Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 886
Filtrar
1.
Microb Ecol ; 87(1): 98, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046491

RESUMEN

Skin microbiomes in amphibians are complex systems that can be influenced by biotic and abiotic factors. In this study, we examined the effect of host species and environmental conditions on the skin bacterial and fungal microbiota of four obligate paedomorphic salamander species, commonly known as axolotls (Ambystoma andersoni, A. dumerilii, A. mexicanum, and A. taylori), all of them endemic to the Trans-Mexican Volcanic Belt. We found that despite their permanent aquatic lifestyle, these species present a host-specific skin microbiota that is distinct from aquatic communities. We identified skin-associated taxa that were unique to each host species and that differentiated axolotl species based on alpha and beta diversity metrics. Moreover, we identified a set of microbial taxa that were shared across hosts with high relative abundances across skin samples. Specifically, bacterial communities were dominated by Burkholderiales and Pseudomonadales bacterial orders and Capnodiales and Pleosporales fungal orders. Host species and environmental variables collectively explained more microbial composition variation in bacteria (R2 = 0.46) in comparison to fungi (R2 = 0.2). Our results contribute to a better understanding of the factors shaping the diversity and composition of skin microbial communities in Ambystoma. Additional studies are needed to disentangle the effects of specific host associated and environmental factors that could influence the skin microbiome of these endangered species.


Asunto(s)
Bacterias , Hongos , Microbiota , Piel , Animales , Piel/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , México , Hongos/clasificación , Hongos/aislamiento & purificación , Hongos/genética , Ambystoma mexicanum/microbiología , Especificidad del Huésped , Ambiente , Biodiversidad
2.
Dev Biol ; 515: 151-159, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39067503

RESUMEN

Many salamanders can completely regenerate a fully functional limb. Limb regeneration is a carefully coordinated process involving several defined stages. One key event during the regeneration process is the patterning of the blastema to inform cells of what they must differentiate into. Although it is known that many genes involved in the initial development of the limb are re-used during regeneration, the exact molecular circuitry involved in this process is not fully understood. Several large-scale transcriptional profiling studies of axolotl limb regeneration have identified many transcription factors that are up-regulated after limb amputation. Sall4 is a transcription factor that has been identified to play essential roles in maintaining cells in an undifferentiated state during development and also plays a unique role in limb development. Inactivation of Sall4 during limb bud development results in defects in anterior-posterior patterning of the limb. Sall4 has been found to be up-regulated during limb regeneration in both Xenopus and salamanders, but to date it function has been untested. We confirmed that Sall4 is up-regulated during limb regeneration in the axolotl using qRT-PCR and identified that it is present in the skin cells and also in cells within the blastema. Using CRISPR technology we microinjected gRNAs specific for Sall4 complexed with cas9 protein into the blastema to specifically knockout Sall4 in blastema cells only. This resulted in limb regenerate defects, including missing digits, fusion of digit elements, and defects in the radius and ulna. This suggests that during regeneration Sall4 may play a similar role in regulating the specification of anterior-proximal skeletal elements.


Asunto(s)
Ambystoma mexicanum , Tipificación del Cuerpo , Extremidades , Regeneración , Factores de Transcripción , Animales , Regeneración/genética , Regeneración/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Extremidades/fisiología , Extremidades/embriología , Ambystoma mexicanum/genética , Ambystoma mexicanum/fisiología , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Anfibias/genética , Proteínas Anfibias/metabolismo
3.
Ann Anat ; 255: 152288, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823491

RESUMEN

BACKGROUND: The regenerative capacity of organisms declines throughout evolution, and mammals lack the ability to regenerate limbs after injury. Past approaches to achieving successful restoration through pharmacological intervention, tissue engineering, and cell therapies have faced significant challenges. OBJECTIVES: This review aims to provide an overview of the current understanding of the mechanisms behind animal limb regeneration and the successful translation of these mechanisms for human tissue regeneration. RESULTS: Particular attention was paid to the Mexican axolotl (Ambystoma mexicanum), the only adult tetrapod capable of limb regeneration. We will explore fundamental questions surrounding limb regeneration, such as how amputation initiates regeneration, how the limb knows when to stop and which parts to regenerate, and how these findings can apply to mammalian systems. CONCLUSIONS: Given the urgent need for regenerative therapies to treat conditions like diabetic foot ulcers and trauma survivors, this review provides valuable insights and ideas for researchers, clinicians, and biomedical engineers seeking to facilitate the regeneration process or elicit full regeneration from partial regeneration events.


Asunto(s)
Ambystoma mexicanum , Extremidades , Regeneración , Animales , Humanos , Regeneración/fisiología , Extremidades/fisiología , Ambystoma mexicanum/fisiología , Investigación Biomédica Traslacional , Ingeniería de Tejidos/métodos , Medicina Regenerativa/métodos , Medicina Regenerativa/tendencias , Amputación Quirúrgica
4.
J Exp Biol ; 227(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38916053

RESUMEN

Amphibians are a classical object for physiological studies, and they are of great value for developmental studies owing to their transition from an aquatic larval form to an adult form with a terrestrial lifestyle. Axolotls (Ambystoma mexicanum) are of special interest for such studies because of their neoteny and facultative pedomorphosis, as in these animals, metamorphosis can be induced and fully controlled in laboratory conditions. It has been suggested that their metamorphosis, associated with gross anatomical changes in the heart, also involves physiological and electrical remodeling of the myocardium. We used whole-cell patch clamp to investigate possible changes caused by metamorphosis in electrical activity and major ionic currents in cardiomyocytes isolated from paedomorphic and metamorphic axolotls. T4-induced metamorphosis caused shortening of atrial and ventricular action potentials (APs), with no changes in resting membrane potential or maximum velocity of AP upstroke, favoring higher heart rate possible in metamorphic animals. Potential-dependent potassium currents in axolotl myocardium were represented by delayed rectifier currents IKr and IKs, and upregulation of IKs caused by metamorphosis probably underlies AP shortening. Metamorphosis was associated with downregulation of inward rectifier current IK1, probably serving to increase the excitability of myocardium in metamorphic animals. Metamorphosis also led to a slight increase in fast sodium current INa with no changes in its steady-state kinetics and to a significant upregulation of ICa in both atrial and ventricular cells, indicating stronger Ca2+ influx for higher cardiac contractility in metamorphic salamanders. Taken together, these changes serve to increase cardiac reserve in metamorphic animals.


Asunto(s)
Potenciales de Acción , Ambystoma mexicanum , Metamorfosis Biológica , Miocitos Cardíacos , Animales , Ambystoma mexicanum/fisiología , Ambystoma mexicanum/crecimiento & desarrollo , Miocitos Cardíacos/fisiología , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Corazón/crecimiento & desarrollo , Corazón/fisiología , Miocardio/metabolismo
5.
Sci Rep ; 14(1): 11787, 2024 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782987

RESUMEN

Axolotls (Ambystoma mexicanum) are extensively studied for their relevance in human medical research. Despite being critically endangered in the wild, they have gained popularity as household pets. Although they have been kept in captivity for over a century, detailed descriptions of their coelomic organ anatomy remain limited. Also, this species exhibits significant variations compared to other amphibians. Ultrasound is a non-invasive and painless medical imaging technique, ideally suited for investigating internal organs or structures. This study focused on describing the ultrasound appearance of the axolotl coelomic cavity. It details the identification, localization and parenchymal description of major organs in 28 neotenic axolotls using ultrasound frequencies ranging from 7 to 15 MHz. The accuracy of the results was validated by comparing ultrasound findings with necropsy results from one male and one female axolotl. The heart, lung surface, liver and reproductive tracts were visualized. Measurements, along with confidence intervals, were calculated for the spleen, kidneys, testicles, gastric wall, gallbladder, and pylorus. Occasional detection of hyperechoic millimetric particles in the gallbladder or ascites was noted. However, visualization of the pancreas and bladder was not possible. This research outcomes involve the development of a comprehensive atlas comprising images obtained throughout the study. Additionally, the experiment established a reproducible and readily accessible protocol for conducting anatomy-morphological assessments in axolotl medicine. This protocol stands as a crucial preliminary stage before advancing to lesion identification.


Asunto(s)
Ambystoma mexicanum , Ultrasonografía , Animales , Ambystoma mexicanum/anatomía & histología , Proyectos Piloto , Ultrasonografía/métodos , Masculino , Femenino
6.
OMICS ; 28(6): 291-302, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38808529

RESUMEN

The axolotl (Ambystoma mexicanum) is renowned for its remarkable regenerative capabilities, which are not diminished by the transition from a neotenic to a metamorphic state. This study explored the microbiome dynamics in axolotl limb regeneration by examining the microbial communities present in neotenic and metamorphic axolotls at two critical stages of limb regeneration: pre-amputation and during blastema formation. Utilizing 16S rRNA amplicon sequencing, we investigated the variations in microbiome profiles associated with different developmental and regenerative states. Our findings reveal a distinct separation in the microbiome profiles of neotenic and metamorphic samples, with a clear demarcation in microbial composition at both the phylum and genus levels. In neotenic 0DPA samples, Proteobacteria and Firmicutes were the most abundant, whereas in neotenic 7DPA samples, Proteobacteria and Bacteroidetes dominated. Conversely, metamorphic samples displayed a higher abundance of Firmicutes and Bacteroidetes at 0DPA and Proteobacteria and Firmicutes at 7DPA. Alpha and beta diversity analyses, along with dendrogram construction, demonstrated significant variations within and between the sample groups, suggesting a strong influence of both developmental stage and regenerative state on the microbiome. Notably, Flavobacterium and Undibacterium emerged as distinctive microbial entities in neotenic 7DPA samples, highlighting potential key players in the microbial ecology of regeneration. These findings suggest that the axolotl's microbiome is dynamically responsive to blastema formation, and they underscore the potential influence of microbial communities on the regeneration process. This study lays the groundwork for future research into the mechanisms by which the microbiome may modulate regenerative capacity.


Asunto(s)
Ambystoma mexicanum , Extremidades , Microbiota , ARN Ribosómico 16S , Regeneración , Animales , Microbiota/genética , Ambystoma mexicanum/microbiología , Ambystoma mexicanum/fisiología , ARN Ribosómico 16S/genética , Extremidades/microbiología , Filogenia
7.
Dev Cell ; 59(16): 2239-2253.e9, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38788714

RESUMEN

The salamander limb correctly regenerates missing limb segments because connective tissue cells have segment-specific identities, termed "positional information". How positional information is molecularly encoded at the chromatin level has been unknown. Here, we performed genome-wide chromatin profiling in mature and regenerating axolotl limb connective tissue cells. We find segment-specific levels of histone H3K27me3 as the major positional mark, especially at limb homeoprotein gene loci but not their upstream regulators, constituting an intrinsic segment information code. During regeneration, regeneration-specific regulatory elements became active prior to the re-appearance of developmental regulatory elements. In the hand, the permissive chromatin state of the homeoprotein gene HoxA13 engages with the regeneration program bypassing the upper limb program. Comparison of regeneration regulatory elements with those found in other regenerative animals identified a core shared set of transcription factors, supporting an ancient, conserved regeneration program.


Asunto(s)
Ambystoma mexicanum , Cromatina , Extremidades , Proteínas de Homeodominio , Regeneración , Animales , Regeneración/genética , Regeneración/fisiología , Cromatina/metabolismo , Cromatina/genética , Ambystoma mexicanum/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Histonas/metabolismo , Histonas/genética , Regulación del Desarrollo de la Expresión Génica/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
8.
J Vis Exp ; (206)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682939

RESUMEN

The axolotl (Ambystoma mexicanum) is a promising model organism for regenerative medicine due to its remarkable ability to regenerate lost or damaged organs, including limbs, brain, heart, tail, and others. Studies on axolotl shed light on cellular and molecular pathways ruling progenitor activation and tissue restoration after injury. This knowledge can be applied to facilitate the healing of regeneration-incompetent injuries, such as bone non-union. In the current protocol, the femur osteotomy stabilization using an internal plate fixation system is described. The procedure was adapted for use in aquatic animals (axolotl, Ambystoma mexicanum). ≥20 cm snout-to-tail tip axolotls with fully ossified, mouse-size comparable femurs were used, and special attention was paid to the plate positioning and fixation, as well as to the postoperative care. This surgical technique allows for standardized and stabilized bone fixation and could be useful for direct comparison to axolotl limb regeneration and analogous studies of bone healing across amphibians and mammals.


Asunto(s)
Ambystoma mexicanum , Placas Óseas , Fémur , Osteotomía , Animales , Ambystoma mexicanum/cirugía , Osteotomía/métodos , Fémur/cirugía
9.
Genes (Basel) ; 15(3)2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38540368

RESUMEN

Neurodegenerative proteinopathies such as Alzheimer's Disease are characterized by abnormal protein aggregation and neurodegeneration. Neuroresilience or regenerative strategies to prevent neurodegeneration, preserve function, or restore lost neurons may have the potential to combat human proteinopathies; however, the adult human brain possesses a limited capacity to replace lost neurons. In contrast, axolotls (Ambystoma mexicanum) show robust brain regeneration. To determine whether axolotls may help identify potential neuroresilience or regenerative strategies in humans, we first interrogated whether axolotls express putative proteins homologous to human proteins associated with neurodegenerative diseases. We compared the homology between human and axolotl proteins implicated in human proteinopathies and found that axolotls encode proteins highly similar to human microtubule-binding protein tau (tau), amyloid precursor protein (APP), and ß-secretase 1 (BACE1), which are critically involved in human proteinopathies like Alzheimer's Disease. We then tested monoclonal Tau and BACE1 antibodies previously used in human and rodent neurodegenerative disease studies using immunohistochemistry and western blotting to validate the homology for these proteins. These studies suggest that axolotls may prove useful in studying the role of these proteins in disease within the context of neuroresilience and repair.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Deficiencias en la Proteostasis , Adulto , Animales , Humanos , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide , Enfermedades Neurodegenerativas/genética , Ácido Aspártico Endopeptidasas , Proteínas tau/genética
10.
J Zoo Wildl Med ; 54(4): 670-680, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38251990

RESUMEN

The objectives of this study were to describe the gross anatomy and ultrasonographic appearance of coelomic organs in subadult and adult axolotls (Ambystoma mexicanum), to describe an ultrasound technique, and to test correlations of ultrasonographic measurement with body length, width, and weight. Necropsies of coelomic organs were conducted on 10 axolotls (females = 5; males = 5) and ultrasound on 11 (males = 5; females = 6). Animals were kept in water and maintained conscious during ultrasound. The heart, caudal vena cava, liver, gallbladder, spleen, esophagus, stomach, colon, kidneys, ovaries, and fat bodies were identified in all study subjects, although testicles were identified in only 6/7 subjects. The pancreas and adrenal glands could not be identified in any animals, either during necropsy or ultrasonography. Coelomic and pericardial effusion was present in all animals. Ultrasonographic measurements of the liver, spleen, myocardial thickness, and right and left kidney length were highly repeatable (correlation value [CV] < 5%) and the esophagus, spleen, caudal vena cava, fat bodies, gallbladder, colon thickness, right kidney height and width, and right testicle diameter were statistically repeatable (CV < 10%).


Asunto(s)
Ambystoma mexicanum , Hígado , Animales , Femenino , Masculino , Riñón/diagnóstico por imagen , Glándulas Suprarrenales , Estómago
11.
J Mech Behav Biomed Mater ; 150: 106341, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38160643

RESUMEN

BACKGROUND: The extracellular mechanical environment plays an important role in the skeletal development process. Characterization of the material properties of regenerating tissues that recapitulate development, provides insights into the mechanical environment experienced by the cells and the maturation of the matrix. In this study, we estimated the viscoelastic material properties of regenerating forelimbs in the axolotl (Ambystoma mexicanum) at three different regeneration stages: 27 days post-amputation (mid-late bud) and 41 days post-amputation (palette stage), and fully-grown time points. A stress-relaxation indentation test followed by two-term Prony series viscoelastic inverse finite element analysis was used to obtain material parameters. Glycosaminoglycan (GAG) content was estimated using a 1,9- dimethyl methylene blue assay. RESULTS: The instantaneous and equilibrium shear moduli significantly increased with regeneration while the short-term stress relaxation time significantly decreased with limb regeneration. The long-term stress relaxation time in the fully-grown time point was significantly lower than 27 and 41 DPA groups. The GAG content was not significantly different between 27 and 41 DPA but the GAG content of cartilage in the fully-grown group was significantly greater than in 27 and 41 DPA. CONCLUSIONS: The mechanical environment of the proliferating cells changes drastically during limb regeneration. Understanding how the tissue's mechanical properties change during limb regeneration is critical for linking molecular-level matrix production of the cells to tissue-level behavior and mechanical signals.


Asunto(s)
Ambystoma mexicanum , Regeneración , Animales , Análisis de Elementos Finitos
12.
J Neurophysiol ; 131(1): 124-136, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38116604

RESUMEN

Previous work has shown that activation of tiger salamander retinal radial glial cells by extracellular ATP induces a pronounced extracellular acidification, which has been proposed to be a potent modulator of neurotransmitter release. This study demonstrates that low micromolar concentrations of extracellular ATP similarly induce significant H+ effluxes from Müller cells isolated from the axolotl retina. Müller cells were enzymatically isolated from axolotl retina and H+ fluxes were measured from individual cells using self-referencing H+-selective microelectrodes. The increased H+ efflux from axolotl Müller cells induced by extracellular ATP required activation of metabotropic purinergic receptors and was dependent upon calcium released from internal stores. We further found that the ATP-evoked increase in H+ efflux from Müller cells of both tiger salamander and axolotl were sensitive to pharmacological agents known to interrupt calmodulin and protein kinase C (PKC) activity: chlorpromazine (CLP), trifluoperazine (TFP), and W-7 (all calmodulin inhibitors) and chelerythrine, a PKC inhibitor, all attenuated ATP-elicited increases in H+ efflux. ATP-initiated H+ fluxes of axolotl Müller cells were also significantly reduced by amiloride, suggesting a significant contribution by sodium-hydrogen exchangers (NHEs). In addition, α-cyano-4-hydroxycinnamate (4-cin), a monocarboxylate transport (MCT) inhibitor, also reduced the ATP-induced increase in H+ efflux in both axolotl and tiger salamander Müller cells, and when combined with amiloride, abolished ATP-evoked increase in H+ efflux. These data suggest that axolotl Müller cells are likely to be an excellent model system to understand the cell-signaling pathways regulating H+ release from glia and the role this may play in modulating neuronal signaling.NEW & NOTEWORTHY Glial cells are a key structural part of the tripartite synapse and have been suggested to regulate synaptic transmission, but the regulatory mechanisms remain unclear. We show that extracellular ATP, a potent glial cell activator, induces H+ efflux from axolotl retinal Müller (glial) cells through a calcium-dependent pathway that is likely to involve calmodulin, PKC, Na+/H+ exchange, and monocarboxylate transport, and suggest that such H+ release may play a key role in modulating neuronal transmission.


Asunto(s)
Ambystoma mexicanum , Células Ependimogliales , Animales , Células Ependimogliales/metabolismo , Ambystoma mexicanum/metabolismo , Calmodulina/metabolismo , Calcio/metabolismo , Amilorida/metabolismo , Adenosina Trifosfato/metabolismo , Neuroglía/metabolismo , Retina
13.
Am J Physiol Cell Physiol ; 326(2): C505-C512, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38105753

RESUMEN

Cellular reprogramming is characterized by the induced dedifferentiation of mature cells into a more plastic and potent state. This process can occur through artificial reprogramming manipulations in the laboratory such as nuclear reprogramming and induced pluripotent stem cell (iPSC) generation, and endogenously in vivo during amphibian limb regeneration. In amphibians such as the Mexican axolotl, a regeneration permissive environment is formed by nerve-dependent signaling in the wounded limb tissue. When exposed to these signals, limb connective tissue cells dedifferentiate into a limb progenitor-like state. This state allows the cells to acquire new pattern information, a property called positional plasticity. Here, we review our current understanding of endogenous reprogramming and why it is important for successful regeneration. We will also explore how naturally induced dedifferentiation and plasticity were leveraged to study how the missing pattern is established in the regenerating limb tissue.


Asunto(s)
Ambystoma mexicanum , Transducción de Señal , Animales , Reprogramación Celular
14.
Genes (Basel) ; 14(12)2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38137011

RESUMEN

BACKGROUND: Traumatic spinal cord injury (SCI) is a disabling condition that affects millions of people around the world. Currently, no clinical treatment can restore spinal cord function. Comparison of molecular responses in regenerating to non-regenerating vertebrates can shed light on neural restoration. The axolotl (Ambystoma mexicanum) is an amphibian that regenerates regions of the brain or spinal cord after damage. METHODS: In this study, we compared the transcriptomes after SCI at acute (1-2 days after SCI) and sub-acute (6-7 days post-SCI) periods through the analysis of RNA-seq public datasets from axolotl and non-regenerating rodents. RESULTS: Genes related to wound healing and immune responses were upregulated in axolotls, rats, and mice after SCI; however, the immune-related processes were more prevalent in rodents. In the acute phase of SCI in the axolotl, the molecular pathways and genes associated with early development were upregulated, while processes related to neuronal function were downregulated. Importantly, the downregulation of processes related to sensorial and motor functions was observed only in rodents. This analysis also revealed that genes related to pluripotency, cytoskeleton rearrangement, and transposable elements (e.g., Sox2, Krt5, and LOC100130764) were among the most upregulated in the axolotl. Finally, gene regulatory networks in axolotls revealed the early activation of genes related to neurogenesis, including Atf3/4 and Foxa2. CONCLUSIONS: Immune-related processes are upregulated shortly after SCI in axolotls and rodents; however, a strong immune response is more noticeable in rodents. Genes related to early development and neurogenesis are upregulated beginning in the acute stage of SCI in axolotls, while the loss of motor and sensory functions is detected only in rodents during the sub-acute period of SCI. The approach employed in this study might be useful for designing and establishing regenerative therapies after SCI in mammals, including humans.


Asunto(s)
Ambystoma mexicanum , Traumatismos de la Médula Espinal , Humanos , Animales , Ratas , Ratones , Ambystoma mexicanum/genética , RNA-Seq , Roedores/genética , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Perfilación de la Expresión Génica , Modelos Animales
15.
OMICS ; 27(11): 526-535, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37943672

RESUMEN

Circular RNAs (circRNAs) are of relevance to regenerative medicine and play crucial roles in post-transcriptional and translational regulation of biological processes. circRNAs are a class of RNA molecules that are formed through a unique splicing process, resulting in a covalently closed-loop structure. Recent advancements in RNA sequencing technologies and specialized computational tools have facilitated the identification and functional characterization of circRNAs. These molecules are known to exhibit stability, developmental regulation, and specific expression patterns in different tissues and cell types across various organisms. However, our understanding of circRNA expression and putative function in model organisms for regeneration is limited. In this context, this study reports, for the first time, on the repertoire of circRNAs in axolotl, a widely used model organism for regeneration. We generated RNA-seq data from intact limb, wound, and blastema tissues of axolotl during limb regeneration. The analysis revealed the presence of 35,956 putative axolotl circRNAs, among which 5331 unique circRNAs exhibited orthology with human circRNAs. In silico data analysis underlined the potential roles of axolotl circRNAs in cell cycle, cell death, and cell senescence-related pathways during limb regeneration, suggesting the participation of circRNAs in regulation of diverse functions pertinent to regenerative medicine. These new observations help advance our understanding of the dynamic landscape of axolotl circRNAs, and by extension, inform future regenerative medicine research and innovation that harness this model organism.


Asunto(s)
MicroARNs , ARN Circular , Animales , Humanos , ARN Circular/genética , ARN/genética , ARN/metabolismo , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Medicina Regenerativa , Análisis de Secuencia de ARN/métodos , MicroARNs/genética
16.
Dev Biol ; 504: 98-112, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37778717

RESUMEN

Severe muscle injury causes distress and difficulty in humans. Studying the high regenerative ability of the axolotls may provide hints for the development of an effective treatment for severe injuries to muscle tissue. Here, we examined the regenerative process in response to a muscle injury in axolotls. We found that axolotls are capable of complete regeneration in response to a partial muscle resection called volumetric muscle loss (VML), which mammals cannot perfectly regenerate. We investigated the mechanisms underlying this high regenerative capacity in response to VML, focusing on the migration of muscle satellite cells and the extracellular matrix (ECM) formed during VML injury. Axolotls form tenascin-C (TN-C)-enriched ECM after VML injury. This TN-C-enriched ECM promotes the satellite cell migration. We confirmed the importance of TN-C in successful axolotl muscle regeneration by creating TN-C mutant animals. Our results suggest that the maintenance of a TN-C-enriched ECM environment after muscle injury promotes the release of muscle satellite cells and supports eventually high muscle regenerative capacity. In the future, better muscle regeneration may be achieved in mammals through the maintenance of TN-C expression.


Asunto(s)
Ambystoma mexicanum , Tenascina , Animales , Humanos , Tenascina/genética , Tenascina/metabolismo , Ambystoma mexicanum/metabolismo , Matriz Extracelular/metabolismo , Músculos/metabolismo , Mamíferos/metabolismo , Músculo Esquelético/metabolismo
17.
Virology ; 588: 109909, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37879268

RESUMEN

Ranaviruses are large, dsDNA viruses that have significant ecological and economic impact on cold-blooded vertebrates. However, our understanding of the viral proteins and subsequent host immune response(s) that impact susceptibility to infection and disease is not clear. The ranavirus Ambystoma tigrinum virus (ATV), originally isolated from the Sonoran tiger salamander (Ambystoma mavortium stebbinsi), is highly pathogenic at low doses of ATV at all tiger salamander life stages and this model has been used to explore the host-pathogen interactions of ATV infection. However, inconsistencies in the availability of laboratory reared larval tiger salamanders required us to look at the well characterized axolotl (A. mexicanum) as a model for ATV infection. Data obtained from five infection experiments over different developmental timepoints suggest that axolotls are susceptible to ATV in an age- and dose-dependent manner. These data support the use of the ATV-axolotl model to further explore the host-pathogen interactions of ranavirus infections.


Asunto(s)
Ambystoma mexicanum , Ranavirus , Animales , Ranavirus/genética , Ambystoma , Interacciones Huésped-Patógeno , Larva
18.
Dev Cell ; 58(22): 2416-2427.e7, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37879337

RESUMEN

Axolotl limb regeneration is accompanied by the transient induction of cellular senescence within the blastema, the structure that nucleates regeneration. The precise role of this blastemal senescent cell (bSC) population, however, remains unknown. Here, through a combination of gain- and loss-of-function assays, we elucidate the functions and molecular features of cellular senescence in vivo. We demonstrate that cellular senescence plays a positive role during axolotl regeneration by creating a pro-proliferative niche that supports progenitor cell expansion and blastema outgrowth. Senescent cells impact their microenvironment via Wnt pathway modulation. Further, we identify a link between Wnt signaling and senescence induction and propose that bSC-derived Wnt signals facilitate the proliferation of neighboring cells in part by preventing their induction into senescence. This work defines the roles of cellular senescence in the regeneration of complex structures.


Asunto(s)
Ambystoma mexicanum , Senescencia Celular , Animales , Ambystoma mexicanum/metabolismo , Vía de Señalización Wnt , Células Madre , Proliferación Celular , Extremidades
19.
Nat Commun ; 14(1): 6346, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816738

RESUMEN

Humans and other tetrapods are considered to require apical-ectodermal-ridge (AER) cells for limb development, and AER-like cells are suggested to be re-formed to initiate limb regeneration. Paradoxically, the presence of AER in the axolotl, a primary model organism for regeneration, remains controversial. Here, by leveraging a single-cell transcriptomics-based multi-species atlas, composed of axolotl, human, mouse, chicken, and frog cells, we first establish that axolotls contain cells with AER characteristics. Further analyses and spatial transcriptomics reveal that axolotl limbs do not fully re-form AER cells during regeneration. Moreover, the axolotl mesoderm displays part of the AER machinery, revealing a program for limb (re)growth. These results clarify the debate about the axolotl AER and the extent to which the limb developmental program is recapitulated during regeneration.


Asunto(s)
Ambystoma mexicanum , Pollos , Humanos , Animales , Ratones , Extremidades , Ectodermo , Regulación del Desarrollo de la Expresión Génica
20.
Cell Transplant ; 32: 9636897231200059, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37724837

RESUMEN

The tetrapod salamander species axolotl (Ambystoma mexicanum) is capable of regenerating injured brain. For better understanding the mechanisms of brain regeneration, it is very necessary to establish a rapid and efficient gain-of-function and loss-of-function approaches to study gene function in the axolotl brain. Here, we establish and optimize an electroporation-based method to overexpress or knockout/knockdown target gene in ependymal glial cells (EGCs) in the axolotl telencephalon. By orientating the electrodes, we were able to achieve specific expression of EGFP in EGCs located in dorsal, ventral, medial, or lateral ventricular zones. We then studied the role of Cdc42 in brain regeneration by introducing Cdc42 into EGCs through electroporation, followed by brain injury. Our findings showed that overexpression of Cdc42 in EGCs did not significantly affect EGC proliferation and production of newly born neurons, but it disrupted their apical polarity, as indicated by the loss of the ZO-1 tight junction marker. This disruption led to a ventricular accumulation of newly born neurons, which are failed to migrate into the neuronal layer where they could mature, thus resulted in a delayed brain regeneration phenotype. Furthermore, when electroporating CAS9-gRNA protein complexes against TnC (Tenascin-C) into EGCs of the brain, we achieved an efficient knockdown of TnC. In the electroporation-targeted area, TnC expression is dramatically reduced at both mRNA and protein levels. Overall, this study established a rapid and efficient electroporation-based gene manipulation approach allowing for investigation of gene function in the process of axolotl brain regeneration.


Asunto(s)
Ambystoma mexicanum , Encéfalo , Animales , Ambystoma mexicanum/genética , Ambystoma mexicanum/metabolismo , Encéfalo/metabolismo , Electroporación , Neuronas/metabolismo , Proteína 9 Asociada a CRISPR/genética , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA