanos , Ratas , Compuestos Organofosforados/química , Porcinos , Agentes Nerviosos/química , Agentes Nerviosos/análisis , Caballos , Espectrometría de Masas en Tándem/métodos , Péptidos/química , Péptidos/análisis , Albúminas/química , Albúminas/metabolismo , Biomarcadores/análisis , Biomarcadores/química
17.
Chem Biol Interact ; 396: 111061, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38763347

RESUMEN

Nerve agents pose significant threats to civilian and military populations. The reactivation of acetylcholinesterase (AChE) is critical in treating acute poisoning, but there is still lacking broad-spectrum reactivators, which presents a big challenge. Therefore, insights gained from the reactivation kinetic analysis and molecular docking are essential for understanding the behavior of reactivators towards intoxicated AChE. In this research, we present a systematic determination of the reactivation kinetics of three V agents-inhibited four human ChEs [(AChE and butyrylcholinesterase (BChE)) from either native or recombinant resources, namely, red blood cell (RBC) AChE, rhAChE, hBChE, rhBChE) reactivated by five standard oximes. We unveiled the effect of native and recombinant ChEs on the reactivation kinetics of V agents ex vitro, where the reactivation kinetics characteristic of Vs-inhibited BChE was reported for the first time. In terms of the inhibition type, all of the five oxime reactivators exhibited noncompetitive inhibition. The inhibition potency of these reactivators would not lead to the difference in the reactivation kinetics between native and recombinant ChE. Despite the significant differences between the native and recombinant ChEs observed in the inhibition, aging, and spontaneous reactivation kinetics, the reactivation kinetics of V agent-inhibited ChEs by oximes were less differentiated, which were supported by the ligand docking results. We also found differences in the reactivation efficiency between five reactivators and the phosphorylated enzyme, and molecular dynamic simulations can further explain from the perspectives of conformational stability, hydrogen bonding, binding free energies, and amino acid contributions. By Poisson-Boltzmann surface area (MM-PBSA) calculations, the total binding free energy trends aligned well with the experimental kr2 values.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Simulación del Acoplamiento Molecular , Agentes Nerviosos , Oximas , Humanos , Oximas/farmacología , Oximas/química , Cinética , Agentes Nerviosos/química , Agentes Nerviosos/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Simulación de Dinámica Molecular , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
18.
Arch Toxicol ; 98(9): 2937-2952, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38789714

RESUMEN

Six novel brominated bis-pyridinium oximes were designed and synthesized to increase their nucleophilicity and reactivation ability of phosphorylated acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Their pKa was valuably found lower to parent non-halogenated oximes. Stability tests showed that novel brominated oximes were stable in water, but the stability of di-brominated oximes was decreased in buffer solution and their degradation products were prepared and characterized. The reactivation screening of brominated oximes was tested on AChE and BChE inhibited by organophosphorus surrogates. Two mono-brominated oximes reactivated AChE comparably to non-halogenated analogues, which was further confirmed by reactivation kinetics. The acute toxicity of two selected brominated oximes was similar to commercially available oxime reactivators and the most promising brominated oxime was tested in vivo on sarin- and VX-poisoned rats. This brominated oxime showed interesting CNS distribution and significant reactivation effectiveness in blood. The same oxime resulted with the best protective index for VX-poisoned rats.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Reactivadores de la Colinesterasa , Agentes Nerviosos , Compuestos Organotiofosforados , Oximas , Sarín , Animales , Oximas/farmacología , Oximas/química , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Inhibidores de la Colinesterasa/toxicidad , Inhibidores de la Colinesterasa/farmacología , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/efectos de los fármacos , Butirilcolinesterasa/metabolismo , Ratas , Masculino , Compuestos Organotiofosforados/toxicidad , Sarín/toxicidad , Agentes Nerviosos/toxicidad , Ratas Wistar , Halogenación , Sustancias para la Guerra Química/toxicidad , Compuestos de Piridinio/farmacología , Estabilidad de Medicamentos
19.
Anal Bioanal Chem ; 416(15): 3569-3584, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38698257

RESUMEN

Protein adducts are important biological targets for traceability of organophosphorus nerve agents (OPNAs). Currently, the recognized biomarkers that can be used in actual samples in the field of chemical forensics only include Y411 in albumin and the active nonapeptide in butyrylcholinesterase (BChE). To explore stable and reliable protein adducts and increase the accuracy of OPNAs traceability further, we gradually expanded OPNAs-albumin adducts based on single and group adduct collection. Several stable peptides were found via LC-MS/MS analysis in human serum albumin (HSA) exposed to OPNAs in a large exposure range. These adducts were present in HSA samples exposed to OPNAs of each concentration, which provided data support for the reliability and stability of using adducts to trace OPNAs. Meanwhile, the formation mechanism of OPNAs-cysteine adduct was clarified via computer simulations. Then, these active sites found and modified peptides were used as raw materials for progressive expansion of albumin adducts. We constructed an OPNAs-HSA adducts group, in which a specific agent is the exposure source, and three or more active peptides constitute data sets for OPNAs traceability. Compared with single or scattered protein adducts, the OPNAs-HSA adduct group improves OPNAs identification by mutual verification using active peptides or by narrowing the identity range of the exposure source. We also determined the minimum detectable concentration of OPNAs for the adduct group. Two or more peptides can be detected when there is an exposure of 50 times the molar excess of OPNAs in relation to HSA. This improved the accuracy of OPNAs exposure and identity confirmation. A collection of OPNAs-albumin adducts was also examined. The collection was established by collecting, classifying, and integrating the existing albumin adducts according to the species to which each albumin belongs, the types of agents, and protease. This method can serve as a reference for discovering new albumin adducts, characteristic phosphonylated peptides, and potential biomarkers. In addition, to avoid a false negative for OPNAs traceability using albumin adducts, we explored OPNAs-cholinesterase adducts because cholinesterase is more reactive with OPNAs than albumin. Seven active peptides in red blood cell acetylcholinesterase (RBC AChE) and serum BChE can assist in OPNAs exposure and identity confirmation.


Asunto(s)
Agentes Nerviosos , Compuestos Organofosforados , Albúmina Sérica Humana , Espectrometría de Masas en Tándem , Humanos , Agentes Nerviosos/química , Agentes Nerviosos/análisis , Compuestos Organofosforados/química , Espectrometría de Masas en Tándem/métodos , Albúmina Sérica Humana/química , Cromatografía Liquida/métodos , Biomarcadores/sangre , Péptidos/química
20.
Protein Pept Lett ; 31(5): 345-355, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706353

RESUMEN

Nerve agents are a class of lethal neurotoxic chemicals used in chemical warfare. In this review, we have discussed a brief history of chemical warfare, followed by an exploration of the historical context surrounding nerve agents. The article explores the classification of these agents, their contemporary uses, their toxicity mechanisms, and the disadvantages of the current treatment options for nerve agent poisoning. It then discusses the possible application of enzymes as prophylactics against nerve agent poisoning, outlining the benefits and drawbacks of paraoxonase- 1. Finally, the current studies on paraoxonase-1 are reviewed, highlighting that several challenges need to be addressed in the use of paraoxonase-1 in the actual field and that its potential as a prophylactic antidote against nerve agent poisoning needs to be evaluated. The literature used in this manuscript was searched using various electronic databases, such as PubMed, Google Scholar, Web of Science, Elsevier, Springer, ACS, Google Patent, and books using the keywords chemical warfare agent, butyrylcholinesterase, enzyme, nerve agent, prophylactic, and paraoxonase-1, with the time scale for the analysis of articles between 1960 to 2023. The study has suggested that concerted efforts by researchers and agencies must be made to develop effective countermeasures against NA poisoning and that paraoxonase-1 has suitable properties for the development of efficient prophylaxis against NA poisoning.


Asunto(s)
Arildialquilfosfatasa , Sustancias para la Guerra Química , Agentes Nerviosos , Arildialquilfosfatasa/metabolismo , Arildialquilfosfatasa/uso terapéutico , Humanos , Sustancias para la Guerra Química/envenenamiento , Sustancias para la Guerra Química/toxicidad , Agentes Nerviosos/envenenamiento , Agentes Nerviosos/toxicidad , Animales , Antídotos/uso terapéutico , Antídotos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA