Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.313
Filtrar
1.
BMC Ecol Evol ; 24(1): 107, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138401

RESUMEN

Biogeographic barriers to gene flow are central to studies of plant phylogeography. There are many physical and geographic barriers in China, but few studies have used molecular ecological evidence to investigate the natural geographic isolation barrier of the Qinling Mountains-Huaihe River Line (QHL). Allium macrostemon is a precious Chinese perennial herb belonging to the Amaryllidaceae family. It is used as a food and medicine, with a variety of health and healing properties. Five SSR markers, three chloroplast DNA (cpDNA) markers (psbA-trnH, rps16 and trnL-F), one nuclear ribosomal DNA (nrDNA) marker (ITS), and simplified genome GBS sequencing were used to analyse the genetic diversity and structure of A. macrostemon. Combining SSR, cpDNA, nrDNA ITS data and GBS analysis results, we divided A. macrostemon populations into northern and southern groups, with the southern group further divided into southwestern and central-southeastern groups. Niche simulation results reveal that the distribution area of A. macrostemon will reach its maximum in the future. These data indicate that the regional separation of A. macrostemon has been maintained by the combined influence of a geographical barrier and Quaternary climate, and that the back-and-forth fluctuations of QHL and Quaternary climate have played an important role in this process. QHL acts as a north-south dividing line in phylogeography and population genetic structure, promoting physical geographic isolation. This study provides a theoretical basis for the conservation, development, and utilization of A. macrostemon resources. It further provides a reference for understanding the systematic geographical pattern of the large-scale spatial distribution of plants in China and enriches our understanding of Quaternary plant evolution in areas with complex terrain.


Asunto(s)
Allium , Filogeografía , China , Allium/genética , Variación Genética/genética , Plantas Medicinales/genética , ADN de Cloroplastos/genética , ADN de Plantas/genética , Flujo Génico , Evolución Molecular , Evolución Biológica
2.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125648

RESUMEN

The genus Allium plants, including onions, garlic, leeks, chives, and shallots, have long been recognized for their potential health benefits, particularly in oxidative and cancer prevention. Among them, onions and garlic have been extensively studied, unveiling promising biological activities that are indicative of their potential as potent antioxidant and anticancer agents. Research has revealed a rich repository of bioactive compounds in Allium species, highlighting their antioxidative properties and diverse mechanisms that target cancer cells. Compounds such as allicin, flavonoids, and organosulfur compounds (OSCs) exhibit notable antioxidant and anticancer properties, affecting apoptosis induction, cell cycle arrest, and the inhibition of tumor proliferation. Moreover, their antioxidant and anti-inflammatory attributes enhance their potential in cancer therapy. Studies exploring other Allium species beyond onions and garlic have revealed similar biological activities, suggesting a broad spectrum of natural products that could serve as promising candidates for developing novel anticancer treatments. Understanding the multifaceted potential of Allium plants will pave the way for innovative strategies in oxidative and cancer treatment and prevention, offering new avenues for pharmaceutical research and dietary interventions. Therefore, in this review, we compile an extensive analysis of the diversity of various Allium species, emphasizing their remarkable potential as effective agents.


Asunto(s)
Allium , Antioxidantes , Allium/química , Humanos , Antioxidantes/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos Fitogénicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Apoptosis/efectos de los fármacos
3.
Trop Anim Health Prod ; 56(7): 224, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066801

RESUMEN

In this study, the effects of adding dried wild leek and garlic leaves to the diet of laying quails on egg quality, production performance, intestinal histomorphology, nutrient digestibility, and serum biochemical traits were evaluated. 168- 30 weeks aged- laying quails were randomly arranged into 7 treatments (control group and three different levels (0.5%, 1%, and 1.5%) of wild leek or garlic leaves), 6 replicates, and 4 quails per pen. According to the study, the highest hen-day production was achieved by adding 0.5% garlic leaves, and the egg weight was higher with 1% garlic leaves and 0.5% wild leek compared to the control group (P < 0.05). In addition, adding garlic leaves decreased the average daily feed intake and increased high-density lipoprotein concentration. However, adding both herbs did not influence yolk height, albumin height, shell thickness, and Haugh unit (P > 0.05). All supplemented treatments significantly increased the formerly Roche Yolk Color Fan (DSM) index compared to the control. Quails fed with 1% garlic leaves declined serum cholesterol, very low-density lipoprotein, low-density lipoprotein, and uric acid. Moreover, three levels of garlic leaves decreased triglyceride concentration. Adding 0.5% and 1% garlic leaves to the diet could increase the jejunal, and ileal villus height-to-crypt depth ratio. Furthermore, 1% and 1.5% garlic leaves supplementation elevated organic matter, ash, and crude protein digestibility. In conclusion, supplementing 1% garlic leaves to the quail's diet could improve egg weight, intestinal morphology, and nutrient digestibility, improving lipid profiles and reducing uric acid concentration in the serum. However, both plants were rich pigment sources, increasing the DSM index.


Asunto(s)
Alimentación Animal , Dieta , Suplementos Dietéticos , Digestión , Ajo , Lípidos , Hojas de la Planta , Animales , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Ajo/química , Dieta/veterinaria , Hojas de la Planta/química , Femenino , Digestión/efectos de los fármacos , Lípidos/sangre , Lípidos/análisis , Intestinos/anatomía & histología , Intestinos/efectos de los fármacos , Intestinos/fisiología , Allium/química , Distribución Aleatoria , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Óvulo/efectos de los fármacos , Óvulo/fisiología
4.
J Agric Food Chem ; 72(30): 16545-16568, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39012491

RESUMEN

Brassica oleracea and Allium vegetables are known for their unique, family specific, water-soluble phytochemicals, glucosinolates, and S-alk(en)yl-l-cysteine sulfoxides, respectively. However, they are also important delivery systems of several other health-related compounds, such as carotenoids (lipid-soluble phytochemicals), vitamin C (water-soluble micronutrient), and vitamin K1 (lipid-soluble micronutrient). When all-year-round availability or transport over long distances is targeted for these often seasonal, locally grown vegetables, processing becomes indispensable. However, the vegetable processing chain, which consists of multiple steps (e.g., pretreatment, preservation, storage, preparation), can impact the nutritional quality of these vegetables corresponding to the nature of the health-related compounds and their susceptibility to (bio)chemical conversions. Since information about the impact of the vegetable processing chain is scattered per compound or processing step, this review targets an integration of the state of the art and discusses needs for future research. Starting with a discussion on substrate-enzyme location within the vegetable matrix, an overview is provided of the impact and potential of processing, encompassing a wide range of (nonenzymatic) conversions.


Asunto(s)
Allium , Brassica , Micronutrientes , Fitoquímicos , Verduras , Brassica/química , Brassica/metabolismo , Fitoquímicos/química , Fitoquímicos/metabolismo , Verduras/química , Verduras/metabolismo , Allium/química , Allium/metabolismo , Micronutrientes/análisis , Micronutrientes/metabolismo , Micronutrientes/química , Manipulación de Alimentos , Valor Nutritivo
5.
Int J Biol Macromol ; 277(Pt 1): 134130, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39053822

RESUMEN

Allium plants, including garlic, onions, shallots, and leeks, belong to the Alliaceae family and are utilized as vegetable, medicinal, and ornamental plants. These plants are consumed both raw and cooked and are noted in traditional medicine for their antibacterial, antitumor, and diuretic properties. Allium plants are a rich source of polyphenols, organosulfur compounds, flavonoids, alkaloids, and polysaccharides, which contribute to their health benefits. As consumer interest in the association between diet and health grows, there is an increasing market demand for foods that promote health, particularly those rich in dietary fiber or non-starch polysaccharides. Allium polysaccharides (APS) have molecular weights of 1 × 103-1 × 106 Da containing small amounts of pectin, glucofructan, or glycoproteins and large amounts of fructans. APS, despite its complex structure, is one of the principal active components of Allium plants but is often overlooked, which restricts its practical application. This paper provides a comprehensive overview of the extraction and purification, structural and functional characteristics, bioactivities, structure-function relationships, and chemical modifications of APS, as well as the effects of APS processing and storage. Additionally, this paper outlines future research directions for APS, which will inform its development and application in the food, pharmaceutical, and cosmetic industries.


Asunto(s)
Allium , Polisacáridos , Allium/química , Polisacáridos/química , Polisacáridos/farmacología , Humanos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales
6.
Carbohydr Polym ; 340: 122289, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38858004

RESUMEN

Allium Macrostemon Bge. (AMB) is a well-known homology of herbal medicine and food that has been extensively used for thousands of years to alleviate cardiovascular diseases. It contains a significant amount of polysaccharides, yet limited research exists on whether these polysaccharides are responsible for its cardiovascular protective effects. In this study, the anti-atherosclerosis effect of the crude polysaccharides of AMB (AMBP) was evaluated using ApoE-/- mice fed a high-fat diet, along with ox-LDL-induced Thp-1 foam cells. Subsequently, guided by the inhibitory activity of foam cells formation, a major homogeneous polysaccharide named AMBP80-1a was isolated and purified, yielding 11.1 % from AMB. The molecular weight of AMBP80-1a was determined to be 10.01 kDa. AMBP80-1a was firstly characterized as an agavin-type fructan with main chains consisting of →1)-ß-d-Fruf-(2→ and →1,6)-ß-d-Fruf-(2→ linked to an internal glucose moiety, with →6)-ß-d-Fruf-(2→ and ß-d-Fruf-(2→ serving as side chains. Furthermore, the bio-activity results indicated that AMBP80-1a reduced lipid accumulation and cholesterol contents in ox-LDL-induced Thp-1 foam cell. These findings supported the role of AMBP in alleviating atherosclerosis in vivo/vitro. AMBP80-1a, as the predominant homogeneous polysaccharide in AMB, was expected to be developed as a functional agent to prevent atherosclerosis.


Asunto(s)
Allium , Aterosclerosis , Fructanos , Aterosclerosis/tratamiento farmacológico , Animales , Fructanos/farmacología , Fructanos/química , Ratones , Allium/química , Humanos , Masculino , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Lipoproteínas LDL/metabolismo , Células THP-1 , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética
7.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38892292

RESUMEN

Cuticular waxes are essential for protecting plants from various environmental stresses. Allium fistulosum serves as an excellent model for investigating the regulatory mechanisms underlying cuticular wax synthesis with notable epidermal wax characteristics. A combination of gas chromatography-mass spectrometry (GC-MS) metabolite analysis and transcriptomics was used to investigate variations in metabolites and gene expression patterns between the wild type (WT) and glossy mutant type (gl2) of A. fistulosum. The WT surface had a large number of acicular and lamellar waxy crystals, whereas the leaf surface of gl2 was essentially devoid of waxy crystals. And the results revealed a significant decrease in the content of 16-hentriacontanone, the principal component of cuticular wax, in the gl2 mutant. Transcriptomic analysis revealed 3084 differentially expressed genes (DEGs) between WT and gl2. Moreover, we identified 12 genes related to fatty acid or wax synthesis. Among these, 10 DEGs were associated with positive regulation of wax synthesis, whereas 2 genes exhibited negative regulatory functions. Furthermore, two of these genes were identified as key regulators through weighted gene co-expression network analysis. Notably, the promoter region of AfisC5G01838 (AfCER1-LIKE1) exhibited a 258-bp insertion upstream of the coding region in gl2 and decreased the transcription of the AfCER1-LIKE1 gene. This study provided insights into the molecular mechanisms governing cuticular wax synthesis in A. fistulosum, laying the foundation for future breeding strategies.


Asunto(s)
Allium , Cromatografía de Gases y Espectrometría de Masas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Ceras , Ceras/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Perfilación de la Expresión Génica/métodos , Allium/genética , Allium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Genes (Basel) ; 15(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38927690

RESUMEN

Climate change has resulted in an increased demand for Japanese bunching onions (Allium fistulosum L., genomes FF) with drought resistance. A complete set of alien monosomic addition lines of A. fistulosum with extra chromosomes from shallot (A. cepa L. Aggregatum group, AA), represented as FF + 1A-FF + 8A, displays a variety of phenotypes that significantly differ from those of the recipient species. In this study, we investigated the impact of drought stress on abscisic acid (ABA) and its precursor, ß-carotene, utilizing this complete set. In addition, we analyzed the expression levels of genes related to ABA biosynthesis, catabolism, and drought stress signal transduction in FF + 1A and FF + 6A, which show characteristic variations in ABA accumulation. A number of unigenes related to ABA were selected through a database using Allium TDB. Under drought conditions, FF + 1A exhibited significantly higher ABA and ß-carotene content compared with FF. Additionally, the expression levels of all ABA-related genes in FF + 1A were higher than those in FF. These results indicate that the addition of chromosome 1A from shallot caused the high expression of ABA biosynthesis genes, leading to increased levels of ABA accumulation. Therefore, it is expected that the introduction of alien genes from the shallot will upwardly modify ABA content, which is directly related to stomatal closure, leading to drought stress tolerance in FF.


Asunto(s)
Ácido Abscísico , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Ácido Abscísico/metabolismo , Estrés Fisiológico/genética , Cebollas/genética , Cebollas/metabolismo , Monosomía/genética , beta Caroteno/metabolismo , Allium/genética , Allium/metabolismo
10.
J Food Sci ; 89(7): 4250-4275, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38829746

RESUMEN

Garlic, belonging to the genus Allium, is renowned for its rich antioxidant potential. Snow Mountain garlic (SMG) (Allium ampeloprasum) has been traditionally used for medicinal purposes because of its higher antioxidant potential. Considering its potential in medical therapies, we compared the antioxidant activity of SMG with a novel variety of Allium sativum, Hisar garlic 17 (HG17). Comparative antioxidant activity data (2,2-diphenyl-1-picrylhydrazyl and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) revealed the higher antioxidant activity of HG17 than SMG, which prompted us to conduct a comprehensive phytochemical investigation to elucidate the factors contributing to antioxidant potential of HG17. To get a detailed antioxidant and phytoconstituents profiling, we differentially extracted HG17 by processing it in different forms (fresh, dry, heated, and aged) with two solvents (50% methanol and n-butanol). Our data (antioxidant activities, total phenolics, and flavonoids) showed that dry garlic methanolic extract (DgM) had maximum potential than other HG17 forms/solvents, which concludes that different extraction techniques had direct impact on the phenolics/flavonoids and antioxidant potential of the extracts. Further, phytochemical analysis of HG17 extracts by high resolution liquid chromatograph mass spectrometer quadrupole time of flight validated the maximum potential of DgM. LCMS revealed the presence of garcimangosone C, osmanthuside A, and protoaphin aglucone polyphenols exclusively in DgM compared to other HG17 extracts, which possibly contributing in its high antioxidant potential. The overall differential extraction and LCMS data of HG17 strongly depict that it may be used as an alternative of SMG under diverse medical applications. HG17 higher antioxidant potential and rich array of unique phytochemicals make it valuable for food and pharmaceutical industries to integrate into functional foods/therapeutics. PRACTICAL APPLICATION: Garlic unique phytochemical composition and its remarkable ability to scavenge different radicals make it valuable therapeutic asset to mitigate diseases associated with oxidative stress. SMG is well known for its anti-arthritic and anti-inflammatory properties. HG17 showed higher antioxidant potential than SMG and can be used as an alternative of SMG for anti-arthritic properties.


Asunto(s)
Allium , Antioxidantes , Flavonoides , Ajo , Fenoles , Fitoquímicos , Extractos Vegetales , Antioxidantes/farmacología , Antioxidantes/análisis , Ajo/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/farmacología , Fitoquímicos/análisis , Fenoles/análisis , Fenoles/farmacología , Flavonoides/análisis , Flavonoides/farmacología , Allium/química , Cromatografía Líquida de Alta Presión/métodos
11.
Food Res Int ; 188: 114408, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823853

RESUMEN

Biopreservation strategies such as the use of Mediterranean plant extracts to ensure food safety are promising to deal with the emergence of antimicrobial resistances and the overreliance on food chemical additives. In the last few decades, antimicrobial susceptibility testing (AST) for evaluating the in vitro antibacterial potential of plant extracts against the most relevant foodborne pathogens has been widely reported in the literature. The current meta-analysis aimed to summarise and analyse the extensive evidence available in the literature regarding the in vitro antimicrobial capability of Allium, Ocimum and Thymus spp. extracts against foodborne pathogens. A systematic review was carried out to gather data on AST results of these extracts against Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., Escherichia coli and Bacillus cereus, including inhibition diameters (ID) and minimum inhibitory concentrations (MIC). A total of 742 records were gathered from a raw collection of 2,065 articles. Weighted mixed-effect linear models were adjusted to data to obtain pooled ID, pooled MIC and the relationship between both model estimations and observations. The pooled results revealed B. cereus as the most susceptible bacteria to Allium sativum (pooled ID = 20.64 ± 0.61 mm) by diffusion methods and S. aureus (pooled MIC = 0.146 mg/mL) by dilution methods. Diffusion methods did not yield conclusive results for Ocimum spp. extracts; however, the lowest pooled MIC was obtained for S. aureus (0.263 mg/mL). Among the foodborne pathogens evaluated, B. cereus showed the highest sensitivity to Thymus spp. extracts by both diffusion and dilution methods (pooled ID = 28.90 ± 2.34 mm and MIC = 0.075 mg/mL). The methodology used for plant extraction was found to not significantly affect MIC values (p > 0.05). Overall, the antimicrobial effectiveness of the studied extracts against Gram-positive and Gram-negative bacteria was demonstrated. Finally, the robustness of the meta-regression model was confirmed, also revealing an inversely proportional correlation between the ID and MIC measurements (p < 0.0001). These results provide a robust scientific basis on the factors affecting the in vitro antimicrobial efficacy of extracts from Mediterranean plants. They also provide valuable information for stakeholders involved in their industrial application in food, including producers, regulatory agencies and consumers which demand green-labelled foods.


Asunto(s)
Allium , Antibacterianos , Microbiología de Alimentos , Pruebas de Sensibilidad Microbiana , Ocimum , Extractos Vegetales , Thymus (Planta) , Thymus (Planta)/química , Extractos Vegetales/farmacología , Ocimum/química , Allium/química , Antibacterianos/farmacología , Inocuidad de los Alimentos , Bacillus cereus/efectos de los fármacos , Bacillus cereus/crecimiento & desarrollo , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo
12.
Sci Rep ; 14(1): 12917, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839811

RESUMEN

Allii Macrostemonis Bulbus (AMB) is a traditional Chinese medicine with medicinal and food homology. AMB has various biological activities, including anti-coagulation, lipid-lowering, anti-tumor, and antioxidant effects. Saponins from Allium macrostemonis Bulbus (SAMB), the predominant beneficial compounds, also exhibited lipid-lowering and anti-inflammatory properties. However, the effect of SAMB on atherosclerosis and the underlying mechanisms are still unclear. This study aimed to elucidate the pharmacological impact of SAMB on atherosclerosis. In apolipoprotein E deficiency (ApoE-/-) mice with high-fat diet feeding, oral SAMB administration significantly attenuated inflammation and atherosclerosis plaque formation. The in vitro experiments demonstrated that SAMB effectively suppressed oxidized-LDL-induced foam cell formation by down-regulating CD36 expression, thereby inhibiting lipid endocytosis in bone marrow-derived macrophages. Additionally, SAMB effectively blocked LPS-induced inflammatory response in bone marrow-derived macrophages potentially through modulating the NF-κB/NLRP3 pathway. In conclusion, SAMB exhibits a potential anti-atherosclerotic effect by inhibiting macrophage foam cell formation and inflammation. These findings provide novel insights into potential preventive and therapeutic strategies for the clinical management of atherosclerosis.


Asunto(s)
Aterosclerosis , Células Espumosas , Inflamación , Saponinas , Animales , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Saponinas/farmacología , Ratones , Inflamación/tratamiento farmacológico , Inflamación/patología , Allium/química , Masculino , Apolipoproteínas E/deficiencia , Dieta Alta en Grasa/efectos adversos , FN-kappa B/metabolismo , Ratones Endogámicos C57BL , Lipoproteínas LDL/metabolismo
13.
Phytother Res ; 38(8): 4009-4021, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38863408

RESUMEN

Environmental pollution, virus infection, allergens, and other factors may cause respiratory disease, which could be improved by dietary therapy. Allium species are common daily food seasoning and have high nutritional and medical value. Diallyl disulfide (DADS) is the major volatile oil compound of Allium species. The present study aims to explore the preventive effect and potential mechanism of DADS on pulmonary fibrosis. C57BL/6J mice were intratracheally injected with bleomycin (BLM) to establish pulmonary fibrosis and then administrated with DADS. Primary lung fibroblasts or A549 were stimulated with BLM, followed by DADS, farnesoid X receptor (FXR) agonist (GW4064), yes-associated protein 1 (YAP1) inhibitor (verteporfin), or silencing of FXR and YAP1. In BLM-stimulated mice, DADS significantly ameliorated histopathological changes and interleukin-1ß levels in bronchoalveolar lavage fluid. DADS decreased fibrosis markers, HIF-1α, inflammatory cytokines, and epithelial-mesenchymal transition in pulmonary mice and activated fibroblasts. DADS significantly enhanced FXR expression and inhibited YAP1 activation, which functions as GW4064 and verteporfin. A deficiency of FXR or YAP1 could result in the increase of these two protein expressions, respectively. DADS ameliorated extracellular matrix deposition, hypoxia, epithelial-mesenchymal transition, and inflammation in FXR or YAP1 knockdown A549. Taken together, targeting the crosstalk of FXR and YAP1 might be the potential mechanism for DADS against pulmonary fibrosis. DADS can serve as a potential candidate or dietary nutraceutical supplement for the treatment of pulmonary fibrosis.


Asunto(s)
Compuestos Alílicos , Disulfuros , Ratones Endogámicos C57BL , Fibrosis Pulmonar , Receptores Citoplasmáticos y Nucleares , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Ratones , Disulfuros/farmacología , Humanos , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos , Compuestos Alílicos/farmacología , Células A549 , Masculino , Allium/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Bleomicina , Pulmón/efectos de los fármacos , Pulmón/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo
14.
APMIS ; 132(8): 581-593, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38757239

RESUMEN

Organosulfur compounds derived from plants of the Allium genus, such as propyl-propane-thiosulfinate (PTS) and propyl-propane-thiosulfonate (PTSO), have been proposed as an alternative in antibiotic resistance. The aim of this study was to compare the activity of these substances with other antibiotics against clinical isolates of carbapenem-resistant (CAR-R) and carbapenem-susceptible (CAR-S) Gram-negative bacteria. A total of 126 clinical isolates of CAR-R and 155 CAR-S bacteria were selected, including Enterobacterales, A. baumannii and P. aeruginosa. The antibiotic susceptibility of all isolates was assessed using the microdilution and Kirby-Bauer methods for PTS, PTSO, amoxicillin/clavulanate, piperacillin/tazobactam, cefotaxime, ceftazidime, cefepime, imipenem, ciprofloxacin, and amikacin. Both PTS and PTSO demonstrated in vitro bactericidal activity against CAR-R Enterobacteriaceae and A. baumannii, with no significant difference in activity compared to their response against CAR-S isolates. However, both compounds were less active against P. aeruginosa than against any of the other bacteria, regardless of their resistance to carbapenems. In all cases, the minimum inhibitory concentration values of PTSO were significantly lower than those of PTS. These findings offer valuable information about the potential antibacterial use of these substances, particularly against infections that currently have limited therapeutic options.


Asunto(s)
Antibacterianos , Carbapenémicos , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Humanos , Carbapenémicos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Acinetobacter baumannii/efectos de los fármacos , Enterobacteriaceae/efectos de los fármacos , Allium/química , Ácidos Tiosulfónicos/farmacología , Ácidos Sulfínicos/farmacología
15.
Food Chem ; 453: 139539, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38788638

RESUMEN

The aim of this study was to investigate the effects of dietary Allium mongolicum Regel powder (AMRP) supplementation on the growth performance, meat quality, antioxidant capacity and muscle fibre characteristics of fattening Angus calves. Growth performance data and longissimus thoracis (LT) samples were collected from four groups of fattening Angus, which were fed either a basal diet (CON) or a basal diet supplemented with an AMRP dose of 10 (LAMR), 15 (MAMR), or 20 g/animal/day AMRP (HAMR) for 120 days before slaughter. AMRP addition to the feed improved growth performance and meat quality and altered muscle fibre type. Some responses to AMRP supplementation were dose dependent, whereas others were not. Together, the results of this study demonstrated that dietary supplementation with 10 g/animal/day AMRP was the optimal dose in terms of fattening calf growth performance, while 20 g/animal/day AMRP supplementation was the optimal dose in terms of meat quality.


Asunto(s)
Alimentación Animal , Antioxidantes , Suplementos Dietéticos , Carne , Animales , Bovinos/metabolismo , Bovinos/crecimiento & desarrollo , Antioxidantes/metabolismo , Suplementos Dietéticos/análisis , Alimentación Animal/análisis , Carne/análisis , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Polvos/química , Masculino , Respuesta al Choque Térmico/efectos de los fármacos , Allium/química , Allium/crecimiento & desarrollo , Allium/metabolismo , Calor
16.
Int Immunopharmacol ; 133: 112086, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38642441

RESUMEN

Myocardial injury (MI) signifies a pathological aspect of cardiovascular diseases (CVDs) such as coronary artery disease, diabetic cardiomyopathy, and myocarditis. Macrostemonoside T (MST) has been isolated from Allium macrostemon Bunge (AMB), a key traditional Chinese medicine (TCM) used for treating chest stuffiness and pains. Although MST has demonstrated considerable antioxidant activity in vitro, its protective effect against MI remains unexplored. To investigate MST's effects in both in vivo and in vitro models of isoproterenol (ISO)-induced MI and elucidate its underlying molecular mechanisms. This study established an ISO-induced MI model in rats and assessed H9c2 cytotoxicity to examine MST's impact on MI. Various assays, including histopathological staining, TUNEL staining, immunohistochemical staining, DCFH-DA staining, JC-1 staining, ELISA technique, and Western blot (WB), were utilized to explore the potential molecular mechanisms of MI protection. In vivo experiments demonstrated that ISO caused myocardial fiber disorders, elevated cardiac enzyme levels, and apoptosis. However, pretreatment with MST significantly mitigated these detrimental changes. In vitro experiments revealed that MST boosted antioxidant enzyme levels and suppressed malondialdehyde (MDA) production in H9c2 cells. Concurrently, MST inhibited ISO-induced reactive oxygen species (ROS) production and mitigated the decline in mitochondrial membrane potential, thereby reducing the apoptosis rate. Moreover, pretreatment with MST elevated the expression levels of p-PI3K, p-Akt, and p-mTOR, indicating activation of the PI3K/Akt/mTOR signaling pathway and consequent protection against MI. MST attenuated ISO-induced MI in rats by impeding apoptosis through activation of the PI3K/Akt/mTOR signaling pathway. This study presents potential avenues for the development of precursor drugs for CVDs.


Asunto(s)
Allium , Cardiotónicos , Isoproterenol , Infarto del Miocardio , Transducción de Señal , Animales , Masculino , Ratas , Allium/química , Apoptosis/efectos de los fármacos , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Línea Celular , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Saponinas/farmacología , Saponinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
17.
Sci Rep ; 14(1): 8651, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622233

RESUMEN

In this study, the multifaceted toxicity induced by high doses of the essential trace element molybdenum in Allium cepa L. was investigated. Germination, root elongation, weight gain, mitotic index (MI), micronucleus (MN), chromosomal abnormalities (CAs), Comet assay, malondialdehyde (MDA), proline, superoxide dismutase (SOD), catalase (CAT) and anatomical parameters were used as biomarkers of toxicity. In addition, detailed correlation and PCA analyzes were performed for all parameters discussed. On the other hand, this study focused on the development of a two hidden layer deep neural network (DNN) using Matlab. Four experimental groups were designed: control group bulbs were germinated in tap water and application group bulbs were germinated with 1000, 2000 and 4000 mg/L doses of molybdenum for 72 h. After germination, root tips were collected and prepared for analysis. As a result, molybdenum exposure caused a dose-dependent decrease (p < 0.05) in the investigated physiological parameter values, and an increase (p < 0.05) in the cytogenetic (except MI) and biochemical parameter values. Molybdenum exposure induced different types of CAs and various anatomical damages in root meristem cells. Comet assay results showed that the severity of DNA damage increased depending on the increasing molybdenum dose. Detailed correlation and PCA analysis results determined significant positive and negative interactions between the investigated parameters and confirmed the relationships of these parameters with molybdenum doses. It has been found that the DNN model is in close agreement with the actual data showing the accuracy of the predictions. MAE, MAPE, RMSE and R2 were used to evaluate the effectiveness of the DNN model. Collective analysis of these metrics showed that the DNN model performed well. As a result, it has been determined once again that high doses of molybdenum cause multiple toxicity in A. cepa and the Allium test is a reliable universal test for determining this toxicity. Therefore, periodic measurement of molybdenum levels in agricultural soils should be the first priority in preventing molybdenum toxicity.


Asunto(s)
Allium , Molibdeno/toxicidad , Raíces de Plantas , Meristema , Cebollas/fisiología , Aberraciones Cromosómicas
18.
Environ Sci Pollut Res Int ; 31(16): 24014-24041, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438639

RESUMEN

This study contributes significantly to the field by utilising the World Economic Policy Uncertainty (WEPU) Index, as devised by (Ahir in Nat Bureau Econ Res 2022), to scrutinise its impact on carbon dioxide emission reporting and performance. Employing the generalised method of moments (GMM) on a substantial dataset of 604 Fortune Global 500 firms spanning from 2005 to 2020, our analysis reveals crucial insights. The research elucidates the dual influence of WEPU Index: a positive correlation with carbon dioxide emission reporting and a negative correlation aimed at mitigating adverse effects and promoting sustainable practices, thereby enhancing firm trust. Moreover, the findings shed light on how companies in emission-intensive industries tend to ramp up carbon dioxide emission reporting, potentially to bolster investor confidence, particularly during high WEPU Index periods. Furthermore, this study uncovers a compelling association between high emitters and lowered carbon dioxide emission performance, stemming from political and social pressures to integrate environmental considerations. Notably, this pressure intensifies during periods of increased WEPU Index. The empirical results presented in this study carry immediate practical implications. Specifically, they offer valuable insights for regulatory bodies and industry associations, guiding the development of enhanced environmental and social reporting regulations and guidelines, particularly concerning carbon emission reporting and performance.


Asunto(s)
Allium , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Dióxido de Carbono , Incertidumbre , Industrias , Desarrollo Económico
19.
PLoS One ; 19(3): e0297212, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38437198

RESUMEN

Mechanical Control of Relaxation refers to the dependence of myocardial relaxation on the strain rate just prior to relaxation, but the mechanisms of enhanced relaxation are not well characterized. This study aimed to characterize how crossbridge kinetics varied with strain rate and time-to-stretch as the myocardium relaxed in early diastole. Ramp-stretches of varying rates (amplitude = 1% muscle length) were applied to intact rat cardiac trabeculae following a load-clamp at 50% of the maximal developed twitch force, which provides a first-order estimate of ejection and coupling to an afterload. The resultant stress-response was calculated as the difference between the time-dependent stress profile between load-clamped twitches with and without a ramp-stretch. The stress-response exhibited features of the step-stretch response of activated, permeabilized myocardium, such as distortion-dependent peak stress, rapid force decay related to crossbridge detachment, and stress recovery related to crossbridge recruitment. The peak stress was strain rate dependent, but the minimum stress and the time-to-minimum stress values were not. The initial rapid change in the stress-response indicates enhanced crossbridge detachment at higher strain rates during relaxation in intact cardiac trabeculae. Physiologic considerations, such as time-varying calcium, are discussed as potential limitations to fitting these data with traditional distortion-recruitment models of crossbridge activity.


Asunto(s)
Allium , Corazón , Animales , Ratas , Miocardio , Calcio de la Dieta , Hueso Esponjoso
20.
J Econ Entomol ; 117(2): 500-507, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38408079

RESUMEN

The onion aphid, Neotoxoptera formosana, poses a significant threat to Allium crops worldwide, causing considerable economic losses and quality degradation. To develop effective pest management strategies, it is crucial to understand the feeding behavior and life history of this pest on different Allium crops. In this study, the electrical penetration graph (EPG) technique was used to monitor the thorn-feeding behavior of the onion aphid on 4 Allium crops: leek, chive, garlic, and shallot. The EPG data revealed distinct feeding patterns, with garlic and shallots being more preferred hosts than chives. Additionally, the aphids primarily fed on the phloem in garlic and shallots. Analysis of life history trait showed that chives provided the most favorable conditions for aphid development and reproduction, while leek exhibited relatively unfavorable conditions. Examination of leaf histology also revealed differences among the crops, which may influence aphid feeding behavior. This study provides valuable insights into the interaction between the onion aphid and different Allium crops, aiding in the development of comprehensive pest control strategies to minimize crop damage and economic losses. The use of advanced techniques like EPG contributes to a more detailed understanding of aphid behavior and shows promise for improving pest management in other plant-pest interactions.


Asunto(s)
Allium , Amaryllidaceae , Áfidos , Asparagales , Rasgos de la Historia de Vida , Animales , Cebollas , Conducta Alimentaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA