Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 973
Filtrar
1.
PLoS One ; 19(6): e0296751, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38923961

RESUMEN

Forests play a key role in the mitigation of global warming and provide many other vital ecosystem goods and services. However, as forest continues to vanish at an alarming rate from the surface of the planet, the world desperately needs knowledge on what contributes to forest preservation and restoration. Migration, a hallmark of globalization, is widely recognized as a main driver of forest recovery and poverty alleviation. Here, we show that remittance from migrants reinforces forest recovery that would otherwise be unlikely with mere migration, realizing the additionality of payments for ecosystem services for China's largest reforestation policy, the Conversion of Cropland to Forest Program (CCFP). Guided by the framework that integrates telecoupling and coupled natural and human systems, we investigate forest-livelihood dynamics under the CCFP through the lens of rural out-migration and remittance using both satellite remote sensing imagery and household survey data in two representative sites of rural China. Results show that payments from the CCFP significantly increases the probability of sending remittance by out-migrants to their origin households. We observe substantial forest regeneration and greening surrounding households receiving remittance but forest decline and browning in proximity to households with migrants but not receiving remittance, as measured by forest coverage and the Enhanced Vegetation Index derived from space-borne remotely sensed data. The primary mechanism is that remittance reduces the reliance of households on natural capital from forests, particularly fuelwood, allowing forests near the households to recover. The shares of the estimated ecological and economic additionality induced by remittance are 2.0% (1.4%∼3.8%) and 9.7% (5.0%∼15.2%), respectively, to the baseline of the reforested areas enrolled in CCFP and the payments received by the participating households. Remittance-facilitated forest regeneration amounts to 12.7% (6.0%∼18.0%) of the total new forest gained during the 2003-2013 in China. Our results demonstrate that remittance constitutes a telecoupling mechanism between rural areas and cities over long distances, influencing the local social-ecological gains that the forest policy intended to stimulate. Thus, supporting remittance-sending migrants in cities can be an effective global warming mitigation strategy.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Migrantes , China , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/economía , Migrantes/estadística & datos numéricos , Humanos , Agricultura Forestal/economía , Agricultura Forestal/métodos , Ecosistema
2.
Sci Rep ; 14(1): 13656, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871774

RESUMEN

Increasing forest structural complexity is becoming a common goal in forestry worldwide. However, the lack of empirical quantification clouds its implementation. Here we quantified the long-term effects (> 30 y) of partial harvest on stand structural complexity and net primary productivity using the east-west precipitation gradient (318-2508 mm, mean annual precipitation-MAP) of western Patagonian as a study system. In this gradient, pairs of 1-ha plots on 20 sites (20 plots harvested and 20 plots unharvested) were installed. In each plot terrestrial laser scanning was used to quantify the stand structural complexity index (SSCI), and Sentinel satellite images to obtain the Enhanced Vegetation Index (EVI: proxy of net primary productivity). Generalized linear mixed-effect models were used to relate SSCI to MAP and EVI to SSCI, with harvesting as indicator variable, and site as random variable (two plots nested to same precipitation). Results showed that harvested plots on mesic-to-humid sites (but not on dry sites) had higher SSCI and EVI values compared to unharvested plots, likely due to a greater vertical canopy packing. These results show the influence of precipitation on SSCI, which resulted in a more diversified stand structure and higher EVI. Such insights support site-specific management aimed to increase forest structural complexity.


Asunto(s)
Bosques , Lluvia , Agricultura Forestal/métodos , Árboles
3.
Ecology ; 105(7): e4324, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838008

RESUMEN

We present a data set resulting from the first round of a national monitoring program of forest reserves. It contains 9538 permanent plots, distributed across 111 study sites in mainland France (including Corsica). Notably focusing on dead wood measurement, this protocol has primarily been applied in strict forest reserves and special nature reserves (sensu Bollmann & Braunisch 2013), with 68% (6494) of the plots being currently located in strict forest reserves (unmanaged) and 24.7% (2363 plots) in forests unmanaged for at least 50 years. Sites cover a large variety of ecological conditions, from lowland to subalpine forests, but with an underrepresentation of Mediterranean forests (Table 1). The protocol assesses all the stages of a tree's life cycle, from seedling to decomposed lying dead wood. On each plot, a combination of three sampling techniques was used: (1) fixed-area inventory for regeneration, standing dead trees, living trees, and coarse woody debris (CWD) with diameter over 30 cm; (2) transect lines for CWD with diameter <30 cm; and (3) fixed-angle plot method for living trees with diameter at breast height (DBH) >30 cm (using a relascopic angle of 3%). Measurements include exact tree location (azimuth, distance), species, diameter(s), tree-related microhabitats, decay stage and bark cover, and seedling cover. With ongoing climate change, the program network can also provide important information to monitor changes in forest ecosystems. It can also be used as forest management monitoring or conservation status assessment. These data are freely available for noncommercial scientific use (Creative Commons Attribution 4.0 CC BY SA 4.0) with attribution, and this paper must be cited if this material is reused.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Árboles , Francia , Árboles/fisiología , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , Monitoreo del Ambiente/métodos
4.
PLoS One ; 19(6): e0302040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38900830

RESUMEN

Fire suppression has negatively impacted thousands of acres of private and public lands in the United States. As a case study, the New Jersey Pine Barrens (NJPB) are a disturbance driven ecosystem that is experiencing serious ecological implications due to a loss of traditional forest thinning activities such as harvesting for forest products or thinning for wildfire fuel-load reduction measures coupled with a long-standing philosophy of fire suppression and dormant-season prescribed burning. Dense closed-canopy forest conditions, dissimilar to historic open-canopy forests of the NJPB, have reduced abundance and diversity of certain flora and fauna, including regionally imperiled breeding birds. In recent years, active forest stewardship (e.g., thinning, clear-cutting, and burning) has occurred on private and some public lands within the NJPB; however, the impact of such management on breeding birds is unclear due to a paucity of research on this subject within the NJPB. During 2012, 2013, 2016, and 2017, we conducted repeat-visit point counts (n = 1,800) for breeding songbirds across 75 control and 75 treatment sites within the NJPB to assess the influence of forest structure at three strata levels (groundcover, midstory profile, and canopy) on breeding bird communities. Specifically, we constructed a hierarchical community abundance model within a Bayesian framework for Bird Conservation Region (BCR) 30 priority upland birds (n = 12) within three species suites: Forested Upland, Scrub-Shrub (or Young Forest), and Grassland. At the community level, we found a negative relationship between bird abundance and live tree basal area. At the BCR 30 suite level, we found no relationship between Forested Upland suite-level abundance and any of the measured covariates; however, we found a negative relationship between percentage of woody groundcover and Scrub-Shrub suite-level abundance, and negative relationship between horizontal visual obstruction at 2 m above ground level and Grassland suite-level abundance. Furthermore, the two latter species suites exhibited a strong negative relationship with basal area. We recommend active forest stewardship that specifically targets opening the canopy to achieve basal areas between ~0-15 m2/ha via selective thinning, shelter cutting, and small-scale clear cutting. Mechanical treatment and prescribed burning would produce such conditions and have the added benefit of reducing fuel loads across this ~4,500 km2 landscape as well as assisting in carbon defense strategies for the region.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Bosques , Animales , New Jersey , Conservación de los Recursos Naturales/métodos , Aves/fisiología , Agricultura Forestal/métodos , Biodiversidad , Pájaros Cantores/fisiología
6.
Ambio ; 53(7): 970-983, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38696060

RESUMEN

The EU Nature Restoration Law (NRL) is critical for the restoration of degraded ecosystems and active afforestation of degraded peatlands has been suggested as a restoration measure under the NRL. Here, we discuss the current state of scientific evidence on the climate mitigation effects of peatlands under forestry. Afforestation of drained peatlands without restoring their hydrology does not fully restore ecosystem functions. Evidence on long-term climate benefits is lacking and it is unclear whether CO2 sequestration of forest on drained peatland can offset the carbon loss from the peat over the long-term. While afforestation may offer short-term gains in certain cases, it compromises the sustainability of peatland carbon storage. Thus, active afforestation of drained peatlands is not a viable option for climate mitigation under the EU Nature Restoration Law and might even impede future rewetting/restoration efforts. Instead, restoring hydrological conditions through rewetting is crucial for effective peatland restoration.


Asunto(s)
Conservación de los Recursos Naturales , Unión Europea , Agricultura Forestal , Suelo , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/métodos , Suelo/química , Bosques , Secuestro de Carbono , Restauración y Remediación Ambiental/métodos , Cambio Climático , Ecosistema , Humedales
8.
Environ Manage ; 73(6): 1134-1149, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38730130

RESUMEN

With limited national financing for conservation, there is an increasing interest in using biodiversity offset funds to strengthen protected area management. Offsetting measures can potentially be used in the restoration of degraded protected areas. However, there are concerns related to the uncertainty of restoration outcomes and time-lags before the expected benefits can be observed. Using a case of the Gangu Central Forest Reserve in central Uganda, we contribute empirical findings showing the potential and limitations of biodiversity offsetting by means of the restoration of a degraded forest reserve. We use forest cover change analysis and community surveys to determine forest changes after eight years of offset implementation, and forest inventories to analyse the current forest structure and composition to ascertain taxonomic diversity recovery. The results revealed that biodiversity offsetting led to a 21% increase in Tropical High Forest cover, and enhanced restoration of forest species composition and diversity. However, attaining permanence of the restoration benefits requires the regulation of community forest resource access and use. Strengthening forest management capacity to monitor the offset sites and compensating impacted communities for foregone forest resource benefits are crucial for the successful implementation of biodiversity offsets.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Bosques , Uganda , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos
9.
Environ Manage ; 74(1): 73-93, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38691161

RESUMEN

The expansion of cocoa farms is a major driver of deforestation and emissions in Ghana's high forest zone. The Ghana Cocoa Forest Reducing Emissions from Deforestation and Forest Degradation Program (REDD+) was launched as the world's first commodity-based initiative to address emissions from deforestation caused by cocoa production and generate non-carbon benefits. Hotspot Intervention Areas were established to implement the Ghana Cocoa REDD+ program. This study combines Q-methodology with focus group discussions and interviews to assess stakeholder perceptions in the Juabuso-Bia cocoa landscape regarding the capacity of the Hotspot Intervention Area to facilitate the generation of governance and economic non-carbon benefits to sustain emission reductions. We found that introducing the Hotspot Intervention Area has re-centralized landscape governance, which, coupled with weak collaboration among stakeholders, has led to poor generation of non-carbon benefits. Furthermore, efforts to include women in the leadership structure of the Hotspot Intervention Area can be described as tokenism, and little has been done to improve land and tree tenure for vulnerable groups. This, combined with the low adoption of climate-smart cocoa practices, is likely to negatively affect the generation of economic non-carbon benefits. To overcome these challenges, we recommend reforming the Hotspot Intervention Area, bolstering community-level sensitization, improving access to decision-making spaces that will enhance the participation of women and minority groups in landscape governance, and improving farmers' tenure security through a registration scheme for land and trees. These recommendations can ensure the efficient generation of non-carbon benefits, which are key to the success of REDD+.


Asunto(s)
Cacao , Conservación de los Recursos Naturales , Bosques , Ghana , Conservación de los Recursos Naturales/métodos , Humanos , Agricultura Forestal/métodos
10.
Curr Biol ; 34(9): R452-R472, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714177

RESUMEN

Forest restoration is being scaled up globally, carrying major expectations of environmental and societal benefits. Current discussions on ensuring the effectiveness of forest restoration are predominantly focused on the land under restoration per se. But this focus neglects the critical issue that land use and its drivers at larger spatial scales have strong implications for forest restoration outcomes, through the influence of landscape context and, importantly, potential off-site impacts of forest restoration that must be accounted for in measuring its effectiveness. To ensure intended restoration outcomes, it is crucial to integrate forest restoration into land-use planning at spatial scales large enough to account for - and address - these larger-scale influences, including the protection of existing native ecosystems. In this review, we highlight this thus-far neglected issue in conceptualizing forest restoration for the delivery of multiple desirable benefits regarding biodiversity and ecosystem services. We first make the case for the need to integrate forest restoration into large-scale land-use planning, by reviewing current evidence on the landscape-level influences and off-site impacts pertaining to forest restoration. We then discuss how science can guide the integration of forest restoration into large-scale land-use planning, by laying out key features of methodological frameworks required, reviewing the extent to which existing frameworks carry these features, and identifying methodological innovations needed to bridge the potential shortfall. Finally, we critically review the status of existing methods and data to identify future research efforts needed to advance these methodological innovations and, more broadly, the effective integration of forest restoration design into large-scale land-use planning.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , Biodiversidad , Ecosistema , Restauración y Remediación Ambiental/métodos
11.
Environ Int ; 186: 108611, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603812

RESUMEN

Research has shown that forest management can improve the post-drought growth and resilience of Qinghai spruce in the eastern Qilian Mountains, located on the northeastern Tibetan Plateau. However, the impact of such management on the tree-associated phyllosphere microbiome is not yet fully understood. This study provides new evidence of positive forest management effects on the phyllosphere microbiome after extreme drought, from the perspectives of community diversity, structure, network inference, keystone species, and assembly processes. In managed Qinghai spruce forest, the α-diversity of the phyllosphere bacterial communities increased, whereas the ß-diversity decreased. In addition, the phyllosphere bacterial community became more stable and resistant, yet less complex, following forest management. Keystone species inferred from a bacterial network also changed under forest management. Furthermore, forest management mediated changes in community assembly processes, intensifying the influence of determinacy, while diminishing that of stochasticity. These findings support the hypothesis that management can re-assemble the phyllosphere bacterial community, enhance community stability, and ultimately improve tree growth. Overall, the study highlights the importance of forest management on the phyllosphere microbiome and furnishes new insights into forest conservation from the perspective of managing microbial processes and effects.


Asunto(s)
Bacterias , Bosques , Microbiota , Bacterias/clasificación , Agricultura Forestal/métodos , Árboles/microbiología , Picea/microbiología , Biodiversidad , Sequías , Conservación de los Recursos Naturales/métodos
12.
Sci Total Environ ; 927: 172076, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575021

RESUMEN

Forests play a crucial role in mitigating climate change through carbon storage and sequestration, though environmental change drivers and management scenarios are likely to influence these contributions across multiple spatial and temporal scales. In this study, we employed three tree growth models-the Richard, Hossfeld, and Korf models-that account for the biological characteristics of trees, alongside national forest inventory (NFI) datasets from 1994 to 2018, to evaluate the carbon sink potential of existing forests and afforested regions in China from 2020 to 2100, assuming multiple afforestation and forest management scenarios. Our results indicate that the Richard, Hossfeld, and Korf models provided a good fit for 26 types of vegetation biomass in both natural and planted Chinese forests. These models estimate that in 2020, carbon stocks in existing Chinese forests are 7.62 ± 0.05 Pg C, equivalent to an average of 44.32 ± 0.32 Mg C/ ha. Our predictions then indicate this total forest carbon stock is expected to increase to 15.51 ± 0.99 Pg C (or 72.26 ± 4.6 Mg C/ha) in 2060, and further to 19.59 ± 1.36 Pg C (or 91.31 ± 6.33 Mg C/ha) in 2100. We also show that plantation management measures, namely tree species replacement, would increase carbon sinks to 0.09 Pg C/ year (contributing 38.9 %) in 2030 and 0.06 Pg C/ year (contributing 32.4 %) in 2060. Afforestation using tree species with strong carbon sink capacity in existing plantations would further significantly increase carbon sinks from 0.02 Pg C/year (contributing 10.3 %) in 2030 to 0.06 Pg C/year (contributing 28.2 %) in 2060. Our results quantify the role plantation management plays in providing a strong increase in forest carbon sequestration at national scales, pointing to afforestation with native tree species with high carbon sequestration as key in achieving China's 2060 carbon neutrality target.


Asunto(s)
Secuestro de Carbono , Cambio Climático , Bosques , Árboles , China , Agricultura Forestal/métodos , Carbono/análisis , Conservación de los Recursos Naturales/métodos , Monitoreo del Ambiente , Biomasa
13.
J Vis Exp ; (206)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38647320

RESUMEN

Fuel treatments and other forest restoration thinning practices aim to reduce wildfire risk while building forest resilience to drought, insects, and diseases and increasing aboveground carbon (C) sequestration. However, fuel treatments generate large amounts of unmerchantable woody biomass residues that are often burned in open piles, releasing significant quantities of greenhouse gases and particulates, and potentially damaging the soil beneath the pile. Air curtain burners offer a solution to mitigate these issues, helping to reduce smoke and particulates from burning operations, more fully burn biomass residues compared to pile burning, and eliminate the direct and intense fire contact that can harm soil beneath the slash pile. In an air curtain burner, burning takes place in a controlled environment. Smoke is contained and recirculated by the air curtain, and therefore burning can be conducted under a variety of climatic conditions (e.g., wind, rain, snow), lengthening the burning season for disposal of slash material. The mobile pyrolysis unit that continuously creates biochar was specifically designed to dispose of residual woody biomass at log landings, green wood at landfills, or salvaged logged materials and create biochar in the process. This high-carbon biochar output can be used to enhance soil resilience by improving its chemical, physical, and biological properties and has potential applications in remediating contaminated soils, including those at abandoned mine sites. Here, we describe the general use of this equipment, appropriate siting, loading methods, quenching requirements, and lessons learned about operating this new technology.


Asunto(s)
Carbón Orgánico , Madera , Madera/química , Carbón Orgánico/química , Pirólisis , Agricultura Forestal/métodos
14.
Environ Monit Assess ; 196(5): 470, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658409

RESUMEN

Recent studies suggest that arthropod diversity in German forests is declining. Currently, different national programs are being developed to monitor arthropod trends and to unravel the effects of forest management on biodiversity in forests. To establish effective long-term monitoring programs, a set of drivers of arthropod diversity and composition as well as suitable species groups have to be identified. To aid in answering these questions, we investigated arthropod data collected in four Hessian forest reserves (FR) in the 1990s. To fully utilize this data set, we combined it with results from a retrospective structural sampling design applied at the original trap locations in central European beech (Fagus sylvatica) forests. As expected, the importance of the different forest structural, vegetation, and site attributes differed largely between the investigated arthropod groups: beetles, spiders, Aculeata, and true bugs. Measures related to light availability and temperature such as canopy cover or potential radiation were important to all groups affecting either richness, composition, or both. Spiders and true bugs were affected by the broadest range of explanatory variables, which makes them a good choice for monitoring general trends. For targeted monitoring focused on forestry-related effects on biodiversity, rove and ground beetles seem more suitable. Both groups were driven by a narrower, more management-related set of variables. Most importantly, our study approach shows that it is possible to utilize older biodiversity survey data. Although, in our case, there are strong restrictions due to the long time between species and structural attribute sampling.


Asunto(s)
Artrópodos , Biodiversidad , Monitoreo del Ambiente , Fagus , Bosques , Animales , Monitoreo del Ambiente/métodos , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos
15.
Nature ; 629(8011): 370-375, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600390

RESUMEN

Roads are expanding at the fastest pace in human history. This is the case especially in biodiversity-rich tropical nations, where roads can result in forest loss and fragmentation, wildfires, illicit land invasions and negative societal effects1-5. Many roads are being constructed illegally or informally and do not appear on any existing road map6-10; the toll of such 'ghost roads' on ecosystems is poorly understood. Here we use around 7,000 h of effort by trained volunteers to map ghost roads across the tropical Asia-Pacific region, sampling 1.42 million plots, each 1 km2 in area. Our intensive sampling revealed a total of 1.37 million km of roads in our plots-from 3.0 to 6.6 times more roads than were found in leading datasets of roads globally. Across our study area, road building almost always preceded local forest loss, and road density was by far the strongest correlate11 of deforestation out of 38 potential biophysical and socioeconomic covariates. The relationship between road density and forest loss was nonlinear, with deforestation peaking soon after roads penetrate a landscape and then declining as roads multiply and remaining accessible forests largely disappear. Notably, after controlling for lower road density inside protected areas, we found that protected areas had only modest additional effects on preventing forest loss, implying that their most vital conservation function is limiting roads and road-related environmental disruption. Collectively, our findings suggest that burgeoning, poorly studied ghost roads are among the gravest of all direct threats to tropical forests.


Asunto(s)
Automóviles , Conservación de los Recursos Naturales , Agricultura Forestal , Bosques , Árboles , Clima Tropical , Asia , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Árboles/crecimiento & desarrollo , Conjuntos de Datos como Asunto , Agricultura Forestal/métodos , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias
16.
Sci Total Environ ; 927: 172350, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608907

RESUMEN

Extensive deforestation has been a major reason for the loss of forest connectivity, impeding species range shifts under current climate change. Over the past decades, the Chinese government launched a series of afforestation and reforestation projects to increase forest cover, yet whether the new forests can compensate for the loss of connectivity due to deforestation-and where future tree planting would be most effective-remains largely unknown. Here, we evaluate changes in climate connectivity across China's forests between 2015 and 2019. We find that China's large-scale tree planting alleviated the negative impacts of forest loss on climate connectivity, improving the extent and probability of climate connectivity by 0-0.2 °C and 0-0.03, respectively. The improvements were particularly obvious for species with short dispersal distances (i.e., 3 km and 10 km). Nevertheless, only ~55 % of the trees planted in this period could serve as stepping stones for species movement. This indicates that focusing solely on the quantitative target of forest coverage without considering the connectivity of forests may miss opportunities in tree planting to facilitate climate-induced range shifts. More attention should be paid to the spatial arrangement of tree plantations and their potential as stepping stones. We then identify priority areas for future tree planting to create effective stepping stones. Our study highlights the potential of large-scale tree planting to facilitate range shifts. Future tree-planting efforts should incorporate the need for species range shifts to achieve more biodiversity conservation benefits under climate change.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Bosques , Árboles , China , Conservación de los Recursos Naturales/métodos , Árboles/crecimiento & desarrollo , Agricultura Forestal/métodos
17.
Nature ; 628(8008): 563-568, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600379

RESUMEN

More than a quarter of the world's tropical forests are exploited for timber1. Logging impacts biodiversity in these ecosystems, primarily through the creation of forest roads that facilitate hunting for wildlife over extensive areas. Forest management certification schemes such as the Forest Stewardship Council (FSC) are expected to mitigate impacts on biodiversity, but so far very little is known about the effectiveness of FSC certification because of research design challenges, predominantly limited sample sizes2,3. Here we provide this evidence by using 1.3 million camera-trap photos of 55 mammal species in 14 logging concessions in western equatorial Africa. We observed higher mammal encounter rates in FSC-certified than in non-FSC logging concessions. The effect was most pronounced for species weighing more than 10 kg and for species of high conservation priority such as the critically endangered forest elephant and western lowland gorilla. Across the whole mammal community, non-FSC concessions contained proportionally more rodents and other small species than did FSC-certified concessions. The first priority for species protection should be to maintain unlogged forests with effective law enforcement, but for logged forests our findings provide convincing data that FSC-certified forest management is less damaging to the mammal community than is non-FSC forest management. This study provides strong evidence that FSC-certified forest management or equivalently stringent requirements and controlling mechanisms should become the norm for timber extraction to avoid half-empty forests dominated by rodents and other small species.


Asunto(s)
Certificación , Agricultura Forestal , Bosques , Mamíferos , Animales , África Occidental , Biodiversidad , Peso Corporal , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Elefantes , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/métodos , Agricultura Forestal/normas , Gorilla gorilla , Mamíferos/anatomía & histología , Mamíferos/clasificación , Mamíferos/fisiología , Fotograbar , Roedores , Masculino , Femenino
18.
Ambio ; 53(8): 1095-1108, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38580897

RESUMEN

The world is currently facing uncertainty caused by environmental, social, and economic changes and by political shocks. Fostering social-ecological resilience by enhancing forests' ability to provide a range of ecosystem services, including carbon sequestration, habitat provision, and sustainable livelihoods, is key to addressing such uncertainty. However, policy makers and managers currently lack a clear understanding of how to operationalise the shaping of resilience through the combined challenges of climate change, the biodiversity crisis, and changes in societal demand. Based on a scientific literature review, we identified a set of actions related to ecosystem services, biodiversity conservation, and disturbance and pressure impacts that forest managers and policy makers should attend to enhance the resilience of European forest systems. We conclude that the resilience shaping of forests should (1) adopt an operational approach, which is currently lacking, (2) identify and address existing and future trade-offs while reinforcing win-wins and (3) attend to local particularities through an adaptive management approach.


Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Bosques , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , Ecosistema , Secuestro de Carbono , Europa (Continente)
19.
Ying Yong Sheng Tai Xue Bao ; 35(2): 321-329, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38523088

RESUMEN

Accurate and efficient extraction of tree parameters from plantations lay foundation for estimating individual wood volume and stand stocking. In this study, we proposed a method of extracting high-precision tree parameters based on airborne LiDAR data. The main process included data pre-processing, ground filtering, individual tree segmentation, and parameter extraction. We collected high-density airborne point cloud data from the large-diameter timber of Fokienia hodginsii plantation in Guanzhuang State Forestry Farm, Shaxian County, Fujian Province, and pre-processed the point cloud data by denoising, resampling and normalization. The vegetation point clouds and ground point clouds were separated by the Cloth Simulation Filter (CSF). The former data were interpolated using the Delaunay triangulation mesh method to generate a digital surface model (DSM), while the latter data were interpolated using the Inverse Distance Weighted to generate a digital elevation model (DEM). After that, we obtained the canopy height model (CHM) through the difference operation between the two, and analyzed the CHM with varying resolutions by the watershed algorithm on the accuracy of individual tree segmentation and parameter extraction. We used the point cloud distance clustering algorithm to segment the normalized vegetation point cloud into individual trees, and analyzed the effects of different distance thresholds on the accuracy of indivi-dual tree segmentation and parameter extraction. The results showed that the watershed algorithm for extracting tree height of 0.3 m resolution CHM had highest comprehensive evaluation index of 91.1% for individual tree segmentation and superior accuracy with R2 of 0.967 and RMSE of 0.890 m. When the spacing threshold of the point cloud segmentation algorithm was the average crown diameter, the highest comprehensive evaluation index of 91.3% for individual tree segmentation, the extraction accuracy of the crown diameter was superior, with R2 of 0.937 and RMSE of 0.418 m. Tree height, crown diameter, tree density, and spatial distribution of trees were estimated. There were 5994 F. hodginsii, with an average tree height of 16.63 m and crown diameter of 3.98 m. Trees with height of 15-20 m were the most numerous (a total of 2661), followed by those between 10-15 m. This method of forest parameter extraction was useful for monitoring and managing plantations.


Asunto(s)
Bosques , Madera , Simulación por Computador , Algoritmos , Agricultura Forestal/métodos
20.
Environ Int ; 186: 108593, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531235

RESUMEN

Climate change is a pressing global challenge with profound implications for human health. Forest-based climate change mitigation strategies, such as afforestation, reforestation, and sustainable forest management, offer promising solutions to mitigate climate change and simultaneously yield substantial co-benefits for human health. The objective of this scoping review was to examine research trends related to the interdisciplinary nexus between forests as carbon sinks and human health co-benefits. We developed a conceptual framework model, supporting the inclusion of exposure pathways, such as recreational opportunities or aesthetic experiences, in the co-benefit context. We used a scoping review methodology to identify the proportion of European research on forest-based mitigation strategies that acknowledge the interconnection between mitigation strategies and human impacts. We also aimed to assess whether synergies and trade-offs between forest-based carbon sink capacity and human co-benefits has been analysed and quantified. From the initial 4,062 records retrieved, 349 reports analysed European forest management principles and factors related to climate change mitigation capacity. Of those, 97 studies acknowledged human co-benefits and 13 studies quantified the impacts on exposure pathways or health co-benefits and were included for full review. Our analysis demonstrates that there is potential for synergies related to optimising carbon sink capacity together with human co-benefits, but there is currently a lack of holistic research approaches assessing these interrelationships. We suggest enhanced interdisciplinary efforts, using for example multideterminant modelling approaches, to advance evidence and understanding of the forest and health nexus in the context of climate change mitigation.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Bosques , Humanos , Europa (Continente) , Conservación de los Recursos Naturales/métodos , Secuestro de Carbono , Agricultura Forestal/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA