Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.045
Filtrar
1.
Exp Cell Res ; 442(1): 114210, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39154929

RESUMEN

Gastric cancer is a malignant tumor associated with a high mortality rate. Recently, emerging evidence has shown that ferroptosis, a regulated form of cell death induced by iron (Fe)-dependent lipid peroxidation. Nuclear factor E2 related factor 2 (NRF2) is a key regulator of intracellular oxidation homeostasis that plays a pivotal role in controlling lipid peroxidation, which is closely related to the process of ferroptosis. However, the molecular mechanism of NRF2 on ferroptosis remains to be investigated in gastric cancer. In our study, NRF 2 was found to transcriptionally activate Aldo-keto reductase 1 member B1 (AKR1B1) expression in gastric cancer. AKR1B1 is involved in the regulation of lipid metabolism by removing the aldehyde group of glutathione. We found that AKR1B1 is highly expressed in gastric cancer and is associated with a poor prognosis of the patients. In vitro experiments found that AKR1B1 has the ability to promote the proliferation and invasion of gastric cancer cells. AKR1B1 inhibited RSL3-induced ferroptosis in gastric cancer by reducing reactive oxygen species accumulation and lipid peroxidation, as well as decreasing intracellular ferrous ion and malondialdehyde expression and increasing glutathione expression. Our study demonstrated that AKR1B1 resisted RSL3-induced ferroptosis by regulating GPX4, PTGS2 and ACSL4, which was further demonstrated in a xenograft nude mouse model. Our work reveals a critical role for the AKR1B1 in the resistance to RSL3-induced ferroptosis in gastric cancer.


Asunto(s)
Proliferación Celular , Ferroptosis , Factor 2 Relacionado con NF-E2 , Neoplasias Gástricas , Ferroptosis/genética , Humanos , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Línea Celular Tumoral , Animales , Especies Reactivas de Oxígeno/metabolismo , Ratones , Regulación Neoplásica de la Expresión Génica , Peroxidación de Lípido , Aldehído Reductasa/metabolismo , Aldehído Reductasa/genética , Ratones Desnudos , Masculino , Carbolinas
2.
FEMS Yeast Res ; 242024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-39009031

RESUMEN

Lignocellulose (dry plant biomass) is an abundant cheap inedible residue of agriculture and wood industry with great potential as a feedstock for biotechnological processes. Lignocellulosic substrates can serve as valuable resources in fermentation processes, allowing the production of a wide array of chemicals, fuels, and food additives. The main obstacle for cost-effective conversion of lignocellulosic hydrolysates to target products is poor metabolism of the major pentoses, xylose and L-arabinose, which are the second and third most abundant sugars of lignocellulose after glucose. We study the oversynthesis of riboflavin in the flavinogenic yeast Candida famata and found that all major lignocellulosic sugars, including xylose and L-arabinose, support robust growth and riboflavin synthesis in the available strains of C. famata. To further increase riboflavin production from xylose and lignocellulose hydrolysate, genes XYL1 and XYL2 coding for xylose reductase and xylitol dehydrogenase were overexpressed. The resulting strains exhibited increased riboflavin production in both shake flasks and bioreactors using diluted hydrolysate, reaching 1.5 g L-1.


Asunto(s)
Candida , Lignina , Ingeniería Metabólica , Riboflavina , Xilosa , Lignina/metabolismo , Riboflavina/metabolismo , Riboflavina/biosíntesis , Candida/metabolismo , Candida/genética , Xilosa/metabolismo , Aldehído Reductasa/metabolismo , Aldehído Reductasa/genética , Fermentación , Reactores Biológicos/microbiología , D-Xilulosa Reductasa/metabolismo , D-Xilulosa Reductasa/genética , Arabinosa/metabolismo
3.
Int J Parasitol Drugs Drug Resist ; 25: 100555, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38996597

RESUMEN

Aldo-keto reductases (AKRs), a superfamily of NADP(H)-dependent oxidoreductases, catalyze the oxidoreduction of a wide variety of eobiotic and xenobiotic aldehydes and ketones. In mammals, AKRs play essential roles in hormone and xenobiotic metabolism, oxidative stress, and drug resistance, but little is known about these enzymes in the parasitic nematode Haemonchus contortus. In the present study, 22 AKR genes existing in the H. contortus genome were investigated and a phylogenetic analysis with comparison to AKRs in Caenorhabditis elegans, sheep and humans was conducted. The constitutive transcription levels of all AKRs were measured in eggs, larvae, and adults of H. contortus, and their expression was compared in a drug-sensitive strain (ISE) and a benzimidazole-resistant strain (IRE) previously derived from the sensitive strain by imposing benzimidazole selection pressure. In addition, the inducibility of AKRs by exposure of H. contortus adults to benzimidazole anthelmintic flubendazole in vitro was tested. Phylogenetic analysis demonstrated that the majority of AKR genes in H. contortus lack orthologues in the sheep genome, which is a favorable finding for considering AKRs as potential drug targets. Large differences in the expression levels of individual AKRs were observed, with AKR1, AKR3, AKR8, and AKR10 being the most highly expressed at most developmental stages. Significant changes in the expression of AKRs during the life cycle and pronounced sex differences were found. Comparing the IRE and ISE strains, three AKRs were upregulated, and seven AKRs were downregulated in adults. In addition, the expression of three AKRs was induced by flubendazole exposure in adults of the ISE strain. Based on these results, AKR1, AKR2, AKR3, AKR5, AKR10 and AKR19 in particular merit further investigation and functional characterization with respect to their potential involvement in drug biotransformation and anthelmintic resistance in H. contortus.


Asunto(s)
Aldo-Ceto Reductasas , Haemonchus , Mebendazol , Filogenia , Animales , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/metabolismo , Haemonchus/genética , Haemonchus/efectos de los fármacos , Haemonchus/enzimología , Mebendazol/farmacología , Mebendazol/análogos & derivados , Femenino , Masculino , Resistencia a Medicamentos/genética , Ovinos , Antihelmínticos/farmacología , Transcriptoma , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/enzimología , Bencimidazoles/farmacología
4.
Am J Physiol Renal Physiol ; 327(3): F489-F503, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38991008

RESUMEN

Fate mapping and genetic manipulation of renin cells have relied on either noninducible Cre lines that can introduce the developmental effects of gene deletion or bacterial artificial chromosome transgene-based inducible models that may be prone to spurious and/or ectopic gene expression. To circumvent these problems, we generated an inducible mouse model in which CreERT2 is under the control of the endogenous Akr1b7 gene, an independent marker of renin cells that is expressed in a few extrarenal tissues. We confirmed the proper expression of Cre using Akr1b7CreERT2/+;R26RmTmG/+ mice in which Akr1b7+/renin+ cells become green fluorescent protein (GFP)+ upon tamoxifen administration. In embryos and neonates, GFP was found in juxtaglomerular cells, along the arterioles, and in the mesangium, and in adults, GFP was present mainly in juxtaglomerular cells. In mice treated with captopril and a low-salt diet to induce recruitment of renin cells, GFP extended along the afferent arterioles and in the mesangium. We generated Akr1b7CreERT2/+;Ren1cFl/-;R26RmTmG/+ mice to conditionally delete renin in adult mice and found a marked reduction in kidney renin mRNA and protein and mean arterial pressure in mutant animals. When subjected to a homeostatic threat, mutant mice were unable to recruit renin+ cells. Most importantly, these mice developed concentric vascular hypertrophy ruling out potential developmental effects on the vasculature due to the lack of renin. We conclude that Akr1b7CreERT2 mice constitute an excellent model for the fate mapping of renin cells and for the spatial and temporal control of gene expression in renin cells.NEW & NOTEWORTHY Fate mapping and genetic manipulation are important tools to study the identity of renin cells. Here, we report on a novel Cre mouse model, Akr1b7CreERT2, for the spatial and temporal regulation of gene expression in renin cells. Cre is properly expressed in renin cells during development and in the adult under basal conditions and under physiological stress. Moreover, renin can be efficiently deleted in the adult, leading to the development of concentric vascular hypertrophy.


Asunto(s)
Ratones Transgénicos , Renina , Animales , Renina/metabolismo , Renina/genética , Ratones , Aparato Yuxtaglomerular/metabolismo , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Captopril/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Regulación de la Expresión Génica , Integrasas/genética , Integrasas/metabolismo
5.
Bioprocess Biosyst Eng ; 47(10): 1659-1668, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38969832

RESUMEN

Erythritol is a natural non-caloric sweetener, which is produced by fermentation and extensively applied in food, medicine and chemical industries. The final step of the erythritol synthesis pathway is involved in erythritol reductase, whose activity and NADPH-dependent become the limiting node of erythritol production efficiency. Herein, we implemented a strategy combining molecular docking and thermal stability screening to construct an ER mutant library. And we successfully obtained a double mutant ERK26N/V295M (ER*) whose catalytic activity was 1.48 times that of wild-type ER. Through structural analysis and MD analysis, we found that the catalytic pocket and the enzyme stability of ER* were both improved. We overexpressed ER* in the engineered strain ΔKU70 to obtain the strain YLE-1. YLE-1 can produce 39.47 g/L of erythritol within 144 h, representing a 35% increase compared to the unmodified strain, and a 10% increase compared to the strain overexpressing wild-type ER. Considering the essentiality of NADPH supply, we further co-expressed ER* with two genes from the oxidative phase of PPP, ZWF1 and GND1. This resulted in the construction of YLE-3, which exhibited a significant increase in production, producing 47.85 g/L of erythritol within 144 h, representing a 63.90% increase compared to the original chassis strain. The productivity and the yield of the engineered strain YLE-3 were 0.33 g/L/h and 0.48 g/g glycerol, respectively. This work provided an ER mutation with excellent performance, and also proved the importance of cofactors in the process of erythritol synthesis, which will promote the industrial production of erythritol by metabolic engineering of Y. lipolytica.


Asunto(s)
Eritritol , Yarrowia , Eritritol/biosíntesis , Eritritol/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Yarrowia/enzimología , Proteínas Fúngicas/genética , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/metabolismo , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Aldehído Reductasa/biosíntesis , Ingeniería de Proteínas/métodos , Ingeniería Metabólica/métodos , Simulación del Acoplamiento Molecular
6.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1909-1923, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38914500

RESUMEN

Galactitol, a rare sugar alcohol, has promising potential in the food industry and pharmaceutical field. The available industrial production methods rely on harsh hydrogenation processes, which incur high costs and environmental concerns. It is urgent to develop environmentally friendly and efficient biosynthesis technologies. In this study, a xylose reductase named AnXR derived from Aspergillus niger CBS 513.88 was identified and characterized for the enzymatic properties. AnXR exhibited the highest activity at 25 ℃ and pH 8.0, and it belonged to the NADPH-dependent aldose reductase family. To engineer a strain for galactitol production, we deleted the galactokinase (GAL1) gene in Saccharomyes cerevisiae by using the recombinant gene technology, which significantly reduced the metabolic utilization of D-galactose by host cells. Subsequently, we introduced the gene encoding AnXR into this modified strain, creating an engineered strain capable of catalyzing the conversion of D-galactose into galactitol. Furthermore, we optimized the whole-cell catalysis conditions for the engineered strain, which achieved a maximum galactitol yield of 12.10 g/L. Finally, we tested the reduction ability of the strain for other monosaccharides and discovered that it could produce functional sugar alcohols such as xylitol and arabinitol. The engineered strain demonstrates efficient biotransformation capabilities for galactitol and other functional sugar alcohols, representing a significant advancement in environmentally sustainable production practices.


Asunto(s)
Aldehído Reductasa , Aspergillus niger , Galactitol , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aldehído Reductasa/metabolismo , Aldehído Reductasa/genética , Galactitol/metabolismo , Galactitol/genética , Aspergillus niger/metabolismo , Aspergillus niger/genética , Galactosa/metabolismo , Ingeniería Metabólica/métodos , Fermentación , Microbiología Industrial , Galactoquinasa/genética , Galactoquinasa/metabolismo
7.
Mar Drugs ; 22(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38921547

RESUMEN

Clavatols exhibit a wide range of biological activities due to their diverse structures. A genome mining strategy identified an A5cla cluster from Penicillium sp. MYA5, derived from the Arctic plant Dryas octopetala, is responsible for clavatol biosynthesis. Seven clavatols, including one new clavatol derivate named penicophenone F (1) and six known clavatols (2-7), were isolated from Penicillium sp. MYA5 using a transcriptome mining strategy. These structures were elucidated by comprehensive spectroscopic analysis. Antibacterial, aldose reductase inhibition, and siderophore-producing ability assays were conducted on compounds 1-7. Compounds 1 and 2 demonstrated inhibitory effects on the ALR2 enzyme with inhibition rates of 75.3% and 71.6% at a concentration of 10 µM, respectively. Compound 6 exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli with MIC values of 4.0 µg/mL and 4.0 µg/mL, respectively. Additionally, compounds 1, 5, and 6 also showed potential iron-binding ability.


Asunto(s)
Antibacterianos , Penicillium , Staphylococcus aureus , Penicillium/genética , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Genómica/métodos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Transcriptoma , Regiones Árticas , Sideróforos/farmacología , Aldehído Reductasa/antagonistas & inhibidores , Aldehído Reductasa/genética
8.
Chem Biol Interact ; 398: 111111, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38878851

RESUMEN

The aldo-keto reductase (AKR) superfamily is a large family of proteins found across the kingdoms of life. Shared features of the family include 1) structural similarities such as an (α/ß)8-barrel structure, disordered loop structure, cofactor binding site, and a catalytic tetrad, and 2) the ability to catalyze the nicotinamide adenine dinucleotide (phosphate) reduced (NAD(P)H)-dependent reduction of a carbonyl group. A criteria of family membership is that the protein must have a measured function, and thus, genomic sequences suggesting the transcription of potential AKR proteins are considered pseudo-members until evidence of a functionally expressed protein is available. Currently, over 200 confirmed AKR superfamily members are reported to exist. A systematic nomenclature for the AKR superfamily exists to facilitate family and subfamily designations of the member to be communicated easily. Specifically, protein names include the root "AKR", followed by the family represented by an Arabic number, the subfamily-if one exists-represented by a letter, and finally, the individual member represented by an Arabic number. The AKR superfamily database has been dedicated to tracking and reporting the current knowledge of the AKRs since 1997, and the website was last updated in 2003. Here, we present an updated version of the website and database that were released in 2023. The database contains genetic, functional, and structural data drawn from various sources, while the website provides alignment information and family tree structure derived from bioinformatics analyses.


Asunto(s)
Aldo-Ceto Reductasas , Bases de Datos de Proteínas , Aldo-Ceto Reductasas/metabolismo , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/química , Humanos , Internet , Aldehído Reductasa/metabolismo , Aldehído Reductasa/química , Aldehído Reductasa/genética , Animales
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167214, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718846

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC), is characteristic by a heterogeneous tumor microenvironment and gene mutations, conveys a dismal prognosis and low response to chemotherapy and immunotherapy. Here, we found that checkpoint suppressor 1 (CHES1) served as a tumor repressor in PDAC and was associated with patient prognosis. Functional experiments indicated that CHES1 suppressed the proliferation and invasion of PDAC by modulating cellular senescence. To further identify the downstream factor of CHES1 in PDAC, label-free quantitative proteomics analysis was conducted, which showed that the oncogenic Aldo-keto reductase 1B10 (AKR1B10) was transcriptionally repressed by CHES1 in PDAC. And AKR1B10 facilitated the malignant activity and repressed senescent phenotype of PDAC cells. Moreover, pharmaceutical inhibition of AKR1B10 with Oleanolic acid (OA) significantly induced tumor regression and sensitized PDAC cells to gemcitabine, and this combined therapy did not cause obvious side effects. Rescued experiments revealed that CHES1 regulated the tumorigenesis and gemcitabine sensitivity through AKR1B10-mediated senescence in PDAC. In summary, this study revealed that the CHES1/AKR1B10 axis modulated the progression and cellular senescence in PDAC, which might provide revenues for drug-targeting and senescence-inducing therapies for PDAC.


Asunto(s)
Aldehído Reductasa , Aldo-Ceto Reductasas , Carcinoma Ductal Pancreático , Senescencia Celular , Gemcitabina , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Aldehído Reductasa/metabolismo , Aldehído Reductasa/genética , Aldehído Reductasa/antagonistas & inhibidores , Aldo-Ceto Reductasas/metabolismo , Aldo-Ceto Reductasas/genética , Carcinogénesis/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Senescencia Celular/efectos de los fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones Desnudos , Ácido Oleanólico/farmacología , Ácido Oleanólico/análogos & derivados , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamiento farmacológico
11.
J Ethnopharmacol ; 332: 118354, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38762210

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Berberine (BBR) is the main active component from Coptidis rhizome, a well-known Chinese herbal medicine used for metabolic diseases, especially diabetes for thousands of years. BBR has been reported to cure various metabolic disorders, such as nonalcoholic fatty liver disease (NAFLD). However, the direct proteomic targets and underlying molecular mechanism of BBR against NAFLD remain less understood. AIM OF THE STUDY: To investigate the direct target and corresponding molecular mechanism of BBR on NAFLD is the aim of the current study. MATERIALS AND METHODS: High-fat diet (HFD)-fed mice and oleic acid (OA) stimulated HepG2 cells were utilized to verify the beneficial impacts of BBR on glycolipid metabolism profiles. The click chemistry in proteomics, DARTS, CETSA, SPR and fluorescence co-localization analysis were conducted to identify the targets of BBR for NAFLD. RNA-seq and shRNA/siRNA were used to investigate the downstream pathways of the target. RESULTS: BBR improved hepatic steatosis, ameliorated insulin resistance, and reduced TG levels in the NAFLD models. Importantly, Aldo-keto reductase 1B10 (AKR1B10) was first proved as the target of BBR for NAFLD. The gene expression of AKR1B10 increased significantly in the NAFLD patients' liver tissue. We further demonstrated that HFD and OA increased AKR1B10 expression in the C57BL/6 mice's liver and HepG2 cells, respectively, whereas BBR decreased the expression and activities of AKR1B10. Moreover, the knockdown of AKR1B10 by applying shRNA/siRNA profoundly impacted the beneficial effects on the pathogenesis of NAFLD by BBR. Meanwhile, the changes in various proteins (ACC1, CPT-1, GLUT2, etc.) are responsible for hepatic lipogenesis, fatty acid oxidation, glucose uptake, etc. by BBR were reversed by the knockdown of AKR1B10. Additionally, RNA-seq was used to identify the downstream pathway of AKR1B10 by examining the gene expression of liver tissues from HFD-fed mice. Our findings revealed that BBR markedly increased the protein levels of PPARα while downregulating the expression of PPARγ. However, various proteins of PPAR signaling pathways remained unaffected post the knockdown of AKR1B10. CONCLUSIONS: BBR alleviated NAFLD via mediating PPAR signaling pathways through targeting AKR1B10. This study proved that AKR1B10 is a novel target of BBR for NAFLD treatment and helps to find new targets for the treatment of NAFLD by using active natural compounds isolated from traditional herbal medicines as the probe.


Asunto(s)
Aldo-Ceto Reductasas , Berberina , Dieta Alta en Grasa , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Humanos , Berberina/farmacología , Berberina/uso terapéutico , Células Hep G2 , Masculino , Dieta Alta en Grasa/efectos adversos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Aldo-Ceto Reductasas/metabolismo , Aldo-Ceto Reductasas/genética , Aldehído Reductasa/metabolismo , Aldehído Reductasa/genética , Glucosa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Resistencia a la Insulina
12.
Dev Cell ; 59(15): 1954-1971.e7, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38776924

RESUMEN

A significant variation in chromatin accessibility is an epigenetic feature of leukemia. The cause of this variation in leukemia, however, remains elusive. Here, we identify SMARCA5, a core ATPase of the imitation switch (ISWI) chromatin remodeling complex, as being responsible for aberrant chromatin accessibility in leukemia cells. We find that SMARCA5 is required to maintain aberrant chromatin accessibility for leukemogenesis and then promotes transcriptional activation of AKR1B1, an aldo/keto reductase, by recruiting transcription co-activator DDX5 and transcription factor SP1. Higher levels of AKR1B1 are associated with a poor prognosis in leukemia patients and promote leukemogenesis by reprogramming fructose metabolism. Moreover, pharmacological inhibition of AKR1B1 has been shown to have significant therapeutic effects in leukemia mice and leukemia patient cells. Thus, our findings link the aberrant chromatin state mediated by SMARCA5 to AKR1B1-mediated endogenous fructose metabolism reprogramming and shed light on the essential role of AKR1B1 in leukemogenesis, which may provide therapeutic strategies for leukemia.


Asunto(s)
Fructosa , Animales , Humanos , Ratones , Adenosina Trifosfatasas , Aldehído Reductasa/metabolismo , Aldehído Reductasa/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinogénesis/genética , Línea Celular Tumoral , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Fructosa/metabolismo , Leucemia/metabolismo , Leucemia/patología , Leucemia/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
13.
J Hazard Mater ; 470: 134212, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583205

RESUMEN

Elevated levels of cadmium (Cd) have the ability to impede plant development. Aldo-keto reductases (AKRs) have been demonstrated in a number of plant species to improve tolerance to a variety of abiotic stresses by scavenging cytotoxic aldehydes; however, only a few AKRs have been identified to improve Cd tolerance. The OsAKR1 gene was extracted and identified from rice here. After being exposed to Cd, the expression of OsAKR1 dramatically rose in both roots and shoots, although more pronounced in roots. According to a subcellular localization experiment, the nucleus and cytoplasm are where OsAKR1 is primarily found. Mutants lacking OsAKR1 exhibited Cd sensitive phenotype than that of the wild-type (WT) Nipponbare (Nip), and osakr1 mutants exhibited reduced capacity to scavenge methylglyoxal (MG). Furthermore, osakr1 mutants exhibited considerably greater hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels, and increased catalase (CAT) activity in comparison to Nip. The expression of three isomeric forms of CAT was found to be considerably elevated in osakr1 mutants during Cd stress, as demonstrated by quantitative real-time PCR analysis, when compared to Nip. These results imply that OsAKR1 controlled rice's ability to withstand Cd by scavenging harmful aldehydes and turning on the reactive oxygen species (ROS) scavenging mechanism.


Asunto(s)
Aldo-Ceto Reductasas , Cadmio , Oryza , Oryza/genética , Oryza/metabolismo , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Cadmio/toxicidad , Cadmio/metabolismo , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/metabolismo , Aldehídos/metabolismo , Catalasa/metabolismo , Catalasa/genética , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Malondialdehído/metabolismo , Estrés Fisiológico , Piruvaldehído/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Inactivación Metabólica
15.
Dig Dis Sci ; 69(7): 2502-2521, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38662158

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) have been shown to be related to the occurrence and development of a variety of cancers including hepatocellular carcinoma (HCC). However, a large number of potential HCC-related lncRNAs remain undiscovered and are yet to be fully understood. METHODS: Differentially expressed lncRNAs were first obtained from the tumor tissues and adjacent normal tissues of five HCC patients using high-throughput microarray chips. Then the expression levels of 10 differentially expressed lncRNAs were verified in 50 pairs of tissue samples from patients with HCC by quantitative real-time PCR (qRT-PCR). The oncogenic effects of lncRNA-4045 (ENST00000524045.6) in HCC cell lines were verified through a series of in vitro experiments including CCK-8 assay, plate clone formation assay, transwell assay, scratch assay, and flow cytometry. Subsequently, the potential target genes of lncRNA-4045 were predicted by bioinformatics analysis, fluorescence in situ hybridization assay, and RNA sequencing. The mechanism of lncRNA-4045 in HCC was explored by WB assay as well as rescue and enhancement experiments. RESULTS: The results from microarray chips showed 1,708 lncRNAs to have been significantly upregulated and 2725 lncRNAs to have been significantly downregulated in HCC tissues. Via validation in 50 HCC patients, a novel lncRNA lncRNA-4045 was found significantly upregulated in HCC tissues. Additionally, a series of in vitro experiments showed that lncRNA-4045 promoted the proliferation, invasion, and migration of HCC cell lines, and inhibited the apoptosis of HCC cell lines. The results of qRT-PCR in HCC tissues showed that the expression levels of AKR1B10 were significantly positively correlated with lncRNA-4045. LncRNA-4045 knockdown significantly down-regulated AKR1B10 protein expression, and overexpression of lncRNA-4045 led to significant up-regulation of AKR1B10 protein in HCC cell lines. Lastly, down-regulation of AKR1B10 could partially eliminate the enhancement of cell proliferation induced by lncRNA-4045 overexpression, while up-regulation of AKR1B10 was shown to enhance those effects. CONCLUSION: LncRNA-4045 may promote HCC via enhancement of the expression of AKR1B10 protein.


Asunto(s)
Aldo-Ceto Reductasas , Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , ARN Largo no Codificante , Femenino , Humanos , Masculino , Persona de Mediana Edad , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Aldo-Ceto Reductasas/genética , Aldo-Ceto Reductasas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
16.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38664064

RESUMEN

Thermo-acidic pretreatment of lignocellulosic biomass is required to make it amenable to microbial metabolism and results in generation of furfural due to breakdown of pentose sugars. Furfural is toxic to microbial metabolism and results in reduced microbial productivity and increased production costs. This study asks if deletion of yghZ gene which encodes a NADPH-dependent aldehyde reductase enzyme results in improved furfural tolerance in Escherichia coli host. The ∆yghZ strain-SSK201-was tested for tolerance to furfural in presence of 5% xylose as a carbon source in AM1 minimal medium. At 96 h and in presence of 1.0 g/L furfural, the culture harboring strain SSK201 displayed 4.5-fold higher biomass, 2-fold lower furfural concentration and 15.75-fold higher specific growth rate (µ) as compared to the parent strain SSK42. The furfural tolerance advantage of SSK201 was retained when the carbon source was switched to glucose in AM1 medium and was lost in rich LB medium. The findings have potential to be scaled up to a hydrolysate culture medium, which contains furan inhibitors and lack nutritionally rich components, under bioreactor cultivation and observe growth advantage of the ∆yghZ host. It harbors potential to generate robust industrial strains which can convert lignocellulosic carbon into metabolites of interest in a cost-efficient manner.


Asunto(s)
Carbono , Proteínas de Escherichia coli , Escherichia coli , Furaldehído , Xilosa , Aldehído Reductasa/metabolismo , Aldehído Reductasa/genética , Biomasa , Carbono/metabolismo , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Furaldehído/metabolismo , Eliminación de Gen , Glucosa/metabolismo , Xilosa/metabolismo
17.
Diabetes ; 73(7): 1188-1195, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38394643

RESUMEN

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. Because many genes associate with DKD, multiomics approaches were used to narrow the list of functional genes, gene products, and related pathways providing insights into the pathophysiological mechanisms of DKD. The Kidney Precision Medicine Project human kidney single-cell RNA-sequencing (scRNA-seq) data set and Mendeley Data on human kidney cortex biopsy proteomics were used. The R package Seurat was used to analyze scRNA-seq data and data from a subset of proximal tubule cells. PathfindR was applied for pathway analysis in cell type-specific differentially expressed genes and the R limma package was used to analyze differential protein expression in kidney cortex. A total of 790 differentially expressed genes were identified in proximal tubule cells, including 530 upregulated and 260 downregulated transcripts. Compared with differentially expressed proteins, 24 genes or proteins were in common. An integrated analysis combining protein quantitative trait loci, genome-wide association study hits (namely, estimated glomerular filtration rate), and a plasma metabolomics analysis was performed using baseline metabolites predictive of DKD progression in our longitudinal Diabetes Heart Study samples. The aldo-keto reductase family 1 member A1 gene (AKR1A1) was revealed as a potential molecular hub for DKD cellular dysfunction in several cross-linked pathways featured by deficiency of this enzyme.


Asunto(s)
Aldehído Reductasa , Biomarcadores , Nefropatías Diabéticas , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Humanos , Biomarcadores/metabolismo , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Proteómica/métodos , Estudio de Asociación del Genoma Completo , Masculino , Túbulos Renales Proximales/metabolismo , Femenino , Persona de Mediana Edad , Multiómica
18.
Chem Biol Interact ; 392: 110905, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373627

RESUMEN

Aldose reductase is a member of the 1B1 subfamily of aldo-keto reductase gene superfamily. The action of aldose reductase (AR) has been implicated in the pathogenesis of a variety of disease states, most notably complications of diabetes mellitus including neuropathy, retinopathy, nephropathy, and cataracts. To explore for mechanistic roles for AR in disease pathogenesis, we established mutant strains produced using Crispr-Cas9 to inactivate the AKR1B3 gene in C57BL6 mice. Phenotyping AR-knock out (ARKO) strains confirmed previous reports of reduced accumulation of tissue sorbitol levels. Lens epithelial cells in ARKO mice showed markedly reduced epithelial-to-mesenchymal transition following lens extraction in a surgical model of cataract and posterior capsule opacification. A previously unreported phenotype of preputial sebaceous gland swelling was observed frequently in male ARKO mice homozygous for the mutant AKR1B3 allele. This condition, which was shown to be accompanied by infiltration of proinflammatory CD3+ lymphocytes, was not observed in WT mice or mice heterozygous for the mutant allele. Despite this condition, reproductive fitness of the ARKO strain was indistinguishable from WT mice housed under identical conditions. These studies establish the utility of a new strain of AKR1B3-null mice created to support mechanistic studies of cataract and diabetic eye disease.


Asunto(s)
Opacificación Capsular , Catarata , Cristalino , Animales , Masculino , Ratones , Aldehído Reductasa/genética , Opacificación Capsular/patología , Catarata/genética , Catarata/patología , Incidencia , Inflamación/patología , Cristalino/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Glándulas Sebáceas
19.
Exp Mol Med ; 56(1): 220-234, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38200154

RESUMEN

Diabetes might be associated with increased cancer risk, with several studies reporting hyperglycemia as a primary oncogenic stimulant. Since glucose metabolism is linked to numerous metabolic pathways, it is difficult to specify the mechanisms underlying hyperglycemia-induced cancer progression. Here, we focused on the polyol pathway, which is dramatically activated under hyperglycemia and causes diabetic complications. We investigated whether polyol pathway-derived fructose facilitates hyperglycemia-induced gastric cancer metastasis. We performed bioinformatics analysis of gastric cancer datasets and immunohistochemical analyses of gastric cancer specimens, followed by transcriptomic and proteomic analyses to evaluate phenotypic changes in gastric cancer cells. Consequently, we found a clinical association between the polyol pathway and gastric cancer progression. In gastric cancer cell lines, hyperglycemia enhanced cell migration and invasion, cytoskeletal rearrangement, and epithelial-mesenchymal transition (EMT). The hyperglycemia-induced acquisition of metastatic potential was mediated by increased fructose derived from the polyol pathway, which stimulated the nuclear ketohexokinase-A (KHK-A) signaling pathway, thereby inducing EMT by repressing the CDH1 gene. In two different xenograft models of cancer metastasis, gastric cancers overexpressing AKR1B1 were found to be highly metastatic in diabetic mice, but these effects of AKR1B1 were attenuated by KHK-A knockdown. In conclusion, hyperglycemia induces fructose formation through the polyol pathway, which in turn stimulates the KHK-A signaling pathway, driving gastric cancer metastasis by inducing EMT. Thus, the polyol and KHK-A signaling pathways could be potential therapeutic targets to decrease the metastatic risk in gastric cancer patients with diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Polímeros , Neoplasias Gástricas , Humanos , Animales , Ratones , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteómica , Transducción de Señal , Hiperglucemia/complicaciones , Fructoquinasas/genética , Fructoquinasas/metabolismo , Fructosa/metabolismo , Transición Epitelial-Mesenquimal/genética , Movimiento Celular/genética , Línea Celular Tumoral , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Aldehído Reductasa/farmacología
20.
Free Radic Biol Med ; 210: 430-447, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056576

RESUMEN

Cisplatin is a frequently used chemotherapeutic medicine for cancer treatment. Permanent hearing loss is one of the most serious side effects of cisplatin, but there are few FDA-approved medicines to prevent it. We applied high-through screening and target fishing and identified aldose reductase, a key enzyme of the polyol pathway, as a novel target for treating cisplatin ototoxicity. Cisplatin treatment significantly increased the expression level and enzyme activity of aldose reductase in the cochlear sensory epithelium. Genetic knockdown or pharmacological inhibition of aldose reductase showed a significant protective effect on cochlear hair cells. Cisplatin-induced overactivation of aldose reductase led to the decrease of NADPH/NADP+ and GSH/GSSG ratios, as well as the increase of oxidative stress, and contributed to hair cell death. Results of target prediction, molecular docking, and enzyme activity detection further identified that Tiliroside was an effective inhibitor of aldose reductase. Tiliroside was proven to inhibit the enzymatic activity of aldose reductase via competitively interfering with the substrate-binding region. Both Tiliroside and another clinically approved aldose reductase inhibitor, Epalrestat, inhibited cisplatin-induced oxidative stress and subsequent cell death and thus protected hearing function. These findings discovered the role of aldose reductase in the pathogenesis of cisplatin-induced deafness and identified aldose reductase as a new target for the prevention and treatment of hearing loss.


Asunto(s)
Cisplatino , Pérdida Auditiva , Humanos , Cisplatino/efectos adversos , Aldehído Reductasa/genética , Aldehído Reductasa/metabolismo , Simulación del Acoplamiento Molecular , Evaluación Preclínica de Medicamentos , Pérdida Auditiva/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA