Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Food Chem ; 452: 139570, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723567

RESUMEN

RS-5 refers to the resistant starch formed by complexation of starch molecules with other molecules. In this study, the molecular mechanism of RS-5 was analysed. First, it was found, when α-amylase acted on the starch-lipid complexes, the glucose residues involved in complexation cannot be hydrolyzed by α-amylase, while the glucose residues not directly involved in complexation can be hydrolyzed. Second, lipid molecules are not necessary for the formation of RS-5 and can be replaced with small peptides or decanal molecules. Considering the multiple health hazards that may result from excessive lipid intake, small peptides composed of essential amino acids may be more desirable materials for RS-5 preparation. Third, starch-lipid complexes had strong interactions with α-amylase, which provides evidence in support of the sliding continuum hydrolysis hypothesis of α-amylase. These results revealed the mechanism of RS-5 at the molecular level, which provides a reference for the production and research of RS-5.


Asunto(s)
Almidón , alfa-Amilasas , Hidrólisis , alfa-Amilasas/química , alfa-Amilasas/metabolismo , Almidón/química , Almidón/metabolismo , Almidón Resistente/metabolismo , Lípidos/química
2.
J Agric Food Chem ; 72(20): 11759-11772, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38738668

RESUMEN

This study aimed to investigate alterations in gut microbiota and metabolites mediated by wheat-resistant starch and its repair of gut barrier dysfunction induced by a high-fat diet (HFD). Structural data revealed that chlorogenic acid (CA)/linoleic acid (LA) functioned through noncovalent interactions to form a more ordered structure and fortify antidigestibility in wheat starch (WS)-CA/LA complexes; the resistant starch (RS) contents of WS-CA, WS-LA, and WS-CA-LA complexes were 23.40 ± 1.56%, 21.25 ± 1.87%, and 35.47 ± 2.16%, respectively. Dietary intervention with WS-CA/LA complexes effectively suppressed detrimental alterations in colon tissue morphology induced by HFD and repaired the gut barrier in ZO-1 and MUC-2 levels. WS-CA/LA complexes could augment gut barrier-promoting microbes including Parabacteroides, Bacteroides, and Muribaculum, accompanied by an increase in short-chain fatty acids (SCFAs) and elevated expression of SCFA receptors. Moreover, WS-CA/LA complexes modulated secondary bile acid metabolism by decreasing taurochenodeoxycholic, cholic, and deoxycholic acids, leading to the activation of bile acid receptors. Collectively, this study offered guiding significance in the manufacture of functional diets for a weak gut barrier.


Asunto(s)
Ácido Clorogénico , Dieta Alta en Grasa , Microbioma Gastrointestinal , Ácido Linoleico , Ratones Endogámicos C57BL , Almidón , Triticum , Ácido Clorogénico/metabolismo , Ácido Clorogénico/farmacología , Ácido Clorogénico/administración & dosificación , Ácido Clorogénico/química , Dieta Alta en Grasa/efectos adversos , Triticum/química , Triticum/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Animales , Masculino , Ratones , Almidón/metabolismo , Almidón/química , Ácido Linoleico/metabolismo , Ácido Linoleico/química , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Humanos , Ácidos Grasos Volátiles/metabolismo , Almidón Resistente/metabolismo
3.
Food Funct ; 15(6): 3141-3157, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38439638

RESUMEN

Four major types of resistant starch (RS1-4) are present in foods, all of which can alter the microbiome and are fermented in the cecum and colon to produce short-chain fatty acids (SCFAs). Type 4 RSs are chemically modified starches, not normally found in foods, but have become a popular food additive as their addition increases fiber content. Multiple studies, in humans and rodents, have explored how different RS4 affect post-prandial glucose metabolism, but fewer studies have examined the effects of RS4 consumption on the microbiome. In addition, many RS studies conducted in rodents use high-fat diets that do not approximate what is typically consumed by humans. To address this, mice were fed a Total Western Diet (TWD), based on National Health and Nutrition Examination Survey (NHANES) data that mimics the macro and micronutrient composition of a typical American diet, for six weeks, and then supplemented with 0, 2, 5, or 10% of the RS4, Versafibe 1490™ (VF), a phosphorylated and cross-linked potato starch, for an additional three weeks. The cecal contents were analyzed for SCFA content and microbiota composition. Butyrate production was increased while branched chain SCFA production decreased. The alpha-diversity of the microbiome decreased in mice fed the TWD with 10% VF 1490 added while the beta-diversity plot showed that the 5% and 10% VF groups were distinct from mice fed the TWD. Similarly, the largest changes in relative abundance of various genera were greatest in mice fed the 10% VF diet. To examine the effect of VF consumption on tissue gene expression, cecal and distal colon tissue mRNA abundance were analyzed by RNASeq. Gene expression changes were more prevalent in the cecum than the colon and in mice fed the 10% VF diet, but the number of changes was substantially lower than we previously observed in mice fed the TWD supplemented with native potato starch (RPS). These results provide additional evidence that the structure of the RS is a major factor determining its effects on the microbiome and gene expression in the cecum and colon.


Asunto(s)
Ciego , Almidón Resistente , Solanum tuberosum , Animales , Ratones , Ciego/metabolismo , Ciego/microbiología , Dieta Occidental , Expresión Génica , Microbiota , Encuestas Nutricionales , Almidón Resistente/metabolismo , Solanum tuberosum/química
4.
Int J Biol Macromol ; 266(Pt 1): 131174, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552699

RESUMEN

Taurocholic acid (TCA) is abundant in the rat intestine and has multiple health benefits. In the gut, intestinal microbiota can transform TCA into different bile acid (BA) derivatives, with the composition of microbiota playing a crucial role in the transformation process. This study aims to investigate how lotus seed resistant starch (LRS) can regulate microbiota to influence BA transformation. A fecal fermentation study was conducted in vitro, using either LRS, high-amylose maize starch (HAMS), or glucose (GLU) to analyze microbiota composition, BA content, and metabolic enzyme activities over different fermentation times. Bioinformatics analysis found that LRS increased the relative abundance of Enterococcus, Bacillus, and Lactobacillus, and decreased Escherichia-Shigella, compared with HAMS and GLU. LRS also reduced total BA content and accelerated the conversion of TCA to cholic acid, deoxycholic acid, and other derivatives. These results reveal that LRS and GLU tend to mediate the dehydroxy pathway, whereas HAMS tends to secrete metabolic enzymes in the epimerization pathway. Therefore, the evidence that LRS may regulate TCA bioconversion may benefit human colon health research and provide an important theoretical basis, as well as offer new concepts for the development of functional foods.


Asunto(s)
Fermentación , Microbioma Gastrointestinal , Lotus , Semillas , Ácido Taurocólico , Lotus/metabolismo , Semillas/metabolismo , Semillas/química , Animales , Ácido Taurocólico/metabolismo , Ratas , Almidón Resistente/metabolismo , Ácidos y Sales Biliares/metabolismo , Heces/microbiología , Masculino , Almidón/metabolismo
5.
Int J Biol Macromol ; 261(Pt 2): 129869, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38302031

RESUMEN

The digestibility of starch-based foods is receiving increased attention. To date, the full understanding of how including L-theanine (THE) can modify the structural and digestive properties of starch has not been fully achieved. Here, we investigated the multi-scale structure and digestibility of maize starch (MS) regulated by THE in ultrasound field and the molecular interactions. Ultrasound disrupted the structure of starch granules and opened the molecular chains of starch, promoting increased THE binding and producing more low-order or disordered crystal structures. In this case, the aggregation of starch molecules, especially amylose, was reduced, leading to increased mobility of the systems. As a result, the apparent viscosity, G', and G" were significantly decreased, which retarded the starch regeneration. Density functional theory calculations indicated that there were mainly non-covalent interactions between THE and MS, such as hydrogen bonding and van der Waals forces. These interactions were the main factors contributing to the decrease in the short-range ordering, the helical structure, and the enthalpy change (ΔH) of MS. Interestingly, the rapidly digestible starch (RDS) content of THE modified MS (MS-THE-30) decreased by 17.89 %, while the resistant starch increased to 26.65 %. These results provide new strategies for the safe production of resistant starch.


Asunto(s)
Glutamatos , Almidón Resistente , Zea mays , Zea mays/química , Almidón Resistente/metabolismo , Ultrasonido , Almidón/química , Amilosa/química , Digestión
6.
Int J Biol Macromol ; 254(Pt 1): 127725, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38287585

RESUMEN

Resistant starch (RS) has been extensively studied because of its beneficial effects on gut microbiota. In this study, four RSs obtained through various preparation processes were utilized for in vitro fermentation, and their structural characteristics before and after fermentation were determined using chromatography, Fourier infrared spectroscopy, and scanning electron microscopy (SEM). It was observed that these RSs can be classified into two categories based on their fermentation and structural features. The autoclaving RS (ARS) and extruding RS (ERS) were classified as Class I Microbiome Community (MC-I), characterized by a higher proportion of butyrate and its producers, including unclassified_g_Megasphaera and Megasphaera elsdenii. While microwaving RS (MRS) and ultrasound RS (URS) belonged to Class II Microbiome Community (MC-II), marked by a higher proportion of acetate and its producer, Bifidobacterium pseudocatenulatum DSM 20438. MC-I had a lower molecular weight, shorter chain length, more chains with degree of polymerization (DP) 36-100, and a more ordered structure than MC-II. Furthermore, SEM observations revealed distinct degradation patterns between MC-I and MC-II, which may be attributed to their surface structural characteristics. These findings imply that the preparation methods employed for RS can determine its multilevel structural characteristics, and consequently influence its physiological properties.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Fermentación , Almidón Resistente/metabolismo , Almidón/química , Heces/microbiología , Ácidos Grasos Volátiles/metabolismo
7.
Food Funct ; 15(1): 223-235, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38054370

RESUMEN

Starch is an important energy source for humans. Starch escaping digestion in the small intestine will transit to the colon to be fermented by gut microbes. Many gut microbes express α-amylases that can degrade soluble starch, but only a few are able to degrade intrinsic resistant starch (RS), which is insoluble and highly resistant to digestion (≥80% RS). We studied the in vitro fermentability of eight retrograded starches (RS-3 preparations) differing in rapidly digestible starch content (≥70%, 35-50%, ≤15%) by a pooled adult faecal inoculum and found that fermentability depends on the digestible starch fraction. Digestible starch was readily fermented yielding acetate and lactate, whereas resistant starch was fermented much slower generating acetate and butyrate. Primarily Bifidobacterium increased in relative abundance upon digestible starch fermentation, whereas resistant starch fermentation also increased relative abundance of Ruminococcus and Lachnospiraceae. The presence of small fractions of total digestible starch (±25%) within RS-3 preparations influenced the fermentation rate and microbiota composition, after which the resistant starch fraction was hardly fermented. By short-chain fatty acid quantification, we observed that six individual faecal inocula obtained from infants and adults were able to ferment digestible starch, whereas only one adult faecal inoculum was fermenting intrinsic RS-3. This suggests that, in contrast to digestible starch, intrinsic RS-3 is only fermentable when specific microbes are present. Our data illustrates that awareness is required for the presence of digestible starch during in vitro fermentation of resistant starch, since such digestible fraction might influence and overrule the evalution of the prebiotic potential of resistant starches.


Asunto(s)
Almidón Resistente , Almidón , Lactante , Adulto , Humanos , Almidón Resistente/metabolismo , Fermentación , Almidón/metabolismo , Heces/microbiología , Acetatos , Digestión
8.
Food Chem ; 440: 138261, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38150905

RESUMEN

This work investigated the effect of tannic acid on the fermentation rate of resistant starch. It was found that 1.0 and 1.5 µmol/L tannic acid decreased the rate of producing gas and short-chain fatty acids (SCFAs) from fermentation of resistant starch, and 1.5 µmol/mL tannic acid had a more profound effect, which confirmed that tannic acid delayed the metabolism of resistant starch. Moreover, tannic acid significantly inhibited the α-amylase activity during fermentation. On the other hand, tannic acid delayed the enrichment of some starch-degrading bacteria. Besides, fermentation of the resistant starch/tannic acid mixtures resulted in more SCFAs, particularly butyrate, and higher abundance of beneficial bacteria, including Bifidobacterium, Faecalibacterium, Blautia and Dorea, than fermentation of resistant starch after 48 h. Thus, it was inferred that tannic acid could delay the metabolism of resistant starch, which was due to its inhibitory effect on the α-amylase activity and regulatory effect on gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Polifenoles , Almidón Resistente , Humanos , Fermentación , Almidón Resistente/metabolismo , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Almidón/metabolismo , Bacterias/genética , Bacterias/metabolismo , alfa-Amilasas/metabolismo
9.
mSphere ; 9(1): e0056623, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38131665

RESUMEN

Resistant starch is a prebiotic fiber that is best known for its ability to increase butyrate production by the gut microbiota. This butyrate then plays an important role in modulating the immune system and inflammation. However, the ability to use this resistant starch appears to be a rare trait within the gut microbiota, with only a few species such as Ruminococcus bromii and Bifidobacterium adolescentis having been demonstrated to possess this ability. Furthermore, these bacteria do not directly produce butyrate themselves, rather they rely on cross-feeding interactions with other gut bacteria for its production. Here, we demonstrate that the often-used probiotic organism Clostridium butyricum also possesses the ability to utilize resistant starch from a number of sources, with direct production of butyrate. We further explore the enzymes responsible for this trait, demonstrating that they exhibit significant synergy, though with different enzymes exhibiting more or less importance depending on the source of the resistant starch. Thus, the co-administration of Clostridium butyricum may have the ability to improve the beneficial effects of resistant starch.IMPORTANCEClostridium butyricum is seeing increased use as a probiotic, due to potential health benefits tied to its ability to produce butyrate. Here, we demonstrate that this organism can use a variety of resistant starch sources and characterize the enzymes it uses to accomplish this. Given the relative rarity of resistant starch utilizing ability within the gut and the health benefits tied to resistant starch, the combined use of this organism with resistant starch in synbiotic formulations may prove beneficial.


Asunto(s)
Clostridium butyricum , Clostridium butyricum/metabolismo , Almidón Resistente/metabolismo , Almidón/metabolismo , Butiratos/metabolismo , Bacterias/metabolismo
10.
Nutrients ; 15(10)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37242130

RESUMEN

Rice is a major source of carbohydrates. Resistant starch (RS) is digested in the human small intestine but fermented in the large intestine. This study investigated the effect of consuming heat-treated and powdered brown rice cultivars 'Dodamssal' (HBD) and 'Ilmi' (HBI), with relatively high and less than 1% RS content, respectively, on the regulation of glucose metabolism in humans. Clinical trial meals were prepared by adding ~80% HBI or HBD powder to HBI and HBD meals, respectively. There was no statistical difference for protein, dietary fiber, and carbohydrate content, but the median particle diameter was significantly lower in HBI meals than in HBD meals. The RS content of HBD meals was 11.4 ± 0.1%, and the HBD meals also exhibited a low expected glycemic index. In a human clinical trial enrolling 36 obese participants, the homeostasis model assessment for insulin resistance decreased by 0.05 ± 0.14% and 1.5 ± 1.40% after 2 weeks (p = 0.021) in participants in the HBI and HBD groups, respectively. The advanced glycation end-product increased by 0.14 ± 0.18% in the HBI group and decreased by 0.06 ± 0.14% in the HBD group (p = 0.003). In conclusion, RS supplementation for 2 weeks appears to have a beneficial effect on glycemic control in obese participants.


Asunto(s)
Oryza , Almidón , Humanos , Almidón/metabolismo , Almidón Resistente/metabolismo , Oryza/metabolismo , Calor , Carbohidratos , Obesidad , Glucosa/metabolismo , Glucemia/metabolismo , Insulina/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(19): e2220622120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126676

RESUMEN

The sedentary lifestyle and refined food consumption significantly lead to obesity, type 2 diabetes, and related complications, which have become one of the major threats to global health. This incidence could be potentially reduced by daily foods rich in resistant starch (RS). However, it remains a challenge to breed high-RS rice varieties. Here, we reported a high-RS mutant rs4 with an RS content of ~10.8% in cooked rice. The genetic study revealed that the loss-of-function SSIIIb and SSIIIa together with a strong Wx allele in the background collaboratively contributed to the high-RS phenotype of the rs4 mutant. The increased RS contents in ssIIIa and ssIIIa ssIIIb mutants were associated with the increased amylose and lipid contents. SSIIIb and SSIIIa proteins were functionally redundant, whereas SSIIIb mainly functioned in leaves and SSIIIa largely in endosperm owing to their divergent tissue-specific expression patterns. Furthermore, we found that SSIII experienced duplication in different cereals, of which one SSIII paralog was mainly expressed in leaves and another in the endosperm. SSII but not SSIV showed a similar evolutionary pattern to SSIII. The copies of endosperm-expressed SSIII and SSII were associated with high total starch contents and low RS levels in the seeds of tested cereals, compared with low starch contents and high RS levels in tested dicots. These results provided critical genetic resources for breeding high-RS rice cultivars, and the evolutionary features of these genes may facilitate to generate high-RS varieties in different cereals.


Asunto(s)
Diabetes Mellitus Tipo 2 , Oryza , Almidón Sintasa , Almidón Resistente/metabolismo , Oryza/genética , Almidón Sintasa/genética , Fitomejoramiento , Almidón , Amilosa , Proteínas de Plantas/genética
12.
Food Res Int ; 169: 112886, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254334

RESUMEN

The difference in grain yield between superior grains (SG) on the upper part and inferior grains (IG) on the lower part of the same panicle was widely reported. To date, variations in rice taste quality between SG and IG and the related starch physicochemical properties remained poorly understood. Here, rice cultivars with different taste quality (NT, normal taste; GT, good taste) were grown to investigate the mechanism underlying taste difference between SG and IG and the correlation between cooked rice taste and starch properties. In this study, the taste value of GT rice was 32.2% higher than that of NT rice across the cultivars. The GT rice comprised a series of typical taste qualities of larger stickiness, smaller hardness, lower apparent amylose content (AAC), and lower protein content (PC). The taste quality differed among rice grains on the same panicle; SG achieved 21.9% and 17.0% higher taste value than IG in GT rice and NT rice, respectively. The higher taste value in SG was owing to the larger stickiness and lower PC. Meanwhile, SG of GT rice achieved the lowest PC (8.2%) and gluten content (5.6%), which might indicate a better health value. Additionally, larger and smoother granules, more fa (DP < 12), lower crystallinity, and larger 1045/1022 cm-1 ratios were found in SG starch compared to IG starch. These led to a weaker swelling power and lower gelatinization enthalpy in SG starch, while gelatinization temperature and retrogression enthalpy were the opposite. Moreover, SG starch exhibited higher storage modulus, loss modulus, slowly digestible starch contents, and resistant starch contents than IG. Our results revealed a great difference in taste quality between SG and IG in rice. The larger and smoother starch granules and shorter chain length could increase the ordered structure of starch, thus improving swelling power, gelatinization properties, and rheological characteristics and facilitating better taste quality of SG over IG. Besides, the lower PC (especially gluten content), higher slowly digestible starch, and higher resistant starch content indicated a more promising health value of SG in the food industry.


Asunto(s)
Oryza , Almidón , Almidón/química , Oryza/química , Gusto , Almidón Resistente/metabolismo , Glútenes/metabolismo
13.
J Sci Food Agric ; 103(11): 5270-5276, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37005332

RESUMEN

BACKGROUND: Drought stress (DS) is the main abiotic stress that maize suffers during its whole growth period, and maize is also sensitive to DS. It had been demonstrated that DS could improve the quality of normal maize starch. However, waxy maize, which has special properties, has not been explored in depth, which limits the breeding and cultivation of waxy maize varieties and the application of waxy maize starch. Therefore, in this study, we investigated the effects of DS on the biosynthesis, structure, and functionality of waxy maize starch. RESULTS: The results showed that DS decreased the expression level of SSIIb, SSIIIa, GBSSIIa, SBEI, SBEIIb, ISAII, and PUL, but increased the expression level of SSI and SBEIIa. DS did not change the average chain length of amylopectin, while increased the relative content of fa chains (RCfa ) and decreased the RCfb1 and RCfb3 . Furthermore, DS decreased the amylose content, amorphous lamellar distance da , semi-crystalline repeat distance, and average particle size, whereas it increased the relative crystallinity, crystalline distance dc , the content of rapidly digested starch in the uncooked system and resistant starch content in both the uncooked and cooked system. CONCLUSIONS: For waxy maize, DS could raise the relative expression level of SSI and SBEIIa, thus increasing RCfa . The larger number of RCfa could create steric hindrance, which can lead to producing more resistant starch in waxy maize starch. © 2023 Society of Chemical Industry.


Asunto(s)
Amilopectina , Zea mays , Amilopectina/química , Zea mays/química , Almidón Resistente/metabolismo , Sequías , Fitomejoramiento , Almidón/química , Amilosa/química , Ceras/química
15.
Food Chem ; 411: 135412, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36652881

RESUMEN

This study aimed to investigate the metabolic and population responses of gut microbiota to resistant starch (RS3) in the presence of exogenous Lactiplantibacillus plantarum strain 84-3 (Lp84-3) in vitro and in vivo. Lp84-3 promoted acetate, propionate, and butyrate production from RS3 by gut microbiota and increased Lactobacillus and Blautia contents in vitro. Furthermore, in the presence of Lp84-3, starch granules presented a "dot-by-hole" fermentation pattern. Administration of Lp84-3 with RS3 increased the level of SCFA-producing Faecalibaculum, Parabacteroides, Alistipes, and Anaeroplasma in the faeces of rates, with Lactobacillus and Akkermansia representing the key genera that significantly promoted SCFAs, especially propionate and butyrate. Lp84-3 with RS3 promoted genes related to tryptophan synthase (EC 4.2.1.20) and beta-glucosidase (EC 3.2.1.21) in faecal bacteria. Our findings highlight the ability of Lp84-3 to enhance RS3 degradation, possibly by promoting SCFA-producing bacteria, and indicate that Lp84-3 could be a potential probiotic with a beneficial effect on gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Ratas , Animales , Fermentación , Almidón Resistente/metabolismo , Ácidos Grasos Volátiles/metabolismo , Propionatos/metabolismo , Butiratos/metabolismo , Bacterias/metabolismo , Heces/microbiología , Lactobacillus/metabolismo , Bacteroidetes
16.
Neurobiol Dis ; 177: 105993, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36627028

RESUMEN

Clarifying the risk factors and mechanisms that contribute to the onset of cognitive impairment following estrogen depletion is essential for improving the quality of life of older females. In the current study, using behavioral tests, 16S rDNA sequencing, in vivo and in vitro electrophysiology, optogenetics and chemogenetics, we found that high-fat diet (HFD)-accelerated impairment of hippocampus-dependent memory, gut microbiota, and hippocampal theta rhythmogenesis in ovariectomized (OVX) mice and fecal microbiota transplantation rescued these phenomena. The identification of fasting-activated medial septal neurons showed that PV+ GABAergic neurons in the medial septal area (MSA) respond to gut sensory signals. Optogenetic activation of septohippocampal PV+ GABAergic fibers (but not cholinergic fibers) significantly rescued hippocampal theta rhythmogenesis and spatial memory in HFD-fed OVX mice. Resistant starch supplementation (RSHFD) rectified the gut Prevotellaceae and considerably alleviated reduced septal gut-responsive neurons, decreased hippocampal theta rhythm, and impaired hippocampus-dependent memory in HFD-fed OVX mice. Furthermore, chemogenetic inhibition of septal PV+ GABAergic neurons reversed the neuroprotective effects of resistant starch supplementation. These findings highlight the notable gut-sensory nature of medial septal PV+ GABAergic neurons. A HFD accelerates estrogen deficiency-induced cognitive impairment by disrupting the gut Prevotellaceae-septo-hippocampal pathway. This study contributes to a better understanding of the precise gut-brain control of cognition and cognitive impairment in postmenopausal females.


Asunto(s)
Dieta Alta en Grasa , Memoria Espacial , Femenino , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Calidad de Vida , Almidón Resistente/metabolismo , Almidón Resistente/farmacología , Hipocampo/metabolismo , Neuronas GABAérgicas/metabolismo , Ritmo Teta/fisiología
17.
Crit Rev Food Sci Nutr ; 63(23): 6412-6422, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35075962

RESUMEN

Current definition of resistant starch (RS) types is largely based on their interactions with digestive enzymes from human upper gastrointestinal tract. However, this is frequently inadequate to reflect their effects on the gut microbiota, which is an important mechanism for RS to fulfill its function to improve human health. Distinct shifts of gut microbiota compositions and alterations of fermented metabolites could be resulted by the consumption of RS from the same type. This review summarized these defects from the current definitions of RS types, while more importantly proposed pioneering concepts for new definitions of RS types from the gut microbiota perspectives. New RS types considered the aspects of RS fermentation rate, fermentation end products, specificity toward gut microbiota and shifts of gut microbiota caused by the consumption of RS. These definitions were depending on the known outcomes from RS-gut microbiota interactions. The application of new RS types in understanding the complex RS-gut microbiota interactions and promoting human health should be focused in the future.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Almidón Resistente/metabolismo , Almidón/metabolismo , Fermentación , Heces
18.
J Dairy Sci ; 106(2): 1453-1463, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36526457

RESUMEN

Intestinal hyperpermeability and subsequent immune activation alters nutrient partitioning and thus, decreases productivity. Developing experimental models of intestinal barrier dysfunction in heathy cows is a prerequisite in identifying nutritional strategies to mitigate it. Six cannulated Holstein cows (mean ± standard deviation, 37 ± 10 kg/d milk yield; 219 ± 97 d in milk; 691 ± 70 kg body weight) were used in a replicated 3 × 3 Latin square design experiment with 21-d periods (16-d wash-out and 5-d challenge) to evaluate either feed restriction or hindgut acidosis as potential models for inducing intestinal hyperpermeability. Cows were randomly assigned to treatment sequence within square and treatment sequences were balanced for carryover effects. Treatments during the challenge were (1) control (CTR; ad libitum feeding); (2) feed restriction (FR; total mixed ration fed at 50% of ad libitum feed intake); and (3) resistant starch (RS; 500 g of resistant starch infused in abomasum once a day as a pulse-dose 30 min before morning feeding). The RS (ActiStar RT 75330, Cargill Inc.) was tapioca starch that was expected to be resistant to enzymatic digestion in the small intestine and highly fermentable in the hindgut. Blood samples were collected 4 h after feeding on d 13 and 14 of the wash-out periods (baseline data used as covariate), and on d 1, 3, and 5 of the challenge periods. Fecal samples were collected 4 and 8 h after the morning feeding on d 14 of the wash-out periods and d 5 of the challenge periods. By design, FR decreased dry matter intake (48%) relative to CTR and RS, and this resulted in marked reductions in milk and 3.5% FCM yields over time, with the most pronounced decrease occurring on d 5 of the challenge (34 and 27%, respectively). Further, FR increased somatic cell count by 115% on d 5 of the challenge relative to CTR and RS. Overall, FR increased nonesterified fatty acids (159 vs. 79 mEq/L) and decreased BHB (8.5 vs. 11.2 mg/dL), but did not change circulating glucose relative to CTR. However, RS had no effect on production or metabolism metrics. Resistant starch decreased fecal pH 8 h after the morning feeding (6.26 vs. 6.81) relative to CTR and FR. Further, RS increased circulating lipopolysaccharide binding protein (4.26 vs. 2.74 µg/mL) compared with FR only on d 1 of the challenge. Resistant starch also increased Hp (1.52 vs. 0.48 µg/mL) compared with CTR, but only on d 5 of the challenge. However, neither RS or FR affected concentrations of serum amyloid A, IL1ß, or circulating endotoxin compared with CTR. The lack of consistent responses in inflammatory biomarkers suggests that FR and RS did not meaningfully affect intestinal barrier function. Thus, future research evaluating the effects of hindgut acidosis and FR using more intense insults and direct metrics of intestinal barrier function is warranted.


Asunto(s)
Lactancia , Almidón Resistente , Femenino , Bovinos , Animales , Almidón Resistente/metabolismo , Almidón Resistente/farmacología , Dieta/veterinaria , Abomaso/metabolismo , Leche/metabolismo , Alimentación Animal/análisis , Rumen/metabolismo , Almidón/metabolismo
19.
Appl Microbiol Biotechnol ; 107(2-3): 491-515, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36512032

RESUMEN

Since the role of intestinal microbiota in metabolism was understood, the importance of dietary components such as fibres and prebiotics, which affect the modulation of microbiota, has been increasing day by day. While all prebiotic components are considered dietary fibre, not every dietary fibre is considered a prebiotic. While fructooligosaccharides, galactooligosaccharides, inulin, and galactans are considered prebiotics, other fermentable carbohydrates are considered candidate prebiotic components based on in vitro and preclinical studies. Resistant starch, one of such carbohydrates, is considered a potential prebiotic component when it is made resistant to digestion naturally or chemically. In this review, both in vitro and in vivo studies in which the prebiotic capacity of type II, type III, and type IV resistant starch isolated from food and produced commercially was assessed were analyzed. According to the results of current studies, certain types of resistant starch are thought to have a high prebiotic capacity, and they may be candidate prebiotic components although positive results have not been achieved in all studies. KEY POINTS: • Resistant starch is undigested in the small intestine and is fermented in the large intestine. • Resistant starch fermentation positively affects the growth of Bifidobacterium and Lactobacillus. • Resistant starch can be considered a prebiotic ingredient.


Asunto(s)
Prebióticos , Almidón Resistente , Almidón Resistente/metabolismo , Almidón/metabolismo , Fibras de la Dieta/metabolismo , Inulina/metabolismo , Fermentación
20.
J Sci Food Agric ; 103(4): 2134-2145, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36397183

RESUMEN

BACKGROUND: The composition of glutenin protein significantly affects protein-starch interactions and starch digestion characteristics in wheat dough matrices. To elucidate the effects of high molecular weight glutenin subunits at the Glu-B1 locus on dough processing quality, the detailed structural changes of protein, starch, and their complexes were compared in Mixolab dough samples of two near isogenic lines 7 + 8 and 7 + 9. RESULTS: The results showed that the degree of protein aggregation increased continuously during dough processing, as did the destruction and rearrangement of the gluten network. Compared to 7 + 8, the stronger and more stable protein network formed in 7 + 9 dough induced intensive interactions between protein and starch, primarily through hydrogen bonds and isomeric glycosidic bonds. In 7 + 9 dough, the more compact and extensive protein-starch network significantly inhibited starch gelatinization during dough pasting, while during the dough cooling stage [from C4 (82.8 °C) to C5 (52.8 °C)], more protein-starch complexes composed of monomeric proteins and short-chain starch were generated, which remarkably inhibited starch retrogradation. All protein-starch interactions in the 7 + 9 dough improved the starch digestion resistance, as reflected by the high content of resistant starch. CONCLUSION: The more extensive and intensive protein-starch interactions in the 7 + 9 dough inhibited the gelatinization and enzymatic hydrolysis of starch, thereby producing more slowly digestible starch and resistant starch. These findings demonstrate the feasibility of optimizing the texture and digestibility of wheat-based food products by regulating the behavior and interactions of proteins and starch during dough processing. © 2022 Society of Chemical Industry.


Asunto(s)
Almidón , Triticum , Triticum/química , Almidón/química , Almidón Resistente/metabolismo , Pan , Glútenes/química , Harina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA