Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.163
Filtrar
1.
PLoS One ; 19(5): e0302139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38717995

RESUMEN

Cover crops have the potential to mitigate climate change by reducing negative impacts of agriculture on ecosystems. This study is first to quantify the net climate change mitigation impact of cover crops including land-use effects. A systematic literature and data review was conducted to identify major drivers for climate benefits and costs of cover crops in maize (Zea maize L.) production systems. The results indicate that cover crops lead to a net climate change mitigation impact (NCCMI) of 3.30 Mg CO2e ha-1 a-1. We created four scenarios with different impact weights of the drivers and all of them showing a positive NCCMI. Carbon land benefit, the carbon opportunity costs based on maize yield gains following cover crops, is the major contributor to the NCCMI (34.5% of all benefits). Carbon sequestration is the second largest contributor (33.8%). The climate costs of cover crops are mainly dominated by emissions from their seed production and foregone benefits due to land use for cover crops seeds. However, these two costs account for only 15.8% of the benefits. Extrapolating these results, planting cover crops before all maize acreage in the EU results in a climate change mitigation of 49.80 million Mg CO2e a-1, which is equivalent to 13.0% of the EU's agricultural emissions. This study highlights the importance of incorporating cover crops into sustainable cropping systems to minimize the agricultural impact to climate change.


Asunto(s)
Agricultura , Secuestro de Carbono , Cambio Climático , Productos Agrícolas , Ecosistema , Zea mays , Productos Agrícolas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Agricultura/métodos , Agricultura/economía , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo
2.
Environ Monit Assess ; 196(6): 527, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722419

RESUMEN

Understanding the connections between human activities and the natural environment depends heavily on information about land use and land cover (LULC) in the form of accurate LULC maps. Environmental monitoring using deep learning (DL) is rapidly growing to preserve a sustainable environment in the long term. For establishing effective policies, regulations, and implementation, DL can be a valuable tool for assessing environmental conditions and natural resources that will positively impact the ecosystem. This paper presents the assessment of land use and land cover change detection (LULCCD) and prediction using DL techniques for the southwestern coastal region, Goa, also known as the tourist destination of India. It consists of three components: (i) change detection (CD), (ii) quantification of LULC changes, and (iii) prediction. A new CD assessment framework, Spatio-Temporal Encoder-Decoder Self Attention Network (STEDSAN), is proposed for the LULCCD process. A dual branch encoder-decoder network is constructed using strided convolution with downsampling for the encoder and transpose convolution with upsampling for the decoder to assess the bitemporal images spatially. The self-attention (SA) mechanism captures the complex global spatial-temporal (ST) interactions between individual pixels over space-time to produce more distinct features. Each branch accepts the LULC map of 2 years as one of its inputs to determine binary and multiclass changes among the bitemporal images. The STEDSAN model determines the patterns, trends, and conversion from one LULC type to another for the assessment period from 2005 to 2018. The binary change maps were also compared with the existing state of the art (SOTA) CD methods, with STEDSAN having an overall accuracy of 94.93%. The prediction was made using an recurrent neural network (RNN) known as long short term memory network (LSTM) for the year 2025. Experiments were conducted to determine area-wise changes in several LULC classes, such as built-up (BU), crops (kharif crop (KC), rabi crop (RC), zaid crop (ZC), double/triple (D/T C)), current fallow (CF), plantation (PL), forests (evergreen forest (EF), deciduous forest (DF), degraded/scurb forest (D/SF) ), littoral swamp (LS), grassland (GL), wasteland (WL), waterbodies max (Wmx), and waterbodies min (Wmn). As per the analysis, over the period of 13 years, there has been a net increase in the amount of BU (1.25%), RC (1.17%), and D/TC( 2.42%) and a net decrease in DF (3.29%) and WL(1.44%) being the most dominant classes being changed. These findings will offer a thorough description of identifying trends in coastal areas that may incorporate methodological hints for future studies. This study will also promote handling the spatial and temporal complexity of remotely sensed data employed in categorizing the coastal LULC of a heterogeneous landscape.


Asunto(s)
Conservación de los Recursos Naturales , Aprendizaje Profundo , Monitoreo del Ambiente , India , Monitoreo del Ambiente/métodos , Conservación de los Recursos Naturales/métodos , Ecosistema , Agricultura/métodos
3.
An Acad Bras Cienc ; 96(2): e20231145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747798

RESUMEN

Elephantgrass stands out for its high potential for forage production in different tropical and subtropical regions. In most properties, it is cultivated intensively with high doses of mineral fertilizers, mainly nitrogen, which makes production expensive and less sustainable. In this context, the mixtures of elephantgrass with forage legumes can make the system more efficient and with less environmental impact. Thus, the objective is to evaluate elephantgrass-based grazing systems,with or without a legume in terms of sward characteristics, herbage accumulation and nutritional value of pastures during one, agricultural year. Two grazing systems (treatments) were analyzed: (i) elephantgrass-based (EG) with mixed spontaneous-growing species (SGE) in the warm-season and ryegrass (R) in the cool-season; and (ii) EG + SGE + R + pinto peanut. The standardization criterion between the systems was the level of nitrogen fertilization (120 kg N/ha/year). The presence of pinto peanut positively affected the botanical composition of the pasture, with a reduction in SGE and dead material, and in the morphology of elephantgrass, with a greater proportion of leaf blades, and less stem + sheath and senescent material. In themixture with pinto peanut, there was an increase in herbage accumulation and greater nutritional value of forage.


Asunto(s)
Arachis , Valor Nutritivo , Estaciones del Año , Arachis/química , Fertilizantes/análisis , Nitrógeno/análisis , Nitrógeno/metabolismo , Agricultura/métodos , Lolium
4.
Braz J Biol ; 84: e282493, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747864

RESUMEN

The use of fertilizers affects not only the soil fertility and crop yield, but also significantly changes the taxonomic structure of the soil microbiocenosis. Here, based on stationary field experiment, we studied the influence of organo-mineral fertilizer (ОМF), modified by bacteria Bacillus subtilis, H-13 in comparison with different fertilizer systems (organic, mineral, organo-mineral) on (i) crop yield, (ii) physical and chemical properties, and (iii) alpha and beta diversity of the microbial community Albic Retisol (Loamic, Aric, Cutanic, Differentic, Ochric). The studies were carried out against the background of liming (рНКCl - 5.9) and without it (рНКCl - 5.1). The use of only one cattle farmyard manure was less effective than its co-application with mineral fertilizers in half doses. A similar effect was obtained when applying ОМF. In addition, the use of OMF contributes to a significant increase in the reserves of soil organic carbon in the soil layer 0-20 cm by 18%-32%. Using high-throughput sequencing of the 16S rRNA variable V4 gene sequence libraries, 10.759 taxa from 456 genera were identified, assigned to 34 fila (31 bacterial and 3 archaeotic. Unilateral application of mineral fertilizers leads to a significant decrease in the alpha diversity of the structure of soil microbial communities (OTE (other things equal) and Shannon index). A clear clustering of the microbiota was found in the variants with and without the introduction of сattle farmyard manure. It is revealed that the taxonomic structure of the microbiocenosis is formed under the influence of two main factors: crop rotation culture and applied fertilizers. The type of cultivated crop determines the dynamics of the microbiota at the level of larger taxa, such as domains, and fertilizers affect the structure of the microbial community at a lower taxonomic level (phyla, orders, bloodlines). On the basis of the Deseq analysis, marker taxa were identified, according to the share participation of which it is possible to determine the type of cultivated crop and fertilizers used in the experiment. Understanding the dynamics of taxa association and other influential factors can lead to the creation of universal systems of metagenomic indication, where tracking the dynamics of microbial communities will allow for a comprehensive assessment of the agroecological state of soils and timely decisions to prevent their degradation.


Asunto(s)
Productos Agrícolas , Fertilizantes , Microbiología del Suelo , Suelo , Fertilizantes/análisis , Suelo/química , Productos Agrícolas/microbiología , Federación de Rusia , Agricultura/métodos , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/análisis , Animales , Bovinos , Microbiota , Estiércol/microbiología
5.
Molecules ; 29(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38731531

RESUMEN

Actinomycetes have long been recognized as an important source of antibacterial natural products. In recent years, actinomycetes in extreme environments have become one of the main research directions. Streptomyces sp. KN37 was isolated from the cold region of Kanas in Xinjiang. It demonstrated potent antimicrobial activity, but the primary active compounds remained unclear. Therefore, we aimed to combine genomics with traditional isolation methods to obtain bioactive compounds from the strain KN37. Whole-genome sequencing and KEGG enrichment analysis indicated that KN37 possesses the potential for synthesizing secondary metabolites, and 41 biosynthetic gene clusters were predicted, some of which showed high similarity to known gene clusters responsible for the biosynthesis of antimicrobial antibiotics. The traditional isolation methods and activity-guided fractionation were employed to isolate and purify seven compounds with strong bioactivity from the fermentation broth of the strain KN37. These compounds were identified as 4-(Diethylamino)salicylaldehyde (1), 4-Nitrosodiphenylamine (2), N-(2,4-Dimethylphenyl)formamide (3), 4-Nitrocatechol (4), Methylsuccinic acid (5), Phenyllactic acid (6) and 5,6-Dimethylbenzimidazole (7). Moreover, 4-(Diethylamino)salicylaldehyde exhibited the most potent inhibitory effect against Rhizoctonia solani, with an EC50 value of 14.487 mg/L, while 4-Nitrosodiphenylamine showed great antibacterial activity against Erwinia amylovora, with an EC50 value of 5.715 mg/L. This study successfully isolated several highly active antimicrobial compounds from the metabolites of the strain KN37, which could contribute as scaffolds for subsequent chemical synthesis. On the other hand, the newly predicted antibiotic-like substances have not yet been isolated, but they still hold significant research value. They are instructive in the study of active natural product biosynthetic pathways, activation of silent gene clusters, and engineering bacteria construction.


Asunto(s)
Genómica , Familia de Multigenes , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/química , Genómica/métodos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/biosíntesis , Pruebas de Sensibilidad Microbiana , Productos Biológicos/farmacología , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Agricultura/métodos , Secuenciación Completa del Genoma
6.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731546

RESUMEN

Worldwide, a massive amount of agriculture and food waste is a major threat to the environment, the economy and public health. However, these wastes are important sources of phytochemicals (bioactive), such as polyphenols, carotenoids, carnitine, coenzymes, essential oils and tocopherols, which have antioxidant, antimicrobial and anticarcinogenic properties. Hence, it represents a promising opportunity for the food, agriculture, cosmetics, textiles, energy and pharmaceutical industries to develop cost effective strategies. The value of agri-food wastes has been extracted from various valuable bioactive compounds such as polyphenols, dietary fibre, proteins, lipids, vitamins, carotenoids, organic acids, essential oils and minerals, some of which are found in greater quantities in the discarded parts than in the parts accepted by the market used for different industrial sectors. The value of agri-food wastes and by-products could assure food security, maintain sustainability, efficiently reduce environmental pollution and provide an opportunity to earn additional income for industries. Furthermore, sustainable extraction methodologies like ultrasound-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, microwave-assisted extraction, pulse electric field-assisted extraction, ultrasound microwave-assisted extraction and high hydrostatic pressure extraction are extensively used for the isolation, purification and recovery of various bioactive compounds from agri-food waste, according to a circular economy and sustainable approach. This review also includes some of the critical and sustainable challenges in the valorisation of agri-food wastes and explores innovative eco-friendly methods for extracting bioactive compounds from agri-food wastes, particularly for food applications. The highlights of this review are providing information on the valorisation techniques used for the extraction and recovery of different bioactive compounds from agricultural food wastes, innovative and promising approaches. Additionally, the potential use of these products presents an affordable alternative towards a circular economy and, consequently, sustainability. In this context, the encapsulation process considers the integral and sustainable use of agricultural food waste for bioactive compounds that enhance the properties and quality of functional food.


Asunto(s)
Fitoquímicos , Fitoquímicos/química , Agricultura/métodos , Residuos/análisis , Alimentos , Alimento Perdido y Desperdiciado
7.
Sci Rep ; 14(1): 10562, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719842

RESUMEN

Protected areas are traditionally the foundation of conservation strategy, but land not formally protected is of particular importance for the conservation of large carnivores because of their typically wide-ranging nature. In South Africa, leopard (Panthera pardus) population decreases are thought to be occurring in areas of human development and intense negative interactions, but research is biased towards protected areas, with quantitative information on population sizes and trends in non-protected areas severely lacking. Using Spatially Explicit Capture-Recapture and occupancy techniques including 10 environmental and anthropogenic covariates, we analysed camera trap data from commercial farmland in South Africa where negative human-wildlife interactions are reported to be high. Our findings demonstrate that leopards persist at a moderate density (2.21 /100 km2) and exhibit signs of avoidance from areas where lethal control measures are implemented. This suggests leopards have the potential to navigate mixed mosaic landscapes effectively, enhancing their chances of long-term survival and coexistence with humans. Mixed mosaics of agriculture that include crops, game and livestock farming should be encouraged and, providing lethal control is not ubiquitous in the landscape, chains of safer spaces should permit vital landscape connectivity. However, continuing to promote non-lethal mitigation techniques remains vital.


Asunto(s)
Agricultura , Conservación de los Recursos Naturales , Panthera , Densidad de Población , Sudáfrica , Animales , Conservación de los Recursos Naturales/métodos , Agricultura/métodos , Humanos , Ecosistema , Animales Salvajes
8.
Sci Rep ; 14(1): 10556, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719847

RESUMEN

Fertilization with nickel (Ni) can positively affect plant development due to the role of this micronutrient in nitrogen (N) metabolism, namely, through urease and NiFe-hydrogenase. Although the application of Ni is an emerging practice in modern agriculture, its effectiveness strongly depends on the chosen application method, making further research in this area essential. The individual and combined effects of different Ni application methods-seed treatment, leaf spraying and/or soil fertilization-were investigated in soybean plants under different edaphoclimatic conditions (field and greenhouse). Beneficial effects of the Soil, Soil + Leaf and Seed + Leaf treatments were observed, with gains of 7 to 20% in biological nitrogen fixation, 1.5-fold in ureides, 14% in shoot dry weight and yield increases of up to 1161 kg ha-1. All the Ni application methods resulted in a 1.1-fold increase in the SPAD index, a 1.2-fold increase in photosynthesis, a 1.4-fold increase in nitrogenase, and a 3.9-fold increase in urease activity. Edaphoclimatic conditions exerted a significant influence on the treatments. The integrated approaches, namely, leaf application in conjunction with soil or seed fertilization, were more effective for enhancing yield in soybean cultivation systems. The determination of the ideal method is crucial for ensuring optimal absorption and utilization of this micronutrient and thus a feasible and sustainable management technology. Further research is warranted to establish official guidelines for the application of Ni in agricultural practices.


Asunto(s)
Fertilizantes , Glycine max , Níquel , Suelo , Glycine max/crecimiento & desarrollo , Glycine max/efectos de los fármacos , Glycine max/metabolismo , Fertilizantes/análisis , Suelo/química , Ureasa/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Fijación del Nitrógeno/efectos de los fármacos , Nitrógeno/metabolismo , Fotosíntesis/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/metabolismo , Agricultura/métodos
9.
PLoS One ; 19(5): e0286356, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739580

RESUMEN

INTRODUCTION: While a number of studies have examined the nutritional impacts of agroecological interventions, few have examined impacts on child development, maternal and child anemia, and men's dietary diversity. Moreover, there have been few such evaluations at scale. We evaluated the impact of a large-scale, multi-component food-based nutrition intervention involving homestead food production, nutrition counselling, cooking demonstrations, and crop planning exercises. METHODS: A cross-sectional assessment was conducted in 2021-2022 of 50 intervention villages where the nutrition-sensitive agroecology program had been implemented since 2018 and 79 control villages where only the agroecology program had been implemented. Data on self-reported dietary intake, caregiver-reported early child development, anthropometric measurements, and hemoglobin concentrations were collected using standardized procedures by trained Nutrition Farming Fellows, who were also responsible for implementing the program. RESULTS: A sample of 3,511 households (1,121 intervention and 2,390 control) participated in the survey. Dietary diversity scores (DDS) among women and men were mean (SD) 6.53 (±1.62) and 6.16 (±1.65), respectively, in intervention villages and 5.81 (±1.58) and 5.39 (±1.61), respectively, in control villages (p<0.01). DDS among children 6-24 months of age in intervention and control villages was 2.99 (±1.52) and 2.73 (±1.62), respectively (p<0.01). Children <2 years of age were less likely to be anemic in intervention versus control villages (59% versus 69%, p<0.01). Children 18-35 months age in intervention villages had higher child development scores than children in control villages (all p<0.05). CONCLUSION: Nutrition-sensitive agroecological programs may be effective in improving diets, nutrition, and child development in rural India.


Asunto(s)
Agricultura , Desarrollo Infantil , Dieta , Estado Nutricional , Humanos , India , Masculino , Femenino , Preescolar , Desarrollo Infantil/fisiología , Estudios Transversales , Agricultura/métodos , Lactante , Adulto , Niño , Población Rural
10.
PLoS One ; 19(5): e0300573, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739594

RESUMEN

The intercropping system is a promising approach to augmenting the soil nutrient status and promoting sustainable crop production. However, it is not known whether intercropping improves the soil phosphorus (P) status in alluvial soils with low P under subtropical climates. Over two growing seasons--2019-2020 and 2020-2021--two experimental fields were employed to explore the effect of durum wheat (Dw) and chickpea (Cp) cropping systems on the soil available P. A randomized complete block design was used in this experiment, with three blocks each divided into three plots. Each plot was used for one of the following three treatments with three replications: Dw monocrop (Dw-MC), Cp monocrop (Cp-MC), and Dw + Cp intercrop (CpDw-InC), with bulk soil (BS) used as a control. A reduction in the rhizosphere soil pH (-0.44 and -0.11 unit) was observed in the (Cp-MC) and (CpDw-InC) treatments over BS, occurring concomitantly with a significant increase in available P in the rhizosphere soil of around 28.45% for CpDw-InC and 24.9% for Cp-MC over BS. Conversely, the rhizosphere soil pH was significantly higher (+0.12 units) in the Dw-MC treatments. In addition, intercropping enhanced the soil microbial biomass P, with strong positive correlations observed between the biomass P and available P in the Cp-MC treatment, whereas this correlation was negative in the CpDw-InC and Dw-MC treatments. These findings suggested that Cp intercropped with Dw could be a viable approach in enhancing the available P through improved pH variation and biomass P when cultivated on alluvial soil under a subtropical climate.


Asunto(s)
Biomasa , Cicer , Fósforo , Suelo , Triticum , Fósforo/análisis , Fósforo/metabolismo , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Suelo/química , Cicer/crecimiento & desarrollo , Cicer/metabolismo , Agricultura/métodos , Rizosfera , Clima Tropical , Productos Agrícolas/crecimiento & desarrollo , Producción de Cultivos/métodos , Concentración de Iones de Hidrógeno , Clima
11.
PLoS One ; 19(5): e0303504, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739606

RESUMEN

Biodiversity is in rapid decline globally with agriculture being one of the leading causes. Within agricultural landscapes, some features provide a benefit to biodiversity that is disproportionate to their spatial area. An interesting example is artificial ponds-or farm dams-which can support a large variety of taxa. Here, we present a global review of farm dam research related to biodiversity conservation objectives to provide an overview of the topics, key research insights, and the characteristics of current research. We used a three-stage process to screen literature and identified 104 relevant papers across 27 countries encompassing studies of 13 different taxa. Most of the studies were short-term (less than 5 years) with small sample sizes (less than 20 sites). Of the 104 papers, 88 were focussed primarily on ecological outcomes, such as species richness or abundance, and 15 on primary production outcomes, such as crop and livestock yield, despite addressing or measuring ecological metrics. Only one study measured both ecological and primary production outcomes. Studies frequently examined how the features of dams (79 studies) and attributes of the surrounding landscape (47 studies) impact particular species and communities. Terrestrial mammals (1 study) were under-represented in the literature with macrophytes (28 studies), macroinvertebrates (26 studies), and amphibians (19 studies) receiving the most attention. Our results reveal a growing trend towards recognizing farm dams as habitats for various taxa, including amphibians, beetles, dragonflies, and other macroinvertebrates within agricultural environments. Significant knowledge gaps exist in understanding how dam age, invasive species, and effective management practices impact the biodiversity conservation values of farm dams. Future research should emphasize enhancing biodiversity by collaborating with landholders to increase habitat through strategic vegetation planning, minimizing runoff and nutrient inflow, and restricting stock access.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Conservación de los Recursos Naturales/métodos , Animales , Granjas , Agricultura/métodos , Ecosistema
12.
PLoS One ; 19(5): e0301972, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38771763

RESUMEN

Livestock excrement is composted and applied to agricultural soils. If composts contain antimicrobial-resistant bacteria (ARB), they may spread to the soil and contaminate cultivated crops. Therefore, we investigated the degree of transmission of ARB and related antimicrobial resistance genes (ARGs) and, as well as clonal transmission of ARB from livestock to soil and crops through composting. This study was conducted at Rakuno Gakuen University farm in Hokkaido, Japan. Samples of cattle feces, solid and liquid composts, agricultural soil, and crops were collected. The abundance of Escherichia coli, coliforms, ß-lactam-resistant E. coli, and ß-lactam-resistant coliforms, as well as the copy numbers of ARG (specifically the bla gene related to ß-lactam-resistant bacteria), were assessed using qPCR through colony counts on CHROMagar ECC with or without ampicillin, respectively, 160 days after compost application. After the application of the compost to the soil, there was an initial increase in E. coli and coliform numbers, followed by a subsequent decrease over time. This trend was also observed in the copy numbers of the bla gene. In the soil, 5.0 CFU g-1 E. coli was detected on day 0 (the day post-compost application), and then, E. coli was not quantified on 60 days post-application. Through phylogenetic analysis involving single nucleotide polymorphisms (SNPs) and using whole-genome sequencing, it was discovered that clonal blaCTX-M-positive E. coli and blaTEM-positive Escherichia fergusonii were present in cattle feces, liquid compost, and soil on day 0 as well as 7 days post-application. This showed that livestock-derived ARB were transmitted from compost to soil and persisted for at least 7 days in soil. These findings indicate a potential low-level transmission of livestock-associated bacteria to agricultural soil through composts was observed at low frequency, dissemination was detected. Therefore, decreasing ARB abundance during composting is important for public health.


Asunto(s)
Compostaje , Productos Agrícolas , Heces , Ganado , Microbiología del Suelo , Animales , Ganado/microbiología , Bovinos , Productos Agrícolas/microbiología , Productos Agrícolas/genética , Heces/microbiología , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Genes Bacterianos , Bacterias/genética , Bacterias/efectos de los fármacos , Antibacterianos/farmacología , Suelo/química , Agricultura/métodos , Japón
13.
Sensors (Basel) ; 24(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732841

RESUMEN

Shadow, a natural phenomenon resulting from the absence of light, plays a pivotal role in agriculture, particularly in processes such as photosynthesis in plants. Despite the availability of generic shadow datasets, many suffer from annotation errors and lack detailed representations of agricultural shadows with possible human activity inside, excluding those derived from satellite or drone views. In this paper, we present an evaluation of a synthetically generated top-down shadow segmentation dataset characterized by photorealistic rendering and accurate shadow masks. We aim to determine its efficacy compared to real-world datasets and assess how factors such as annotation quality and image domain influence neural network model training. To establish a baseline, we trained numerous baseline architectures and subsequently explored transfer learning using various freely available shadow datasets. We further evaluated the out-of-domain performance compared to the training set of other shadow datasets. Our findings suggest that AgroSegNet demonstrates competitive performance and is effective for transfer learning, particularly in domains similar to agriculture.


Asunto(s)
Agricultura , Actividades Humanas , Redes Neurales de la Computación , Agricultura/métodos , Humanos
14.
BMC Plant Biol ; 24(1): 434, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773357

RESUMEN

Intercropping, a widely adopted agricultural practice worldwide, aims to increase crop yield, enhance plant nutrient uptake, and optimize the utilization of natural resources, contributing to sustainable farming practices on a global scale. However, the underlying changes in soil physio-chemical characteristics and enzymatic activities, which contribute to crop yield and nutrient uptake in the intercropping systems are largely unknown. Consequently, a two-year (2021-2022) field experiment was conducted on the maize/soybean intercropping practices with/without nitrogen (N) fertilization (i.e., N0; 0 N kg ha-1 and N1; 225 N kg ha-1 for maize and 100 N kg ha-1 for soybean ) to know whether such cropping system can improve the nutrients uptake and crop yields, soil physio-chemical characteristics, and soil enzymes, which ultimately results in enhanced crop yield. The results revealed that maize intercropping treatments (i.e., N0MI and N1MI) had higher crop yield, biomass dry matter, and 1000-grain weight of maize than mono-cropping treatments (i.e., N0MM, and N1MM). Nonetheless, these parameters were optimized in N1MI treatments in both years. For instance, N1MI produced the maximum grain yield (10,105 and 11,705 kg ha-1), biomass dry matter (13,893 and 14,093 kg ha-1), and 1000-grain weight (420 and 449 g) of maize in the year 2021 and 2022, respectively. Conversely, soybean intercropping treatments (i.e., N0SI and N1SI) reduced such yield parameters for soybean. Also, the land equivalent ratio (LER) and land equivalent ratio for N fertilization (LERN) values were always greater than 1, showing the intercropping system's benefits in terms of yield and improved resource usage. Moreover, maize intercropping treatments (i.e., N0MI and N1MI) and soybean intercropping treatments (i.e., N0SI and N1SI) significantly (p < 0.05) enhanced the nutrient uptake (i.e., N, P, K, Ca, Fe, and Zn) of maize and soybean, however, these nutrients uptakes were more prominent in N1MI and N1SI treatments of maize and soybean, respectively in both years (2021 and 2022) compared with their mono-cropping treatments. Similarly, maize-soybean intercropping treatments (i.e., N0MSI and N1MSI) significantly (p < 0.05) improved the soil-based N, P, K, NH4, NO3, and soil organic matter, but, reduced the soil pH. Such maize-soybean intercropping treatments also improved the soil enzymatic activities such as protease (PT), sucrose (SC), acid phosphatase (AP), urease (UE), and catalase (CT) activities. This indicates that maize-soybean intercropping could potentially contribute to higher and better crop yield, enhanced plant nutrient uptake, improved soil nutrient pool, physio-chemical characteristics, and related soil enzymatic activities. Thus, preferring intercropping to mono-cropping could be a preferable choice for ecologically viable agricultural development.


Asunto(s)
Producción de Cultivos , Glycine max , Nitrógeno , Suelo , Zea mays , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Suelo/química , China , Producción de Cultivos/métodos , Nitrógeno/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Agricultura/métodos , Fertilizantes , Nutrientes/metabolismo , Biomasa
15.
Funct Plant Biol ; 512024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701238

RESUMEN

Climate change significantly affects crop production and is a threat to global food security. Conventional tillage (CT) is the primary tillage practice in rain-fed areas to conserve soil moisture. Despite previous research on the effect of tillage methods on different cropping systems, a comparison of tillage methods on soil water storage, crop yield and crop water use in wheat (Triticum aestivum ) and maize (Zea mays ) under different soil textures, precipitation and temperature patterns is needed. We reviewed 119 published articles and used meta-analysis to assess the effects of three conservation tillage practices (NT, no-tillage; RT, reduced tillage; ST, subsoil tillage), on precipitation storage efficiency (PSE), soil water storage at crop planting (SWSp), grain yield, evapotranspiration (ET) and water use efficiency (WUE) under varying precipitation and temperature patterns and soil textures in dryland wheat and maize, with CT as the control treatment. Conservation tillage methods increased PSE, SWSp, grain yield, ET and WUE in both winter wheat-fallow and spring maize cropping systems. More precipitation water was conserved in fine-textured soils than in medium-textured and coarse-textured soils, which improved ET. Conservation tillage increased soil water conservation and yield under high mean annual precipitation (MAP) and moderate mean annual temperature (MAT) conditions in winter wheat. However, soil water conservation and yield were greater under MAP <400mm and moderate MAT. We conclude that conservation tillage could be promising for increasing precipitation storage, soil water conservation and crop yield in regions with medium to low MAPs and medium to high MATs.


Asunto(s)
Agricultura , Suelo , Triticum , Agua , Zea mays , Zea mays/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Suelo/química , Agua/metabolismo , Agricultura/métodos , Producción de Cultivos/métodos , Grano Comestible/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo
16.
ScientificWorldJournal ; 2024: 6086730, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715843

RESUMEN

Cabbage (Brassica oleracea var. capitata L.) holds significant agricultural and nutritional importance in Ethiopia; yet, its production faces challenges, including suboptimal nitrogen fertilizer management. The aim of this review was to review the possible effect of nitrogen fertilizer levels on the production of cabbage in Ethiopia. Nitrogen fertilization significantly influences cabbage yield and quality. Moderate to high levels of nitrogen application enhance plant growth, leaf area, head weight, and yield. However, excessive nitrogen levels can lead to adverse effects such as delayed maturity, increased susceptibility to pests and diseases, and reduced postharvest quality. In Ethiopia, small-scale farmers use different nitrogen levels for cabbage cultivation. In Ethiopia, NPSB or NPSBZN fertilizers are widely employed for the growing of various crops such as cabbage. 242 kg of NPS and 79 kg of urea are the blanket recommendation for the current production of cabbage in Ethiopia. The existing rate is not conducive for farmers. Therefore, small-scale farmers ought to utilize an optimal and cost-effective nitrogen rate to boost the cabbage yield. Furthermore, the effectiveness of nitrogen fertilization is influenced by various factors including the soil type, climate, cabbage variety, and agronomic practices. Integrated nutrient management approaches, combining nitrogen fertilizers with organic amendments or other nutrients, have shown promise in optimizing cabbage production while minimizing environmental impacts. The government ought to heed suggestions concerning soil characteristics such as the soil type, fertility, and additional factors such as the soil pH level and soil moisture contents.


Asunto(s)
Brassica , Fertilizantes , Nitrógeno , Agricultura/métodos , Brassica/crecimiento & desarrollo , Brassica/efectos de los fármacos , Brassica/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Etiopía , Fertilizantes/análisis , Nitrógeno/análisis , Nitrógeno/metabolismo , Suelo/química
17.
Proc Natl Acad Sci U S A ; 121(21): e2319519121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38753508

RESUMEN

Transforming smallholder farms is critical to global food security and environmental sustainability. The science and technology backyard (STB) platform has proved to be a viable approach in China. However, STB has traditionally focused on empowering smallholder farmers by transferring knowledge, and wide-scale adoption of more sustainable practices and technologies remains a challenge. Here, we report on a long-term project focused on technology scale-up for smallholder farmers by expanding and upgrading the original STB platform (STB 2.0). We created a formalized and standardized process by which to engage and collaborate with farmers, including integrating their feedback via equal dialogues in the process of designing and promoting technologies. Based on 288 site-year of field trials in three regions in the North China Plain over 5 y, we find that technologies cocreated through this process were more easily accepted by farmers and increased their crop yields and nitrogen factor productivity by 7.2% and 28.1% in wheat production and by 11.4% and 27.0% in maize production, respectively. In promoting these technologies more broadly, we created a "one-stop" multistakeholder program involving local government agencies, enterprises, universities, and farmers. The program was shown to be much more effective than the traditional extension methods applied at the STB, yielding substantial environmental and economic benefits. Our study contributes an important case study for technology scale-up for smallholder agriculture. The STB 2.0 platform being explored emphasizes equal dialogue with farmers, multistakeholder collaboration, and long-term investment. These lessons may provide value for the global smallholder research and practitioners.


Asunto(s)
Agricultura , China , Agricultura/métodos , Agricultores , Humanos , Productos Agrícolas/crecimiento & desarrollo , Conducta Cooperativa , Zea mays/crecimiento & desarrollo , Desarrollo Sostenible , Conservación de los Recursos Naturales/métodos , Triticum/crecimiento & desarrollo , Producción de Cultivos/métodos
18.
Sci Total Environ ; 932: 172954, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723956

RESUMEN

Diversified cropping systems and fertilization strategies were proposed to enhance the abundance and diversity of the soil microbiome, thereby stabilizing their beneficial services for maintaining soil fertility and supporting plant growth. Here, we assessed across three different long-term field experiments in Europe (Netherlands, Belgium, Northern Germany) whether diversified cropping systems and fertilization strategies also affect their functional gene abundance. Soil DNA was analyzed by quantitative PCR for quantifying bacteria, archaea and fungi as well as functional genes related to nitrogen (N) transformations; including bacterial and archaeal nitrification (amoA-bac,arch), three steps of the denitrification process (nirK, nirS and nosZ-cladeI,II) and N2 assimilation (nifH), respectively. Crop diversification and fertilization strategies generally enhanced soil total carbon (C), N and microbial abundance, but with variation between sites. Overall effects of diversified cropping systems and fertilization strategies on functional genes were much stronger than on the abundance of bacteria, archaea and fungi. The legume-based cropping systems showed great potential not only in stimulating the growth of N-fixing microorganisms but also in boosting downstream functional potentials for N cycling. The sorghum-based intercropping system suppressed soil ammonia oxidizing prokaryotes. N fertilization reduced the abundance of nitrifiers and denitrifiers except for ammonia-oxidizing bacteria, while the application of the synthetic nitrification inhibitor DMPP combined with mineral N reduced growth of both ammonia-oxidizing bacteria and archaea. In conclusion, this study demonstrates a strong impact of diversified agricultural practices on the soil microbiome and their functional potentials mediating N transformations.


Asunto(s)
Agricultura , Fertilizantes , Nitrificación , Ciclo del Nitrógeno , Nitrógeno , Microbiología del Suelo , Suelo , Agricultura/métodos , Suelo/química , Nitrógeno/metabolismo , Bacterias/metabolismo , Archaea/fisiología , Archaea/genética , Microbiota , Bélgica , Alemania , Países Bajos , Desnitrificación
19.
Sci Total Environ ; 932: 173103, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729358

RESUMEN

Excessive synthetic nitrogen (N) inputs in intensive orchard agrosystems of developing countries are a growing concern regarding their adverse impacts on fruit production and the environment. Quantifying the distribution and contribution of fertilizer N is essential for increasing N use efficiency and minimizing N loss in orchards. A 15N tracer experiment was performed in a young dwarf apple orchard over two growing seasons to determine the fertilizer N transformation and fate. Fertilizer N primarily contributed to 25 % to 75 % of soil nitrate in the top 60 cm, but the contribution to soil microbial biomass N and fixed ammonium was <8 %, with the contribution to plant N ranging from 9 % to 19 %. In most growth periods, soil nitrate and fixed ammonium contents derived from native soil with N fertilization were higher than those not receiving N fertilizer. The N use efficiency of plants was only 2.6 % and 4.9 % in the first and second seasons, respectively, in contrast to 56.6 % and 54.0 % of N recovered in soil. Meanwhile, N assimilated into microbial biomass accounted for 0.8 %, and the proportion fixed by clay minerals was 3.5 %-5.2 %. One season after N fertilization, the nitrate below the 1 m soil layers accounted for 4.6 % of the applied N fertilizer, and the proportion increased to 22.5 % after two seasons. The N loss rate via N2O emission was 0.4 % over two years. The application of N fertilizer facilitated indigenous soil N mineralization, and abiotic ammonium fixation more efficiently retained synthetic N than microbial immobilization. These findings provide new insight into orchard N cycling, and attention should be given to the improvement of soil N retention and turnover capacity regulated by soil microbial and abiotic processes, as well as the potential environmental impacts of additional soil N mineralization resulting from prolonged chemical N fertilization.


Asunto(s)
Agricultura , Fertilizantes , Malus , Nitrógeno , Suelo , Malus/crecimiento & desarrollo , Nitrógeno/análisis , Agricultura/métodos , Suelo/química , Monitoreo del Ambiente , Nitratos/análisis
20.
Sci Total Environ ; 932: 173066, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729366

RESUMEN

Agriculture activity contributes to greenhouse gas (GHG) emissions through its utilization of land, water, and energy for food production. Hence, the interactions between land, water, and GHG emissions in agricultural production need to be comprehensively studied. The study aimed to assess the Land-Water-GHG-Food Nexus Index (LWGFNI) of rice cultivation across various land suitability classes in Central Thailand and determining the physical, socio-economic, and policy factors that can influence farmers' decisions to choose for cultivating rice instead of shifting to other crops. The results indicated that the highest LWGFNI score was 0.69 for the rice grown in the moderate suitability land class which revealed a lower use of land and water resources as well as GHG emissions compared to other levels of land suitability. The LWGFNI scores of major rice cultivation were greater compared to the second rice in all four-land suitability. The use of fertilizers had a crucial role in enhancing productivity levels and was a significant factor in the generation of GHG emissions. Hence, improving effective production should consider the appropriate use of fertilizer. The physical, socio-economic, and policy-related aspects that significantly influenced farmers' decisions on cultivation of rice included topography, water resources, inherited professions, price guarantee, and knowledge/training factors. The methodology used and results obtained can help policy makers to plan the use of water and land resources efficiently and appropriately with local resources based on land suitability class. The assessment results revealed the GHG hotspots and the strategies to mitigate GHG emissions associated with rice cultivation.


Asunto(s)
Agricultura , Gases de Efecto Invernadero , Oryza , Oryza/crecimiento & desarrollo , Tailandia , Agricultura/métodos , Gases de Efecto Invernadero/análisis , Factores Socioeconómicos , Productos Agrícolas/crecimiento & desarrollo , Fertilizantes/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA