Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
1.
J Nat Med ; 78(3): 768-773, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38564155

RESUMEN

A novel trimeric monoterpenoid indole alkaloid, vincarostine A (1) consisting of an aspidosperma-iboga-aspidosperma type skeleton, was isolated from the whole plant of Catharanthus roseus. The structure including absolute stereochemistry was elucidated on the basis of 2D NMR data and CD spectrum. Vincarostine A (1) showed anti-malarial activity.


Asunto(s)
Antimaláricos , Catharanthus , Alcaloides de Triptamina Secologanina , Catharanthus/química , Antimaláricos/química , Antimaláricos/farmacología , Estructura Molecular , Alcaloides de Triptamina Secologanina/química , Alcaloides de Triptamina Secologanina/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Plasmodium falciparum/efectos de los fármacos , Extractos Vegetales/química
2.
J Pharm Biomed Anal ; 243: 116078, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489958

RESUMEN

Kratom (Mitragyna speciosa) is a species of large tree that grows in Southeast Asia and is part of the Rubiaceae family. Its fresh leaves are harvested for their medicinal properties and used for their psychoactive effects. Kratom contains many biologically active alkaloids, including mitragynine and 7-OH-mitragynine, which are considered the two most important psychoactive components and constitute approximately 66% and 2% of the total alkaloid content. Other alkaloids are present in the plant, such as speciogynine, speciociliatine and paynantheine, but have less psychoactive activity. Over the past decade, the sale of kratom powder has increased on the Internet. This led to a significant increase in forensic cases. Given the lack of data existing in the literature, and the total absence of data in nails, the authors report a study to determine the best target alkaloids for documenting kratom consumption in this matrix. Fingernail clippings from a supposed kratom powder user were analyzed after liquid-liquid extraction, chromatography separation using a HSS C18 column and performed on an ultra-high performance liquid chromatography coupled to a tandem mass spectrometer. In the specimen, mitragynine was quantified at 229 pg/mg, speciogynine and paynantheine were both quantified at 2 pg/mg, and speciociliatine was quantified at 19 pg/mg. 7-OH-mitragynine was not detected. The interpretation of these concentrations is complex, since there is currently no reference in the literature, as this is the first identification of mitragynine and other kratom alkaloids in nails. Nevertheless, in view of the high concentration of mitragynine, the subject seems to be a repetitive user of kratom. According to the measured concentrations, it seems that mitragynine remains the best target to document kratom consumption, but the identification of the other alkaloids would enhance the specificity of the test.


Asunto(s)
Mitragyna , Alcaloides de Triptamina Secologanina , Uñas/química , Polvos , Alcaloides de Triptamina Secologanina/análisis , Alcaloides de Triptamina Secologanina/química , Cromatografía Líquida de Alta Presión , Extractos Vegetales/química , Mitragyna/química
3.
Proc Natl Acad Sci U S A ; 121(7): e2318586121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38319969

RESUMEN

Monoterpene indole alkaloids (MIAs) are a large and diverse class of plant natural products, and their biosynthetic construction has been a subject of intensive study for many years. The enzymatic basis for the production of aspidosperma and iboga alkaloids, which are produced exclusively by members of the Apocynaceae plant family, has recently been discovered. Three carboxylesterase (CXE)-like enzymes from Catharanthus roseus and Tabernanthe iboga catalyze regio- and enantiodivergent [4+2] cycloaddition reactions to generate the aspidosperma (tabersonine synthase, TS) and iboga (coronaridine synthase, CorS; catharanthine synthase, CS) scaffolds from a common biosynthetic intermediate. Here, we use a combined phylogenetic and biochemical approach to investigate the evolution and functional diversification of these cyclase enzymes. Through ancestral sequence reconstruction, we provide evidence for initial evolution of TS from an ancestral CXE followed by emergence of CorS in two separate lineages, leading in turn to CS exclusively in the Catharanthus genus. This progression from aspidosperma to iboga alkaloid biosynthesis is consistent with the chemotaxonomic distribution of these MIAs. We subsequently generate and test a panel of chimeras based on the ancestral cyclases to probe the molecular basis for differential cyclization activity. Finally, we show through partial heterologous reconstitution of tabersonine biosynthesis using non-pathway enzymes how aspidosperma alkaloids could have first appeared as "underground metabolites" via recruitment of promiscuous enzymes from common protein families. Our results provide insight into the evolution of biosynthetic enzymes and how new secondary metabolic pathways can emerge through small but important sequence changes following co-option of preexisting enzymatic functions.


Asunto(s)
Aspidosperma , Catharanthus , Alcaloides de Triptamina Secologanina , Tabernaemontana , Tabernaemontana/metabolismo , Aspidosperma/metabolismo , Carboxilesterasa/metabolismo , Filogenia , Alcaloides Indólicos/metabolismo , Alcaloides de Triptamina Secologanina/química , Alcaloides de Triptamina Secologanina/metabolismo , Plantas/metabolismo , Catharanthus/metabolismo
4.
J Asian Nat Prod Res ; 26(6): 765-771, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38373226

RESUMEN

To clarify the chemical basis of the total alkaloids of Uncaria rhynchophylla, HPLC-VWD chromatogram of total alkaloids was established. Under its guidance, modern chromatographic and spectroscopic techniques were used to track, isolate and identify the representative principal components. As a result, one new monoterpenoid indole alkaloid, 3S,15S-N4-methoxymethyl-geissoschizine methyl ether (1), together with 20 known alkaloids (2-21), and 5 other known compounds (22-26) were obtained. Meanwhile, sixteen characteristic peaks were identified from the total alkaloids using HPLC analysis. Then, the anti-neuroinflammatory effect of compounds 1-21 was assessed through inhibiting nitric ---oxide (NO) production in lipopolysaccharide (LPS)-induced BV-2 microglial cells. Among them, compounds 1, 3, 7, 8, 11, 12, 19 and 21 showed potent inhibitory activities with IC50 values of 5.87-76.78 µM.


Asunto(s)
Alcaloides , Antiinflamatorios , Alcaloides Indólicos , Lipopolisacáridos , Microglía , Óxido Nítrico , Uncaria , Uncaria/química , Estructura Molecular , Alcaloides/farmacología , Alcaloides/química , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Antiinflamatorios/farmacología , Antiinflamatorios/química , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Animales , Ratones , Cromatografía Líquida de Alta Presión , Alcaloides de Triptamina Secologanina/farmacología , Alcaloides de Triptamina Secologanina/química
5.
J Nat Prod ; 87(2): 286-296, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38284153

RESUMEN

Nine new alkaloids, eugeniinalines A-H (1-8) and (+)-eburnamenine N-oxide (9), comprising one quinoline, six indole, and two isogranatanine alkaloids, were isolated from the stem-bark extract of the Malayan Leuconotis eugeniifolia. The structures and absolute configurations of these alkaloids were established based on the analysis of the spectroscopic data, GIAO NMR calculations, DP4+ probability analysis, TDDFT-ECD method, and X-ray diffraction analysis. Eugeniinaline A (1) represents a new pentacyclic quinoline alkaloid with a 6/6/5/6/7 ring system. Eugeniinaline G (7) and its seco-derivative, eugeniinaline H (8), were the first isogranatanine alkaloids isolated as natural products. The known alkaloids leucolusine (10) and melokhanine A (11) were found to be the same compound, based on comparison of the spectroscopic data of both compounds, with the absolute configuration of (7R, 20R, 21S). Eugeniinalines A and G (1 and 7) showed cytotoxic activity against the HT-29 cancer cell line with IC50 values of 7.1 and 7.2 µM, respectively.


Asunto(s)
Alcaloides , Antineoplásicos , Apocynaceae , Quinolinas , Humanos , Alcaloides/farmacología , Apocynaceae/química , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Quinolinas/farmacología , Alcaloides de Triptamina Secologanina/química , Alcaloides de Triptamina Secologanina/farmacología
6.
Phytochemistry ; 220: 113993, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38266954

RESUMEN

Nine previously unreported various types of monoterpenoid indole alkaloids, together with seven known analogues were isolated from the stem barks of Alstonia scholaris through a silica gel free methodology. The structures of 1-9 were elucidated by spectroscopic data analysis, electronic circular dichroism calculations, and single-crystal X-ray diffraction. Compound 1 is a modified echitamine-type alkaloid with a novel 6/5/5/7/6/6 hetero hexacyclic bridged ring system, and 8 and 9 exist as a zwitterion and trifluoroacetate salt, respectively. The anti-Toxoplasma activity of all isolates on infected Vero cells were evaluated, which revealed that compound 14 at 0.24 µM displayed potent activity. This study expanded the structural diversity of alkaloids of A. scholaris, and presented their potential application in anti-Toxoplasma drug development.


Asunto(s)
Alstonia , Alcaloides de Triptamina Secologanina , Toxoplasma , Animales , Chlorocebus aethiops , Alcaloides de Triptamina Secologanina/farmacología , Alcaloides de Triptamina Secologanina/química , Estructura Molecular , Alstonia/química , Células Vero , Alcaloides Indólicos
7.
Org Biomol Chem ; 22(2): 296-301, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38054263

RESUMEN

Alscholarine C (1), featuring an unprecedented pyrroloindoline-containing natural product (PiNP) with a 6/5/5/5 tetracyclic carbon skeleton, and four known PiNPs (2-5), namely demethylalstoscholarinine E (2), Nb-demethylechitamine (3), winphylline A (4), and echitamine (5), were isolated from Alstonia scholaris. Compound 1 was characterized by a hexahydropyrrolo[2,3-b] indole (HPI) core fused to a unique 4-heptylimidazolidine motif, forming an unparalleled 3-heptyl-2a,4a-diazapentaleno[1,6-ab]indene ring system. Their structures were established by spectroscopic analysis, quantum-chemical calculated 13C NMR data with DP4+ probability analyses, and ECD calculations and comparison. A plausible biosynthetic pathway of 1 was proposed. Compound 1 exhibited potential anti-inflammatory activity against LPS-stimulated NO production in RAW264.7 cells.


Asunto(s)
Alstonia , Productos Biológicos , Alcaloides de Triptamina Secologanina , Estructura Molecular , Alstonia/química , Alcaloides de Triptamina Secologanina/química , Productos Biológicos/farmacología , Espectroscopía de Resonancia Magnética
8.
Phytochemistry ; 217: 113926, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37981062

RESUMEN

Six previously undescribed rigidly monoterpenoid indole alkaloids, alstolactines F-K (1-6), were isolated from Alstonia scholaris. Among them, a pair of cage-like epimers, 1 and 2, featuring a rare 6/5/6/6/7 ring system, represent the first example of C5→C20-olide, while compound 3 possesses unique degraded C18 and C19. The structures of the isolates were established by multiple spectroscopic analyses, quantum computational chemistry methods, and X-ray diffraction. Furthermore, the expression levels of proteins including NLRP3, TLR4, P-p65, NF-ĸB, Notch-2, IL-18, P-p38, and p38 in LPS-induced human normal hepatocyte (LO2) cells could be significantly downregulated by compounds 1-6, which showed potent anti-inflammatory bioactivity.


Asunto(s)
Alstonia , Alcaloides de Triptamina Secologanina , Humanos , Alstonia/química , Lactonas , Alcaloides de Triptamina Secologanina/química , Indoles , Hepatocitos , Alcaloides Indólicos , Estructura Molecular
9.
Angew Chem Int Ed Engl ; 62(35): e202303700, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37332089

RESUMEN

Mitragynine pseudoindoxyl, a kratom metabolite, has attracted increasing attention due to its favorable side effect profile as compared to conventional opioids. Herein, we describe the first enantioselective and scalable total synthesis of this natural product and its epimeric congener, speciogynine pseudoindoxyl. The characteristic spiro-5-5-6-tricyclic system of these alkaloids was formed through a protecting-group-free cascade relay process in which oxidized tryptamine and secologanin analogues were used. Furthermore, we discovered that mitragynine pseudoindoxyl acts not as a single molecular entity but as a dynamic ensemble of stereoisomers in protic environments; thus, it exhibits structural plasticity in biological systems. Accordingly, these synthetic, structural, and biological studies provide a basis for the planned design of mitragynine pseudoindoxyl analogues, which can guide the development of next-generation analgesics.


Asunto(s)
Mitragyna , Alcaloides de Triptamina Secologanina , Mitragyna/química , Mitragyna/metabolismo , Alcaloides de Triptamina Secologanina/química , Analgésicos Opioides
10.
Phytochemistry ; 213: 113752, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37330032

RESUMEN

Four undescribed tryptamine-derived alkaloids, hunteriasines A - D, were isolated and identified from Hunteria umbellata (Apocynaceae), together with fifteen known indole alkaloids. The chemical structure and absolute configuration of hunteriasine A were determined by spectroscopic and X-ray crystallographic data analyses. Hunteriasine A, featuring with a unique scaffold comprised of tryptamine and an unprecedented "12-carbon unit" moiety, is a zwitterionic indole-derived and pyridinium-containing alkaloid. Hunteriasines B - D were identified by spectroscopic data analyses and theoretical calculations. A plausible biogenetic pathway for hunteriasines A and B was proposed. The lipopolysaccharide-stimulated mouse macrophage cell line J774A.1 cell-based bioactivity assays revealed that (+)-eburnamine, strictosidinic acid, and (S)-decarbomethoxydihydrogambirtannine enhance the release of interleukin-1ß.


Asunto(s)
Alcaloides , Apocynaceae , Alcaloides de Triptamina Secologanina , Ratones , Animales , Alcaloides/farmacología , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/química , Apocynaceae/química , Extractos Vegetales/química , Triptaminas/farmacología , Estructura Molecular , Alcaloides de Triptamina Secologanina/química
11.
Phytochemistry ; 211: 113678, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37059289

RESUMEN

Eight unprecedented monoterpenoid indole alkaloid (MIA) adducts and dimers, melofusinines A-H (1-8), and three undescribed melodinus-type MIA monomers, melofusinines I-K (9-11), together with six putative biogenetic precursors were isolated from the twigs and leaves of Melodinus fusiformis Champ. ex Benth. Compounds 1 and 2 are unusual hybrid indole alkaloids incorporating an aspidospermatan-type MIA with a monoterpenoid alkaloid unit via C-C coupling. Compounds 3-8 feature the first MIA dimers constructed through an aspidospermatan-type monomer and a rearranged melodinus-type monomer with two different types of couplings. Their structures were elucidated by spectroscopic data, single crystal X-ray diffraction, and calculated electric circular dichroism spectra analysis. In addition, dimers 5 and 8 showed significant neuroprotection effects on MPP +-injured primary cortical neurons.


Asunto(s)
Antineoplásicos , Apocynaceae , Alcaloides de Triptamina Secologanina , Monoterpenos/análisis , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/análisis , Hojas de la Planta/química , Apocynaceae/química , Alcaloides de Triptamina Secologanina/farmacología , Alcaloides de Triptamina Secologanina/química , Estructura Molecular
12.
Phytochemistry ; 209: 113620, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36863602

RESUMEN

Monoterpenoid indole alkaloids (MIAs) are a large group of biosynthetic compounds, which have pharmacological properties. One of these MIAs, reserpine, was discovered in the 1950s and has shown properties as an anti-hypertension and anti-microbial agent. Reserpine was found to be produced in various plant species within the genus of Rauvolfia. However, even though its presence is well known, it is still unknown in which tissues Rauvolfia produce reserpine and where the individual steps in the biosynthetic pathway take place. In this study, we explore how matrix assisted laser desorption ionization (MALDI) and desorption electrospray ionization (DESI) mass spectrometry imaging (MSI) can be used in the investigation of a proposed biosynthetic pathway by localizing reserpine and the theoretical intermediates of it. The results show that ions corresponding to intermediates of reserpine were localized in several of the major parts of Rauvolfia tetraphylla when analyzed by MALDI- and DESI-MSI. In stem tissue, reserpine and many of the intermediates were found compartmentalized in the xylem. For most samples, reserpine itself was mainly found in the outer layers of the sample, suggesting it may function as a defense compound. To further confirm the place of the different metabolites in the reserpine biosynthetic pathway, roots and leaves of R. tetraphylla were fed a stable-isotope labelled version of the precursor tryptamine. Subsequently, several of the proposed intermediates were detected in the normal version as well as in the isotope labelled versions, confirming that they were synthesized in planta from tryptamine. In this experiment, a potential novel dimeric MIA was discovered in leaf tissue of R. tetraphylla. The study constitutes to date the most comprehensive spatial mapping of metabolites in the R. tetraphylla plant. In addition, the article also contains new illustrations of the anatomy of R. tetraphylla.


Asunto(s)
Rauwolfia , Alcaloides de Triptamina Secologanina , Alcaloides de Triptamina Secologanina/química , Rauwolfia/metabolismo , Reserpina/química , Reserpina/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Triptaminas/metabolismo , Antihipertensivos , Alcaloides Indólicos/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos
13.
Molecules ; 28(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36985503

RESUMEN

Two new monoterpenoid indole alkaloids, gelselegandines F (1) and G (2), were isolated from the aerial parts of Gelsemium elegans. Their structures were elucidated by means of spectroscopic techniques and quantum chemical calculations. The ECD calculations were conducted at the B3LYP/6-311G(d,p) level and NMR calculations were carried out using the Gauge-Including Atomic Orbitals (GIAO) method. Structurally, the two new compounds possessed rare, cage-like, monoterpenoid indole skeletons. All isolated compounds and the total alkaloids extract were tested for cytotoxicity against four different tumor cell lines. The total alkaloids extract of G. elegans exhibited significant antitumor activity with IC50 values ranging from 32.63 to 82.24 ug/mL. In order to discover anticancer leads from the active extraction, both new indole compounds (1-2) were then screened for cytotoxicity. Interestingly, compound 2 showed moderate cytotoxicity against K562 leukemia cells with an IC50 value of 57.02 uM.


Asunto(s)
Antineoplásicos , Gelsemium , Alcaloides de Triptamina Secologanina , Estructura Molecular , Gelsemium/química , Indoles , Alcaloides de Triptamina Secologanina/farmacología , Alcaloides de Triptamina Secologanina/química , Antineoplásicos/farmacología , Extractos Vegetales/farmacología , Alcaloides Indólicos/química
14.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36675001

RESUMEN

Eleven monoterpenoid indole alkaloids, including three new ones, tabercrassines A-C (1-3), were isolated from the seeds of Tabernaemontana crassa. Tabercrassine A (1) is an ibogan-ibogan-type bisindole alkaloid which is formed by the polymerization of two classic ibogan-type monomers through a C3 unit aliphatic chain. Their structures were established by extensive analysis of HRESIMS, NMR, and ECD spectra. Cellular assays showed that alkaloids 1-3 all reduce Aß42 production and inhibit phospho-tau (Thr217), a new biomarker of Alzheimer's disease [AD] associated with BACE1-, NCSTN-, GSK3ß-, and CDK5-mediated pathways, suggesting these alkaloids' potential against AD.


Asunto(s)
Antineoplásicos Fitogénicos , Alcaloides de Triptamina Secologanina , Tabernaemontana , Alcaloides de Triptamina Secologanina/farmacología , Alcaloides de Triptamina Secologanina/química , Alcaloides Indólicos/farmacología , Tabernaemontana/química , Secretasas de la Proteína Precursora del Amiloide , Antineoplásicos Fitogénicos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Ácido Aspártico Endopeptidasas , Estructura Molecular
15.
J Enzyme Inhib Med Chem ; 38(1): 2155639, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36629436

RESUMEN

Monoterpenoid indole alkaloids (MIAs) represent a major class of active ingredients from the plants of the genus Gelsemium. Gelsemium MIAs with diverse chemical structures can be divided into six categories: gelsedine-, gelsemine-, humantenine-, koumine-, sarpagine- and yohimbane-type. Additionally, gelsemium MIAs exert a wide range of bioactivities, including anti-tumour, immunosuppression, anti-anxiety, analgesia, and so on. Owing to their fascinating structures and potent pharmaceutical properties, these gelsemium MIAs arouse significant organic chemists' interest to design state-of-the-art synthetic strategies for their total synthesis. In this review, we comprehensively summarised recently reported novel gelsemium MIAs, potential pharmacological activities of some active molecules, and total synthetic strategies covering the period from 2013 to 2022. It is expected that this study may open the window to timely illuminate and guide further study and development of gelsemium MIAs and their derivatives in clinical practice.


Asunto(s)
Gelsemium , Alcaloides de Triptamina Secologanina , Alcaloides de Triptamina Secologanina/farmacología , Alcaloides de Triptamina Secologanina/química , Gelsemium/química , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/química , Extractos Vegetales , Dolor
16.
Nat Prod Res ; 37(7): 1047-1052, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34583594

RESUMEN

Two new monoterpenoid indole alkaloids, (2 R, 7 R, 16 R, 20 R, 21S)-12-hydroxypleiocarpine (1) and (2S, 7 R, 16S, 20 R, 21S)-N-methoxycarbonyl-11,12-methylenedioxy-Δ14,15-kopsinaline (2), along with six known alkaloids were isolated from the methanol extract of the kernels of Kopsia arborea. Their structures including the absolute configurations were elucidated by HRESIMS, NMR spectroscopy, and quantum computational methods. Their cytotoxicity against two human cancer cell lines were also evaluated.


Asunto(s)
Apocynaceae , Alcaloides de Triptamina Secologanina , Humanos , Alcaloides de Triptamina Secologanina/farmacología , Alcaloides de Triptamina Secologanina/química , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/química , Estructura Molecular , Espectroscopía de Resonancia Magnética , Apocynaceae/química
17.
J Anal Toxicol ; 46(9): 957-964, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36047661

RESUMEN

Kratom is an herbal drug that is legal in the USA. While it is marketed as a safer alternative to opioids, it can cause opioid-like withdrawal symptoms when discontinued after regular use. Several case studies have shown that kratom exposure in utero can lead to symptoms in newborns consistent with neonatal abstinence syndrome. Here, we present a validated method for the detection of kratom in umbilical cord by liquid chromatography--tandem mass spectrometry. The umbilical cord is homogenized in solvent and kratom analytes are purified by solid phase extraction (strong cation exchange). Diastereomeric kratom alkaloids mitragynine (MG), speciociliatine (SC), speciogynine and mitraciliatine are separated by reverse phase chromatography on a phenyl-hexyl column. Applying this method to residual umbilical cords submitted to our laboratory for drug testing, 29 positive specimens exhibiting varied kratom analyte distributions were observed. MG and SC were the most abundant kratom analytes and were selected as biomarkers of kratom exposure. A cutoff concentration of 0.08 ng/g was established for both MG and SC.


Asunto(s)
Mitragyna , Efectos Tardíos de la Exposición Prenatal , Alcaloides de Triptamina Secologanina , Recién Nacido , Femenino , Humanos , Cromatografía Liquida/métodos , Mitragyna/química , Espectrometría de Masas en Tándem/métodos , Alcaloides de Triptamina Secologanina/química , Analgésicos Opioides
18.
J Asian Nat Prod Res ; 25(5): 429-437, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35930443

RESUMEN

Two new monoterpenoid indole alkaloids 3-hydroxylochnerine (1) and 10-hydroxyvinorine (2) were isolated from the roots of Rauvolfia yunnanensis. Their structures were elucidated based on the analysis of spectroscopic data and ECD calculation. Both compounds exhibited potent antimicrobial activity against Bacillus subtilis and Escherichia coli, and their activities were comparable to the well-known antibacterial drug berberine.


Asunto(s)
Antiinfecciosos , Rauwolfia , Alcaloides de Triptamina Secologanina , Alcaloides de Triptamina Secologanina/química , Rauwolfia/química , Estructura Molecular , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Alcaloides Indólicos
19.
Phytochemistry ; 203: 113353, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36007664

RESUMEN

Seven undescribed monoterpenoid indole alkaloids, two N(4)-chloromethylation artifacts, and 10 known alkaloids were isolated from the stems and twigs of Strychnos cathayensis. The corresponding structures were elucidated via spectroscopic data interpretation and electronic circular dichroism. The absolute configuration of (17S)-12-hydroxy-11-methoxydiaboline, the major anomer of 12-hydroxy-11-methoxydiaboline, was characterized by X-ray diffraction analysis for the first time. At an intraperitoneal dose of 30 mg/kg, 12-hydroxy-11-methoxy-N(4)-chloromethyldiaboline and (-)-macusine A exhibited potential analgesic effects with prolongation rates of 99% and 47% for the latency time of hind-paw licking, respectively, compared to the blank control. 12-Hydroxy-11-methoxydiaboline, 12-hydroxy-11-methoxydiaboline N(4)-oxide, retuline N-oxide, and (-)-vincosamide exhibited antiviral activity against Coxsackie virus B3 (CVB3) with IC50 values of 33.33 µM.


Asunto(s)
Alcaloides de Triptamina Secologanina , Strychnos , Analgésicos , Antivirales , Alcaloides Indólicos/química , Estructura Molecular , Óxidos , Alcaloides de Triptamina Secologanina/química , Strychnos/química
20.
AAPS J ; 24(5): 86, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35854066

RESUMEN

Speciociliatine, a diastereomer of mitragynine, is an indole-based alkaloid found in kratom (Mitragyna speciosa). Kratom has been widely used for the mitigation of pain and opioid dependence, as a mood enhancer, and/or as an energy booster. Speciociliatine is a partial µ-opioid agonist with a 3-fold higher binding affinity than mitragynine. Speciociliatine has been found to be a major circulating alkaloid in humans following oral administration of a kratom product. In this report, we have characterized the metabolism of speciociliatine in human and preclinical species (mouse, rat, dog, and cynomolgus monkey) liver microsomes and hepatocytes. Speciociliatine metabolized rapidly in monkey, rat, and mouse hepatocytes (in vitro half-life was 6.6 ± 0.2, 8.3 ± 1.1, 11.2 ± 0.7 min, respectively), while a slower metabolism was observed in human and dog hepatocytes (91.7 ± 12.8 and > 120 min, respectively). Speciociliatine underwent extensive metabolism, primarily through monooxidation and O-demethylation metabolic pathways in liver microsomes and hepatocytes across species. No human-specific or disproportionate metabolites of speciociliatine were found in human liver microsomes. The metabolism of speciociliatine was predominantly mediated by CYP3A4 with minor contributions by CYP2D6.


Asunto(s)
Mitragyna , Alcaloides de Triptamina Secologanina , Animales , Perros , Humanos , Macaca fascicularis , Ratones , Microsomas Hepáticos/metabolismo , Mitragyna/química , Mitragyna/metabolismo , Ratas , Alcaloides de Triptamina Secologanina/química , Alcaloides de Triptamina Secologanina/metabolismo , Alcaloides de Triptamina Secologanina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA