Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.787
Filtrar
1.
Cell Biochem Funct ; 42(4): e4067, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38874324

RESUMEN

Dendritic cells (DCs) are known as antigen-presenting cells that are capable of regulating immune responses. DCs and T cells can interact mutually to induce antigen-specific T-cell responses. Cabergoline, which is a dopamine (DA) receptor agonist, seems to implement anti-inflammatory properties in the immune system, and therefore in the present study the impact of a DA receptor agonist cabergoline on the monocyte-derived DCs (moDCs) was assessed. Immature moDCs were treated with lipopolysaccharide to produce mature DCs (mDCs). The expression of DCs' related surface markers namely: CD11c, HLA-DR, and CD86 was measured by utilizing of flow cytometry. Real-time PCR was the technique of choice to determine the levels at which diverse inflammatory and anti-inflammatory factors in cabergoline-treated and control mDC groups were expressed. DCs treated with cabergoline displayed a significant decrease in CD86 and HLA-DR expression, markers linked to maturation and antigen presentation, respectively. In addition, the cabergoline-mDC group showed a considerable decline in terms of the levels at which IL-10, TGF-ß, and IDO genes were expressed, and an increase in the expression of TNF-α and IL-12 in comparison to the mDC control group. Our findings revealed that cabergoline as an immunomodulatory agent can relatively shift DCs into an immunogenic state, and there is a requirement for further investigations to evaluate the effects of cabergoline-treated DCs on the T cell responses in vitro, and also in various diseases including cancer in animal models.


Asunto(s)
Cabergolina , Células Dendríticas , Agonistas de Dopamina , Monocitos , Humanos , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Células Dendríticas/inmunología , Cabergolina/farmacología , Agonistas de Dopamina/farmacología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/inmunología , Monocitos/citología , Fenotipo , Ergolinas/farmacología , Células Cultivadas , Lipopolisacáridos/farmacología
2.
Sci Rep ; 14(1): 11561, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773300

RESUMEN

Mitochondrial diseases are mainly caused by dysfunction of mitochondrial respiratory chain complexes and have a variety of genetic variants or phenotypes. There are only a few approved treatments, and fundamental therapies are yet to be developed. Leigh syndrome (LS) is the most severe type of progressive encephalopathy. We previously reported that apomorphine, an anti- "off" agent for Parkinson's disease, has cell-protective activity in patient-derived skin fibroblasts in addition to strong dopamine agonist effect. We obtained 26 apomorphine analogs, synthesized 20 apomorphine derivatives, and determined their anti-cell death effect, dopamine agonist activity, and effects on the mitochondrial function. We found three novel apomorphine derivatives with an active hydroxy group at position 11 of the aporphine framework, with a high anti-cell death effect without emetic dopamine agonist activity. These synthetic aporphine alkaloids are potent therapeutics for mitochondrial diseases without emetic side effects and have the potential to overcome the low bioavailability of apomorphine. Moreover, they have high anti-ferroptotic activity and therefore have potential as a therapeutic agent for diseases related to ferroptosis.


Asunto(s)
Aporfinas , Enfermedad de Leigh , Mitocondrias , Enfermedad de Leigh/tratamiento farmacológico , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Aporfinas/farmacología , Aporfinas/química , Aporfinas/síntesis química , Aporfinas/uso terapéutico , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Apomorfina/farmacología , Apomorfina/uso terapéutico , Apomorfina/análogos & derivados , Agonistas de Dopamina/farmacología , Agonistas de Dopamina/uso terapéutico , Agonistas de Dopamina/química , Alcaloides/farmacología , Alcaloides/química , Alcaloides/uso terapéutico
3.
Neurobiol Learn Mem ; 212: 107937, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735637

RESUMEN

Systemic manipulations that enhance dopamine (DA) transmission around the time of fear extinction can strengthen fear extinction and reduce conditioned fear relapse. Prior studies investigating the brain regions where DA augments fear extinction focus on targets of mesolimbic and mesocortical DA systems originating in the ventral tegmental area, given the role of these DA neurons in prediction error. The dorsal striatum (DS), a primary target of the nigrostriatal DA system originating in the substantia nigra (SN), is implicated in behaviors beyond its canonical role in movement, such as reward and punishment, goal-directed action, and stimulus-response associations, but whether DS DA contributes to fear extinction is unknown. We have observed that chemogenetic stimulation of SN DA neurons during fear extinction prevents the return of fear in contexts different from the extinction context, a form of relapse called renewal. This effect of SN DA stimulation is mimicked by a DA D1 receptor (D1R) agonist injected into the DS, thus implicating DS DA in fear extinction. Different DS subregions subserve unique functions of the DS, but it is unclear where in the DS D1R agonist acts during fear extinction to reduce renewal. Furthermore, although fear extinction increases neural activity in DS subregions, whether neural activity in DS subregions is causally involved in fear extinction is unknown. To explore the role of DS subregions in fear extinction, adult, male Long-Evans rats received microinjections of either the D1R agonist SKF38393 or a cocktail consisting of GABAA/GABAB receptor agonists muscimol/baclofen selectively into either dorsomedial (DMS) or dorsolateral (DLS) DS subregions immediately prior to fear extinction, and extinction retention and renewal were subsequently assessed drug-free. While increasing D1R signaling in the DMS during fear extinction did not impact fear extinction retention or renewal, DMS inactivation reduced later renewal. In contrast, DLS inactivation had no effect on fear extinction retention or renewal but increasing D1R signaling in the DLS during extinction reduced fear renewal. These data suggest that DMS and DLS activity during fear extinction can have opposing effects on later fear renewal, with the DMS promoting renewal and the DLS opposing renewal. Mechanisms through which the DS could influence the contextual gating of fear extinction are discussed.


Asunto(s)
Cuerpo Estriado , Extinción Psicológica , Miedo , Receptores de Dopamina D1 , Animales , Miedo/fisiología , Miedo/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Masculino , Ratas , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/fisiología , Cuerpo Estriado/metabolismo , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inhibidores , Agonistas de Dopamina/farmacología , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/fisiología , Sustancia Negra/efectos de los fármacos , Sustancia Negra/fisiología , Ratas Long-Evans , Dopamina/metabolismo , Dopamina/fisiología
4.
J Psychiatr Pract ; 30(3): 200-211, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38819244

RESUMEN

OBJECTIVE: Prolactinomas-pituitary tumors that overproduce prolactin-can cause various troublesome symptoms. Dopamine agonists (DAs) reduce prolactin production in the prolactin pathway, making them the first-line treatment for prolactinomas. However, the main side effect of DA treatment, hyperdopaminergia, is an explicit etiology for psychiatric side effects. Psychiatric conditions are often treated with dopamine antagonists, which can induce hyperprolactinemia. This presents a challenge for patients with both a prolactinoma and a preexisting psychiatric condition, as treatment of one condition could worsen the other. This review seeks to identify an adequate therapeutic regimen for patients with coexisting prolactinomas and psychiatric symptoms. METHODS: This review examined PubMed citations from 1960 to 2023 published in English and involving human subjects. Case reports, case series, and cohort studies involving patients with concomitant prolactinomas and psychiatric symptoms, as validated by brain imaging, serologic prolactin levels, and medical history or chart reports of psychiatric symptoms, were included. RESULTS: Thematic analysis included 23 reports involving 42 participants; 27 of the 42 patients experienced a significant reduction in prolactin levels and psychiatric symptoms (64%). Treatment of those 42 patients included discontinuing or altering antipsychotic/dopamine antagonist therapy or discontinuing DA therapy to reduce psychiatric symptoms, with surgery or radiation postpharmacotherapy as a last-line strategy. However, in some cases (reported in Tables 2 to 4), either psychiatric or prolactin-related symptoms recurred despite adjustment. CONCLUSIONS: Clinicians may find it beneficial to prioritize specific antipsychotics (aripiprazole, olanzapine, ziprasidone, or clozapine) over others (risperidone, thioridazine, thiothixene, and remoxipride). Discontinuing DA medication at least periodically until the patient's condition improves may also be advisable. If these 2 initial approaches do not yield a significant improvement in symptom management, surgery or radiation therapy may be considered. As patients may respond differently to these therapies, our study still recommends a patient-centered approach.


Asunto(s)
Agonistas de Dopamina , Trastornos Mentales , Neoplasias Hipofisarias , Prolactinoma , Humanos , Prolactinoma/tratamiento farmacológico , Prolactinoma/terapia , Neoplasias Hipofisarias/complicaciones , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/terapia , Agonistas de Dopamina/uso terapéutico , Agonistas de Dopamina/farmacología , Antipsicóticos/efectos adversos , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Antagonistas de Dopamina/farmacología
5.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731862

RESUMEN

There are currently no disease-modifying therapies for Parkinson's disease (PD), a progressive neurodegenerative disorder associated with dopaminergic neuronal loss. There is increasing evidence that endogenous dopamine (DA) can be a pathological factor in neurodegeneration in PD. Tyrosine hydroxylase (TH) is the key rate-limiting enzyme for DA generation. Drugs that inhibit TH, such as alpha-methyltyrosine (α-MT), have recently been shown to protect against neurodegeneration in various PD models. DA receptor agonists can activate post-synaptic DA receptors to alleviate DA-deficiency-induced PD symptoms. However, DA receptor agonists have no therapeutic effects against neurodegeneration. Thus, a combination therapy with DA receptor agonists plus TH inhibitors may be an attractive therapeutic approach. TH inhibitors can protect and promote the survival of remaining dopaminergic neurons in PD patients' brains, whereas DA receptor agonists activate post-synaptic DA receptors to alleviate PD symptoms. Additionally, other PD drugs, such as N-acetylcysteine (NAC) and anticholinergic drugs, may be used as adjunctive medications to improve therapeutic effects. This multi-drug cocktail may represent a novel strategy to protect against progressive dopaminergic neurodegeneration and alleviate PD disease progression.


Asunto(s)
Agonistas de Dopamina , Enfermedad de Parkinson , Tirosina 3-Monooxigenasa , Animales , Humanos , Dopamina/metabolismo , Agonistas de Dopamina/uso terapéutico , Agonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Quimioterapia Combinada , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Tirosina 3-Monooxigenasa/antagonistas & inhibidores , Tirosina 3-Monooxigenasa/metabolismo
6.
J Affect Disord ; 356: 586-596, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657764

RESUMEN

BACKGROUND: Diabetes mellitus (DM) is frequently associated with the occurrence and development of depression, and the co-occurrence of diabetes mellitus with depression (DD) may further reduce patients' quality of life. Recent research indicates that dopamine receptors (DRs) play a crucial role in immune and metabolic regulation. Pramipexole (PPX), a D2/3R agonist, has demonstrated promising neuroprotective and immunomodulatory effects. Nevertheless, the therapeutic effects and mechanisms of action of PPX on DM-induced depression are not clear at present. METHODS: Depression, DM, and DD were induced in a rat model through a combination of a high-fat diet (HFD) supplemented with streptozotocin (STZ) and chronic unpredictable mild stress (CUMS) combined with solitary cage rearing. The pathogenesis of DD and the neuroprotective effects of DRs agonists were investigated using behavioral assays, enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin (HE) staining, Nissl staining, Western blotting (WB) and immunofluorescence (IF). RESULTS: DD rats exhibited more severe dopaminergic, neuroinflammatory, and neuroplastic impairments and more pronounced depressive behaviors than rats with depression alone or DM. Our findings suggest that DRs agonists have significant therapeutic effects on DD rats and that PPX improved neuroplasticity and decreased neuroinflammation in the hippocampus of DD rats while also promoting DG cell growth and differentiation, ultimately mitigating depression-like behaviors. LIMITATION: Our study is based on a rat model. Further evidence is needed to determine whether the therapeutic effects of PPX apply to patients suffering from DD. CONCLUSIONS: Neuroinflammation mediated by damage to the dopaminergic system is one of the key pathogenic mechanisms of DD. We provide evidence that PPX has a neuroprotective effect on the hippocampus in DD rats and the mechanism may involve the inhibition of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation by DRs to attenuate the neuroinflammatory response and neuroplasticity damage.


Asunto(s)
Depresión , Diabetes Mellitus Experimental , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Plasticidad Neuronal , Pramipexol , Animales , Pramipexol/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratas , Plasticidad Neuronal/efectos de los fármacos , Masculino , Inflamasomas/efectos de los fármacos , Depresión/tratamiento farmacológico , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Ratas Sprague-Dawley , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Agonistas de Dopamina/farmacología , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad
7.
Behav Pharmacol ; 35(4): 193-200, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38567425

RESUMEN

Prepulse inhibition (PPI) is a crucial indicator of sensorimotor gating that is often impaired in neuropsychiatric diseases. Although dopamine D1 receptor agonists have been found to disrupt PPI in mice, the underlying mechanisms are not fully understood. In this study, we aimed to identify the brain regions responsible for the PPI-disruptive effect of the D1 agonist in mice. Results demonstrated that intraperitoneal administration of the selective dopamine D1 receptor agonist SKF82958 dramatically inhibited PPI, while the dopamine D1 receptor antagonist SCH23390 enhanced PPI. Additionally, local infusion of SKF82958 into the nucleus accumbens and medial prefrontal cortex disrupted PPI, but not in the ventral hippocampus. Infusion of SCH23390 into these brain regions also failed to enhance PPI. Overall, the study suggests that the nucleus accumbens and medial prefrontal cortex are responsible for the PPI-disruptive effect of dopamine D1 receptor agonists. These findings provide essential insights into the cellular and neural circuit mechanisms underlying the disruptive effects of dopamine D1 receptor agonists on PPI and may contribute to the development of novel treatments for neuropsychiatric diseases.


Asunto(s)
Benzazepinas , Agonistas de Dopamina , Núcleo Accumbens , Corteza Prefrontal , Inhibición Prepulso , Receptores de Dopamina D1 , Animales , Masculino , Ratones , Benzazepinas/farmacología , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Ratones Endogámicos C57BL , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Inhibición Prepulso/efectos de los fármacos , Inhibición Prepulso/fisiología , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo
8.
Behav Neurosci ; 138(2): 85-93, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38661668

RESUMEN

Rodent behavioral studies have largely focused on male animals, which has limited the generalizability and conclusions of neuroscience research. Working with humans and rodents, we studied sex effects during interval timing that requires participants to estimate an interval of several seconds by making motor responses. Interval timing requires attention to the passage of time and working memory for temporal rules. We found no differences between human females and males in interval timing response times (timing accuracy) or the coefficient of variance of response times (timing precision). Consistent with prior work, we also found no differences between female and male rodents in timing accuracy or precision. In female rodents, there was no difference in interval timing between estrus and diestrus cycle stages. Because dopamine powerfully affects interval timing, we also examined sex differences with drugs targeting dopaminergic receptors. In both female and male rodents, interval timing was delayed after administration of sulpiride (D2-receptor antagonist), quinpirole (D2-receptor agonist), and SCH-23390 (D1-receptor antagonist). By contrast, after administration of SKF-81297 (D1-receptor agonist), interval timing shifted earlier only in male rodents. These data illuminate sex similarities and differences in interval timing. Our results have relevance for rodent models of both cognitive function and brain disease by increasing representation in behavioral neuroscience. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Asunto(s)
Percepción del Tiempo , Femenino , Masculino , Animales , Percepción del Tiempo/fisiología , Percepción del Tiempo/efectos de los fármacos , Humanos , Caracteres Sexuales , Dopamina/metabolismo , Ratas , Receptores de Dopamina D2/metabolismo , Sulpirida/farmacología , Quinpirol/farmacología , Agonistas de Dopamina/farmacología , Agonistas de Dopamina/administración & dosificación , Antagonistas de Dopamina/farmacología , Antagonistas de Dopamina/administración & dosificación , Adulto , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Benzazepinas/farmacología , Adulto Joven , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inhibidores , Memoria a Corto Plazo/fisiología , Memoria a Corto Plazo/efectos de los fármacos
9.
CNS Drugs ; 38(6): 443-457, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38613665

RESUMEN

Impulse control disorders in Parkinson's disease are relatively common drug-induced addictive behaviours that are usually triggered by the dopamine agonists pramipexole, ropinirole and rotigotine. This narrative review aimed to provide a comprehensive overview of the current knowledge of impulse control disorders in Parkinson's disease. We summarised the prevalence, clinical features, risk factors and potential underlying mechanisms of impulse control disorders in Parkinson's disease. Moreover, recent advances in behavioural and imaging characteristics and management strategies are discussed. Early detection as well as a tailored multidisciplinary approach, which typically includes careful adjustment of the dopaminergic therapy and the treatment of associated neuropsychiatric symptoms, are necessary. In some cases, a continuous delivery of levodopa via a pump or the dopamine D1 receptor agonist, apomorphine, can be considered. In selected patients without cognitive or speech impairment, deep brain stimulation of the subthalamic nucleus can also improve addictions. Finding the right balance of tapering dopaminergic dose (usually dopamine agonists) without worsening motor symptoms is essential for a beneficial long-term outcome.


Asunto(s)
Trastornos Disruptivos, del Control de Impulso y de la Conducta , Agonistas de Dopamina , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Trastornos Disruptivos, del Control de Impulso y de la Conducta/inducido químicamente , Trastornos Disruptivos, del Control de Impulso y de la Conducta/tratamiento farmacológico , Trastornos Disruptivos, del Control de Impulso y de la Conducta/etiología , Factores de Riesgo , Agonistas de Dopamina/efectos adversos , Agonistas de Dopamina/administración & dosificación , Agonistas de Dopamina/farmacología , Antiparkinsonianos/administración & dosificación , Antiparkinsonianos/efectos adversos , Estimulación Encefálica Profunda
10.
J Gynecol Obstet Hum Reprod ; 53(6): 102783, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38554942

RESUMEN

This systematic review aims to evaluate the efficacy and safety of Pyridoxine compared to Dopaminergic agonists (cabergoline and bromocriptine) in post-partum lactation inhibition. Cochrane Central, PubMed/MEDLINE, Cochrane Central, ScienceDirect, ClinicalTrials.gov, Web of Science, CINAHL and Google Scholar, covering the period from inception to November 2023. Additionally, the bibliographies of included articles and previous meta-analyses were screened for any relevant articles. The systematic review was conducted according to the Cochrane Handbook for Systematic Reviews of Interventions. The outcomes of interest encompassed inhibition of lactation, breast pain/tenderness, breast engorgement, milk secretion, fever, mastitis, prolactin level and adverse events related to pyridoxine, cabergoline and bromocriptine. Methodological quality assessment was conducted using the Cochrane risk of bias assessment tool for rigorous evaluation. Three clinical trials assessed the effectiveness of pyridoxine and dopaminergic agents (cabergoline and bromocriptine) for lactation inhibition. It was assessed by using different assessment methods such as a scale for milk secretion, serum prolactin levels, and questionnaires for assessing breast engorgement, breast pain, and milk leakage. On the global assessment of the therapeutic efficacy of dopaminergic agents, it was found that there was significant inhibition of lactation as compared to pyridoxine (p < 0.001). In conclusion, this systematic review contributes significant insights into lactation inhibition interventions. Dopaminergic agonists, specifically cabergoline and bromocriptine, stand out as more effective and tolerable choices compared to Pyridoxine. These findings provide a foundation for informed clinical decisions and underscore the need for careful consideration of lactation inhibition strategies in diverse clinical contexts.


Asunto(s)
Bromocriptina , Cabergolina , Agonistas de Dopamina , Lactancia , Piridoxina , Humanos , Bromocriptina/uso terapéutico , Bromocriptina/farmacología , Femenino , Piridoxina/uso terapéutico , Piridoxina/farmacología , Cabergolina/uso terapéutico , Cabergolina/farmacología , Agonistas de Dopamina/uso terapéutico , Agonistas de Dopamina/farmacología , Lactancia/efectos de los fármacos , Trastornos de la Lactancia/tratamiento farmacológico , Ensayos Clínicos como Asunto
11.
Pharmacol Biochem Behav ; 239: 173754, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537873

RESUMEN

BACKGROUND: Pituitary lactotrophs are under tonic dopaminergic inhibitory control and bromocriptine treatment blocks prolactin secretion. METHODS: Sleep and local field potential were addressed for 72 h after bromocriptine treatments applied during the different stages of the estrus cycle and for 24 h in the early- and middle postpartum period characterized by spontaneously different dynamics of prolactin release in female rats. RESULTS: Sleep changes showed strong dependency on the estrus cycle phase of the drug application. Strongest increase of wakefulness and reduction of slow wave sleep- and rapid eye movements sleep appeared during diestrus-proestrus and middle postpartum treatments. Stronger sleep-wake effects appeared in the dark phase in case of the estrus cycle treatments, but in the light phase in postpartum treatments. Slow wave sleep and REM sleep loss in case of estrus cycle treatments was not compensated at all and sleep loss seen in the first day post-injection was gained further later. In opposition, slow wave sleep loss in the light phase after bromocriptine injections showed compensation in the postpartum period treatments. Bromocriptine treatments resulted in a depression of local field potential delta power during slow wave sleep while an enhancement in beta and gamma power during wakefulness regardless of the treatment timing. CONCLUSIONS: These results can be explained by the interplay of dopamine D2 receptor agonism, lack of prolactin release and the spontaneous homeostatic sleep drive being altered in the different stages of the estrus cycle and the postpartum period.


Asunto(s)
Bromocriptina , Agonistas de Dopamina , Ciclo Estral , Periodo Posparto , Ratas Wistar , Receptores de Dopamina D2 , Sueño , Animales , Bromocriptina/farmacología , Femenino , Periodo Posparto/efectos de los fármacos , Ratas , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Agonistas de Dopamina/farmacología , Ciclo Estral/efectos de los fármacos , Sueño/efectos de los fármacos , Vigilia/efectos de los fármacos , Prolactina
12.
Transl Psychiatry ; 14(1): 86, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336862

RESUMEN

Impulse control disorders (ICDs), a wide spectrum of maladaptive behaviors which includes pathological gambling, hypersexuality and compulsive buying, have been recently suggested to be triggered or aggravated by treatments with dopamine D2/3 receptor agonists, such as pramipexole (PPX). Despite evidence showing that impulsivity is associated with functional alterations in corticostriatal networks, the neural basis of the exacerbation of impulsivity by PPX has not been elucidated. Here we used a hotspot analysis to assess the functional recruitment of several corticostriatal structures by PPX in male rats identified as highly (HI), moderately impulsive (MI) or with low levels of impulsivity (LI) in the 5-choice serial reaction time task (5-CSRTT). PPX dramatically reduced impulsivity in HI rats. Assessment of the expression pattern of the two immediate early genes C-fos and Zif268 by in situ hybridization subsequently revealed that PPX resulted in a decrease in Zif268 mRNA levels in different striatal regions of both LI and HI rats accompanied by a high impulsivity specific reduction of Zif268 mRNA levels in prelimbic and cingulate cortices. PPX also decreased C-fos mRNA levels in all striatal regions of LI rats, but only in the dorsolateral striatum and nucleus accumbens core (NAc Core) of HI rats. Structural equation modeling further suggested that the anti-impulsive effect of PPX was mainly attributable to the specific downregulation of Zif268 mRNA in the NAc Core. Altogether, our results show that PPX restores impulse control in highly impulsive rats by modulation of limbic frontostriatal circuits.


Asunto(s)
Agonistas de Dopamina , Conducta Impulsiva , Ratas , Masculino , Animales , Pramipexol/farmacología , Conducta Impulsiva/fisiología , Agonistas de Dopamina/farmacología , Dopamina/metabolismo , ARN Mensajero
13.
Neuropharmacology ; 248: 109851, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325772

RESUMEN

Heightened risk-based decision-making is observed across several neuropsychiatric disorders including schizophrenia, bipolar disorder, and Parkinson's disease, yet no treatments exist that effectively normalize this aberrant behavior. Preclinical risk-based decision-making paradigms have identified the important modulatory roles of dopamine and sex in the performance of such tasks, though specific task parameters may alter such effects (e.g., punishment and reward values). Previous work has highlighted the role of dopamine 2-like receptors (D2R) during performance of the Risk Preference Task (RPT) in male rats, however sex was not considered as a factor in this study, nor were treatments identified that reduced risk preference. Here, we utilized the RPT to determine sex-dependent differences in baseline performance and impact of the D2R receptor agonist pramipexole (PPX), and antagonist sulpiride (SUL) on behavioral performance. Female rats exhibited heightened risk-preference during baseline testing. Consistent with human studies, PPX increased risk-preference across sex, though the effects of PPX were more pronounced in female animals. Importantly, SUL reduced risk-preference in these rats across sexes. Thus, under the task specifications of the RPT that does not include punishment, female rats were more risk-preferring and required higher PPX doses to promote risky choices compared to males. Furthermore, blockade of D2R receptors may reduce risk-preference of rats, though further studies are required.


Asunto(s)
Dopamina , Caracteres Sexuales , Humanos , Ratas , Femenino , Masculino , Animales , Dopamina/farmacología , Agonistas de Dopamina/farmacología , Pramipexol/farmacología , Receptores Dopaminérgicos , Toma de Decisiones , Recompensa
14.
Sci Rep ; 14(1): 4820, 2024 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413694

RESUMEN

Originally, apomorphine was a broad-spectrum dopamine agonist with an affinity for all subtypes of the Dopamine D1 receptor to the D5 receptor. We previously identified apomorphine as a potential therapeutic agent for mitochondrial diseases by screening a chemical library of fibroblasts from patients with mitochondrial diseases. In this study, we showed that apomorphine prevented ferroptosis in fibroblasts from various types of mitochondrial diseases as well as in normal controls. Well-known biomarkers of ferroptosis include protein markers such as prostaglandin endoperoxide synthase 2 (PTGS2), a key gene for ferroptosis-related inflammation PTGS2, lipid peroxidation, and reactive oxygen species. Our findings that apomorphine induced significant downregulation of PTSG2 and suppressed lipid peroxide to the same extent as other inhibitors of ferroptosis also indicate that apomorphine suppresses ferroptosis. To our knowledge, this is the first study to report that the anti-ferroptosis effect of apomorphine is not related to dopamine receptor agonist action and that apomorphine is a potent inhibitor of ferroptotic cell death independent of dopaminergic receptors.


Asunto(s)
Ferroptosis , Enfermedades Mitocondriales , Humanos , Apomorfina/farmacología , Ciclooxigenasa 2/genética , Receptores de Dopamina D2/metabolismo , Agonistas de Dopamina/farmacología
15.
Nutrients ; 16(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38337707

RESUMEN

As the global obesity rate increases, so does the urgency to find effective anti-obesity drugs. In the search for therapeutic targets, central nervous system (CNS) mechanisms engaged in the regulation of energy expenditure and food intake, such as the opioid and dopamine systems, are crucial. In this study, we examined the effect on body weight of two drugs: bromocriptine (BC), a D2R receptor agonist, and PF-04455242, a selective κ opioid receptor (KOR) antagonist. Using diet-induced obese (DIO) rats, we aimed to ascertain whether the administration of BC and PF-04455242, independently or in combination, could enhance body weight loss. Furthermore, the present work demonstrates that the peripheral coadministration of BC and PF-04455242 enhances the reduction of weight in DIO rats and leads to a decrease in adiposity in a food-intake-independent manner. These effects were based on heightened energy expenditure, particularly through the activation of brown adipose tissue (BAT) thermogenesis. Overall, our findings indicate that the combination of BC and PF-04455242 effectively induces body weight loss through increased energy expenditure by increasing thermogenic activity and highlight the importance of the combined use of drugs to combat obesity.


Asunto(s)
Compuestos de Bifenilo , Antagonistas de Narcóticos , Receptores Opioides kappa , Sulfonamidas , Ratas , Animales , Antagonistas de Narcóticos/farmacología , Agonistas de Dopamina/farmacología , Roedores , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Dieta , Metabolismo Energético , Pérdida de Peso , Receptores Dopaminérgicos/metabolismo , Peso Corporal , Tejido Adiposo Pardo/metabolismo , Termogénesis
16.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 4939-4959, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38177456

RESUMEN

Dopamine can exert effects in the mammalian heart via five different dopamine receptors. There is controversy whether dopamine receptors increase contractility in the human heart. Therefore, we have generated mice that overexpress the human D1-dopamine receptor in the heart (D1-TG) and hypothesized that dopamine increases force of contraction and beating rate compared to wild-type mice (WT). In D1-TG hearts, we ascertained the presence of D1-dopamine receptors by autoradiography using [3H]SKF 38393. The mRNA for human D1-dopamine receptors was present in D1-TG hearts and absent in WT. We detected by in-situ-hybridization mRNA for D1-dopamine receptors in atrial and ventricular D1-TG cardiomyocytes compared to WT but also in human atrial preparations. We noted that in the presence of 10 µM propranolol (to antagonize ß-adrenoceptors), dopamine alone and the D1- and D5-dopamine receptor agonist SKF 38393 (0.1-10 µM cumulatively applied) exerted concentration- and time-dependent positive inotropic effects and positive chronotropic effects in left or right atrial preparations from D1-TG. The positive inotropic effects of SKF 38393 in left atrial preparations from D1-TG led to an increased rate of relaxation and accompanied by and probably caused by an augmented phosphorylation state of the inhibitory subunit of troponin. In the presence of 0.4 µM propranolol, 1 µM dopamine could increase left ventricular force of contraction in isolated perfused hearts from D1-TG. In this model, we have demonstrated a positive inotropic and chronotropic effect of dopamine. Thus, in principle, the human D1-dopamine receptor can couple to contractility in the mammalian heart.


Asunto(s)
Ratones Transgénicos , Contracción Miocárdica , Receptores de Dopamina D1 , Animales , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/genética , Humanos , Contracción Miocárdica/efectos de los fármacos , Masculino , Dopamina/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Agonistas de Dopamina/farmacología , Miocardio/metabolismo , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , ARN Mensajero/metabolismo , ARN Mensajero/genética , Atrios Cardíacos/metabolismo , Atrios Cardíacos/efectos de los fármacos , Corazón/efectos de los fármacos , Corazón/fisiología , Ratones Endogámicos C57BL , Frecuencia Cardíaca/efectos de los fármacos
17.
Drug Resist Updat ; 73: 101056, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38277755

RESUMEN

BACKGROUND: The treatment of dopamine agonists (DA) resistant prolactinomas remains a formidable challenge, as the mechanism of resistance is still unclear, and there are currently no viable alternative drug therapies available. This study seeks to investigate the mechanism of DA resistance in prolactinomas and identify new potentially effective drugs. METHODS: To explore the mechanism of DA resistance in prolactinomas, this study conducted transcriptome sequencing analysis on 27 cases of DA-resistant prolactinomas and 10 cases of sensitive prolactinomas. In addition, single-cell sequencing analysis was performed on 3 cases of DA-resistant prolactinomas and 3 cases of sensitive prolactinomas. Furthermore, to screen for potential therapeutic drugs, the study successfully established an organoids model for DA-resistant prolactinomas and screened 180 small molecule compounds using 8 organoids. The efficacy of the identified drugs was verified through various assays, including CCK-8, colony formation, CTG, and flow cytometry, and their mechanisms of action were confirmed through WB and IHC. The effectiveness of the identified drugs was evaluated both in vitro and in vivo. RESULTS: The results of transcriptome sequencing and single-cell sequencing analyses showed that DA resistance in prolactinomas is associated with the upregulation of the Focal Adhesion (FA) signaling pathway. Additionally, immunohistochemical validation revealed that FAK and Paxillin were significantly upregulated in DA-resistant prolactinomas. Screening of 180 small molecule compounds using 8 organoids identified Genistein as a potentially effective drug for DA-resistant prolactinomas. Experimental validation demonstrated that Genistein inhibited the proliferation of pituitary tumor cell lines and organoids and promoted apoptosis in pituitary tumor cells. Moreover, both the cell sequencing results and WB validation results of the drug-treated cells indicated that Genistein exerts its anti-tumor effect by inhibiting the FA pathway. In vivo, experiments also showed that Genistein can inhibit subcutaneous tumor formation. CONCLUSION: DA resistance in prolactinomas is associated with upregulation of the Focal Adhesion (FA) signaling pathway, and Genistein can exert its anti-tumor effect by inhibiting the expression of the FA pathway.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias Hipofisarias , Prolactinoma , Humanos , Neoplasias Hipofisarias/tratamiento farmacológico , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Agonistas de Dopamina/farmacología , Agonistas de Dopamina/uso terapéutico , Prolactinoma/tratamiento farmacológico , Prolactinoma/genética , Prolactinoma/metabolismo , Prolactina/metabolismo , Prolactina/uso terapéutico , Genisteína/uso terapéutico , Tumores Neuroendocrinos/tratamiento farmacológico , Resistencia a Antineoplásicos/genética
18.
Invest Ophthalmol Vis Sci ; 65(1): 46, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38289613

RESUMEN

Purpose: Members of the secretin/glucagon family have diverse roles in retinal physiological and pathological conditions. Out of them, glucagon has been associated with eye growth regulation and image defocus signaling in the eye, both processes central in myopia induction. On the other hand, dopamine is perhaps the most studied molecule in myopia and has been proposed as fundamental in myopia pathogenesis. However, glucagonergic activity in the mammalian retina and its possible link with dopaminergic signaling remain unknown. Methods: To corroborate whether glucagon and dopamine participate together in the modulation of synaptic activity in the retina, inhibitory post-synaptic currents were measured in rod bipolar cells from retinal slices of wild type and negative lens-exposed mice, using whole cell patch-clamp recordings and selective pharmacology. Results: Glucagon produced an increase of inhibitory post-synaptic current frequency in rod bipolar cells, which was also dependent on dopaminergic activity, as it was abolished by dopamine type 1 receptor antagonism and under scotopic conditions. The effect was also abolished after 3-week negative lens-exposure but could be recovered using dopamine type 1 receptor agonism. Conclusions: Altogether, these results support a possible neuromodulatory role of glucagon in the retina of mammals as part of a dopaminergic activity-dependent synaptic pathway that is affected under myopia-inducing conditions.


Asunto(s)
Dopamina , Miopía , Animales , Ratones , Dopamina/farmacología , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina , Glucagón , Receptores de Dopamina D1 , Retina , Células Fotorreceptoras Retinianas Bastones
19.
Mol Neurobiol ; 61(2): 609-621, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37648841

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative disease characterized by neuropsychiatric disturbance, cognitive impairment, and locomotor dysfunction. In the early stage (chorea) of HD, expression of dopamine D2 receptors (D2R) is reduced, whereas dopamine (DA) levels are increased. Contrary, in the late stage (bradykinesia), DA levels and the expression of D2R and dopamine D1 receptors (D1R) are reduced. 3-Nitropropionic acid (3-NPA) is a toxin that may replicate HD behavioral phenotypes and biochemical aspects. This study assessed the neurotransmitter levels, dopamine receptor gene expression, and the effect of acute exposure to quinpirole (D2R agonist) and eticlopride (D2R antagonist) in an HD model induced by 3-NPA in adult zebrafish. Quinpirole and eticlopride were acutely applied by i.p. injection in adult zebrafish after chronic treatment of 3-NPA (60 mg/kg). 3-NPA treatment caused a reduction in DA, glutamate, and serotonin levels. Quinpirole reversed the bradykinesia and memory loss induced by 3-NPA. Together, these data showed that 3-NPA acts on the dopaminergic system and causes biochemical alterations similar to late-stage HD. These data reinforce the hypothesis that DA levels are linked with locomotor and memory deficits. Thus, these findings may suggest that the use of DA agonists could be a pharmacological strategy to improve the bradykinesia and memory deficits in the late-stage HD.


Asunto(s)
Dopamina , Enfermedades Neurodegenerativas , Nitrocompuestos , Propionatos , Salicilamidas , Animales , Dopamina/metabolismo , Quinpirol/farmacología , Pez Cebra/metabolismo , Hipocinesia , Receptores de Dopamina D2/metabolismo , Agonistas de Dopamina/farmacología , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Receptores de Dopamina D1/metabolismo
20.
Biol Psychiatry ; 95(3): 286-296, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37330165

RESUMEN

BACKGROUND: Dopamine D2-like agonists show promise as treatments for depression. They are thought to act by enhancing reward learning; however, the mechanisms by which they achieve this are not clear. Reinforcement learning accounts describe 3 distinct candidate mechanisms: increased reward sensitivity, increased inverse decision-temperature, and decreased value decay. As these mechanisms produce equivalent effects on behavior, arbitrating between them requires measurement of how expectations and prediction errors are altered. We characterized the effects of 2 weeks of the D2-like agonist pramipexole on reward learning and used functional magnetic resonance imaging measures of expectation and prediction error to assess which of these 3 mechanistic processes were responsible for the behavioral effects. METHODS: Forty healthy volunteers (50% female) were randomized to 2 weeks of pramipexole (titrated to 1 mg/day) or placebo in a double-blind, between-subject design. Participants completed a probabilistic instrumental learning task before and after the pharmacological intervention, with functional magnetic resonance imaging data collected at the second visit. Asymptotic choice accuracy and a reinforcement learning model were used to assess reward learning. RESULTS: Pramipexole increased choice accuracy in the reward condition with no effect on losses. Participants who received pramipexole had increased blood oxygen level-dependent response in the orbital frontal cortex during the expectation of win trials but decreased blood oxygen level-dependent response to reward prediction errors in the ventromedial prefrontal cortex. This pattern of results indicates that pramipexole enhances choice accuracy by reducing the decay of estimated values during reward learning. CONCLUSIONS: The D2-like receptor agonist pramipexole enhances reward learning by preserving learned values. This is a plausible mechanism for pramipexole's antidepressant effect.


Asunto(s)
Agonistas de Dopamina , Recompensa , Humanos , Femenino , Masculino , Pramipexol , Agonistas de Dopamina/farmacología , Aprendizaje , Refuerzo en Psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA