Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 679
Filtrar
1.
Nutrients ; 16(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999817

RESUMEN

Amygdalin is purported to exhibit anti-cancer properties when hydrolyzed to hydrogen cyanide (HCN). However, knowledge about amygdalin efficacy is limited. A questionnaire evaluating the efficacy, treatment, and dosing protocols, reasons for use, HCN levels, and toxicity was distributed to physicians and healers in Germany, providing amygdalin as an anti-cancer drug. Physicians (20) and healers (18) provided amygdalin over 8 (average) years to nearly 80 annually treated patients/providers. Information about amygdalin was predominantly obtained from colleagues (55%). Amygdalin was administered both intravenously (100%) and orally (32%). Intravenous application was considered to maximally delay disease progression (90%) and relieve symptoms (55%). Dosing was based on recommendations from colleagues (71%) or personal experience (47%). If limited success became apparent after an initial 3g/infusion, infusions were increased to 27g/infusion. Treatment response was primarily monitored with established (26%) and non-established tumor markers (19%). 90% did not monitor HCN levels. Negative effects were restricted to a few dizzy spells and nausea. Only 58% were willing to participate in clinical trials or contribute data for analysis (34%). Amygdalin infusions are commonly administered by healers and physicians with few side effects. The absence of standardized treatment calls for guidelines. Since intravenous application bypasses metabolization, re-evaluation of its mode of action is required.


Asunto(s)
Amigdalina , Neoplasias , Amigdalina/administración & dosificación , Humanos , Neoplasias/tratamiento farmacológico , Encuestas y Cuestionarios , Médicos , Alemania , Femenino , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
2.
Front Biosci (Landmark Ed) ; 29(6): 235, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38940029

RESUMEN

BACKGROUND: Apricot kernels containing amygdalin (AMG) as the major cyanogenic glycoside are potentially useful as a complementary therapy for the management of several ailments including cancer. Nevertheless, little is known regarding the toxic and therapeutic doses of AMG, particularly in terms of male reproduction. Hence, this study evaluates selected qualitative characteristics of rabbit testicular tissue following in vivo administration of AMG or apricot kernels for 28 days. METHODS: The rabbits were randomly divided into five groups (Control, P1, P2, P3, P4). The Control received no AMG/apricot kernels while the experimental groups P1 and P2 received a daily intramuscular injection of amygdalin at a dose of 0.6 and 3.0 mg/kg of body weight (b.w.) for 28 days, respectively. P3 and P4 received a daily dose of 60 and 300 mg/kg b.w. of crushed apricot kernels mixed with feed for 28 days, respectively. Changes to the testicular structure were quantified morphometrically, while tissue lysates were subjected to the evaluation of reactive oxygen species (ROS) production, total antioxidant capacity, activities of antioxidant enzymes, and glutathione concentration. The extent of damage to the proteins and lipids was quantified as well. Levels of selected cytokines were determined by the enzyme-linked immunosorbent assay while a luminometric approach was used to assess the activity of caspases. RESULTS: Rabbits treated with 3.0 mg/kg b.w. AMG presented a significantly increased protein oxidation (p = 0.0118) accompanied by a depletion of superoxide dismutase (p = 0.0464), catalase (p = 0.0317), and glutathione peroxidase (p = 0.0002). Significantly increased levels of interleukin-1 beta (p = 0.0012), tumor necrosis factors alpha (p = 0.0159), caspase-3/7 (p = 0.0014), and caspase-9 (p = 0.0243) were also recorded in the experimental group P2 when compared to the Control. No effects were observed in the rabbits treated with apricot kernels at the oxidative, inflammatory, and histopathological levels. CONCLUSIONS: Apricot kernels did not induce toxicity in the testicular tissues of male rabbits, unlike pure AMG, which had a negative effect on male reproductive structures carried out through oxidative, inflammatory, and pro-apoptotic mechanisms.


Asunto(s)
Amigdalina , Estrés Oxidativo , Prunus armeniaca , Testículo , Animales , Masculino , Conejos , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Amigdalina/farmacología , Prunus armeniaca/química , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Inflamación
3.
BMC Plant Biol ; 24(1): 590, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38902595

RESUMEN

BACKGROUND: The Prunus sibirica seeds with rich oils has great utilization, but contain amygdalin that can be hydrolyzed to release toxic HCN. Thus, how to effectively reduce seed amygdalin content of P. sibirica is an interesting question. Mandelonitrile is known as one key intermediate of amygdalin metabolism, but which mandelonitrile lyase (MDL) family member essential for its dissociation destined to low amygdalin accumulation in P. sibirica seeds still remains enigmatic. An integration of our recent 454 RNA-seq data, amygdalin and mandelonitrile content detection, qRT-PCR analysis and function determination is described as a critical attempt to determine key MDL and to highlight its function in governing mandelonitrile catabolism with low amygdalin accumulation in Prunus sibirica seeds for better developing edible oil and biodiesel in China. RESULTS: To identify key MDL and to unravel its function in governing seed mandelonitrile catabolism with low amygdalin accumulation in P. sibirica. Global identification of mandelonitrile catabolism-associated MDLs, integrated with the across-accessions/developing stages association of accumulative amount of amygdalin and mandelonitrile with transcriptional level of MDLs was performed on P. sibirica seeds of 5 accessions to determine crucial MDL2 for seed mandelonitrile catabolism of P. sibirica. MDL2 gene was cloned from the seeds of P. sibirica, and yeast eukaryotic expression revealed an ability of MDL2 to specifically catalyze the dissociation of mandelonitrile with the ideal values of Km (0.22 mM) and Vmax (178.57 U/mg). A combination of overexpression and mutation was conducted in Arabidopsis. Overexpression of PsMDL2 decreased seed mandelonitrile content with an increase of oil accumulation, upregulated transcript of mandelonitrile metabolic enzymes and oil synthesis enzymes (involving FA biosynthesis and TAG assembly), but exhibited an opposite situation in mdl2 mutant, revealing a role of PsMDL2-mediated regulation in seed amygdalin and oil biosynthesis. The PsMDL2 gene has shown as key molecular target for bioengineering high seed oil production with low amygdalin in oilseed plants. CONCLUSIONS: This work presents the first integrated assay of genome-wide identification of mandelonitrile catabolism-related MDLs and the comparative association of transcriptional level of MDLs with accumulative amount of amygdalin and mandelonitrile in the seeds across different germplasms and developmental periods of P. sibirica to determine MDL2 for mandelonitrile dissociation, and an effective combination of PsMDL2 expression and mutation, oil and mandelonitrile content detection and qRT-PCR assay was performed to unravel a mechanism of PsMDL2 for controlling amygdalin and oil production in P. sibirica seeds. These findings could offer new bioengineering strategy for high oil production with low amygdalin in oil plants.


Asunto(s)
Amigdalina , Prunus , Semillas , Amigdalina/metabolismo , Prunus/genética , Prunus/metabolismo , Prunus/enzimología , Semillas/metabolismo , Semillas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Aceites de Plantas/metabolismo , Aldehído-Liasas/metabolismo , Aldehído-Liasas/genética , Regulación de la Expresión Génica de las Plantas
4.
J Ethnopharmacol ; 331: 118317, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723918

RESUMEN

BACKGROUND: Evidence has demonstrated that Chinese medicine formula Xuefu Zhuyu decoction can markedly promote the formation of new hair in patients and mice with alopecia areata (AA). Amygdalin is one of the active components of Xuefu Zhuyu decoction, but its therapeutic effects and the underlying mechanisms on AA remains largely unrevealed. PURPOSE: Therefore, this study aims to investigate the therapeutic effects and to probe its molecular mechanisms of inflammation and immune regulation on AA model of C3H/HeJ mice. STUDY DESIGN: The C3H/HeJ female mice were divided into control, AA, rusolitinib (60 mg/kg), and amygdalin groups (60, 90, and 120 mg/kg, 0.2 ml/10 g, i.g.). METHODS: The optical microscope was used to observe the feature of the local skin, and the number of lanugo and terminal hair. H&E staining was performed to determine the degree of pathological damage to the skin. ELISA was performed to detect levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) in mice serum. Flow cytometry was carried out to analyze the CD4+CD25+FOXP3+, CD4+ and CD8+ of skin tissue. And the levels of CD4+ and CD8+, p-JAK/JAK2, p-STAT3/STAT, and SOCS3 were detected by immunohistochemistry. Western blot and qRT-PCR were employed to examine the expression levels of IL-6, TNF-α, IFN-γ, JAK2, p-JAK, STAT, p-STAT3 and SOCS3 proteins and genes in skin tissues. RESULTS: Compared with AA group, amygdalin immensely increased the number of vellus hairs and decreased the number of terminal hairs determined by skin microscopy and H&E staining. ELISA, Western blot and qRT-PCR data showed that the levels of IL-6, TNF-α and IFN-γ in serum and skin tissues of AA mice were significantly increased, while amygdalin administration dramatically restrained the contents of the three pro-inflammatory factors. Flow cytometry and immunohistochemistry hinted that amygdalin observably enhanced the number of CD4+CD25+FOXP3+ and CD4+ cells, while inhibited the number of CD8+ positive cells in mice with AA. Moreover, amygdalin signally reduced JAK2/STAT3 pathway-related protein and gene levels in AA mice. CONCLUSION: Amygdalin could inhibit inflammatory response and improve immune function in the treatment of AA. The underlying molecular mechanism may be related to inhibition of JAK2/STAT3 pathway.


Asunto(s)
Alopecia Areata , Amigdalina , Janus Quinasa 2 , Ratones Endogámicos C3H , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Alopecia Areata/tratamiento farmacológico , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Femenino , Amigdalina/farmacología , Transducción de Señal/efectos de los fármacos , Ratones , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Citocinas/metabolismo , Modelos Animales de Enfermedad
5.
Arch Insect Biochem Physiol ; 115(4): e22112, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605672

RESUMEN

Insect trehalases have been identified as promising new targets for pest control. These key enzymes are involved in trehalose hydrolysis and plays an important role in insect growth and development. In this contribution, plant and microbial compounds, namely validamycin A, amygdalin, and phloridzin, were evaluated for their effect, through trehalase inhibition, on Acyrthosiphon pisum aphid. The latter is part of the Aphididae family, main pests as phytovirus vectors and being very harmful for crops. Validamycin A was confirmed as an excellent trehalase inhibitor with an half maximal inhibitory concentration and inhibitor constant of 2.2 × 10-7 and 5 × 10-8 M, respectively, with a mortality rate of ~80% on a A. pisum population. Unlike validamycin A, the insect lethal efficacy of amygdalin and phloridzin did not correspond to their trehalase inhibition, probably due to their hydrolysis by insect ß-glucosidases. Our docking studies showed that none of the three compounds can bind to the trehalase active site, unlike their hydrolyzed counterparts, that is, validoxylamine A, phloretin, and prunasin. Validoxylamine A would be by far the best trehalase binder, followed by phloretin and prunasin.


Asunto(s)
Áfidos , Trehalasa , Animales , Amigdalina , Áfidos/efectos de los fármacos , Áfidos/enzimología , Inositol/análogos & derivados , Nitrilos , Floretina , Florizina , Trehalasa/antagonistas & inhibidores
6.
Arch Microbiol ; 206(5): 228, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38643446

RESUMEN

A novel Lysinibacillus strain, designated KH24T, was isolated from the gut of Siganus fuscescens, a herbivorous fish, which was captured off the coast of Okinawa, Japan. Strain KH24T is a rod-shaped, Gram-stain-positive, spore-forming, and motile bacterium that forms off-white colonies. The 16S rRNA gene sequence of strain KH24T showed the highest similarity (97.4%) with Lysinibacillus pakistanensis JCM 18776T and L. irui IRB4-01T. Genomic similarities between strain KH24T and Lysinibacillus type strains, based on average nucleotide identity, digital DNA-DNA hybridization (genome-to-genome distance calculation), and average amino acid identity were 70.4-77.7%, 17.1-24.4%, and 69.2-81.2%, respectively, which were lower than species delineation thresholds. Strain KH24T growth occurred at pH values of 5.5-8.5, temperatures of 20-40 °C, and NaCl concentrations of 0-4.0%, and optimally at pH 7.0, 30 °C, and 0%, respectively. Unlike related Lysinibacillus type strains, strain KH24T could assimilate D-glucose, D-fructose, N-acetyl-glucosamine, amygdalin, arbutin, esculin, ferric citrate, salicin, D-cellobiose, D-maltose, D-sucrose, and gentiobiose. Major fatty acids included iso-C15:0 (45.8%), anteiso-C15:0 (15.1%), iso-C17:0 (12.6%), and anteiso-C17:0 (10.9%). Menaquinone-7 was the predominant quinone, and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and lysophosphatidylethanolamine. Based on its genetic and phenotypic properties, strain KH24T represents a novel species of the genus Lysinibacillus, for which the name Lysinibacillus piscis sp. nov. is proposed. The type strain is KH24T (= JCM 36611 T = KCTC 43676 T).


Asunto(s)
Acetilglucosamina , Amigdalina , Animales , ARN Ribosómico 16S/genética , Aminoácidos , ADN
7.
Fitoterapia ; 175: 105942, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38575088

RESUMEN

Pruni Semen, the dried ripe seed of Prunus humilis, P. japonica, or P. pedunculata as recorded in the Chinese Pharmacopoeia, has been widely used in pharmaceutical and food industries. The adulteration of the marketed product with morphologically similar plants of the same genus has led to variable product quality and clinical effectiveness. This study systematically investigated the phylogenetic relationships, morphological traits, and chemical profiles of 37 Pruni Semen samples from planting bases, markets, and fields. DNA barcoding could successfully distinguish the genuine and counterfeit Pruni Semen, and the results indicated that there was almost no authentic Pruni Semen available in the market. The samples were divided into "big seed" (P. pedunculata and P. salicina seeds) and "small seed" (P. humilis, P. japonica, P. tomentosa, and P. avium seeds) categories based on morphology results. The notable discrepancy in the chemical characteristics of "big seed" and "small seed" was that "small seeds" were rich in flavonoids and low in amygdalin, whereas "big seeds" were the opposite. Furthermore, principal component analysis and clustered heatmap analysis verified the distinguishing features of "big seed" and "small seed" based on morphological and chemical characteristics. This study suggested that a combination of DNA barcoding and morphological and chemical characteristics can aid in the identification and quality evaluation of authentic and adulterated Pruni Semen. These findings may help standardize Pruni Semen available in the market and protect the rights and interests of customers.


Asunto(s)
Código de Barras del ADN Taxonómico , Filogenia , Prunus , Semillas , Semillas/química , Prunus/química , Prunus/clasificación , Prunus/genética , Amigdalina , Flavonoides/análisis , Contaminación de Medicamentos , China , Fitoquímicos
8.
Cells ; 13(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474407

RESUMEN

Inflammatory bowel disease (IBD) refers to a cluster of intractable gastrointestinal disorders with an undetermined etiology and a lack of effective therapeutic agents. Amygdalin (Amy) is a glycoside extracted from the seeds of apricot and other Rosaceae plants and it exhibits a wide range of pharmacological properties. Here, the effects and mechanisms of Amy on colitis were examined via 16S rRNA sequencing, ELISA, transmission electron microscopy, Western blot, and immunofluorescence. The results showed that Amy administration remarkably attenuated the signs of colitis (reduced body weight, increased disease activity index, and shortened colon length) and histopathological damage in dextran sodium sulfate (DSS)-challenged mice. Further studies revealed that Amy administration significantly diminished DSS-triggered gut barrier dysfunction by lowering pro-inflammatory mediator levels, inhibiting oxidative stress, and reducing intestinal epithelial apoptosis and ferroptosis. Notably, Amy administration remarkably lowered DSS-triggered TLR4 expression and the phosphorylation of proteins related to the NF-κB and MAPK pathways. Furthermore, Amy administration modulated the balance of intestinal flora, including a selective rise in the abundance of S24-7 and a decline in the abundance of Allobaculum, Oscillospira, Bacteroides, Sutterella, and Shigella. In conclusion, Amy can alleviate colitis, which provides data to support the utility of Amy in combating IBD.


Asunto(s)
Amigdalina , Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Animales , Ratones , ARN Ribosómico 16S , Muerte Celular , Sulfato de Dextran
9.
J Exp Biol ; 227(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38044836

RESUMEN

Pollen is the protein resource for Apis mellifera and its selection affects colony development and productivity. Honey bee foragers mainly lose their capacity to digest pollen, so we expect that those pollen constituents that can only be evaluated after ingestion will not influence their initial foraging preferences at food sources. We predicted that pollen composition may be evaluated in a delayed manner within the nest, for example, through the effects that the pollen causes on the colony according to its suitability after being used by in-hive bees. To address whether pollen foraging is mediated by in-hive experiences, we conducted dual-choice experiments to test the avoidance of pollen adulterated with amygdalin, a deterrent that causes post-ingestion malaise. In addition, we recorded pollen selection in colonies foraging in the field after being supplied or not with amygdalin-adulterated pollen from one of the dominant flowering plants (Diplotaxis tenuifolia). Dual-choice experiments revealed that foragers did not avoid adulterated pollens at the foraging site; however, they avoided pollen that had been offered adulterated within the nest on the previous days. In field experiments, pollen samples from colonies supplied with amygdalin-adulterated pollen were more diverse than controls, suggesting that pollen foraging was biased towards novel sources. Our findings support the hypothesis that pollen assessment relies on in-hive experiences mediated by pollen that causes post-ingestive malaise.


Asunto(s)
Amigdalina , Abejas , Animales , Conducta Animal , Comunicación Animal , Polen , Alimentos
10.
Appl Physiol Nutr Metab ; 49(3): 360-374, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37944128

RESUMEN

This study investigated the effects of amygdalin (AMY, a cyanogenic glycoside widely distributed in the fruits and seeds of Rosaceae plants) on cardiac performance and ventricular remodeling in a rat model of myocardial infarction (MI). We also investigated whether the combination of AMY with exercise training (ExT) has a beneficial synergistic effect in treating MI rats. MI was induced by the ligation of the left anterior descending coronary artery in male SD rats. ExT or AMY treatment was started 1 week after MI and continued for 1 week (short-term) or 8 weeks (long-term). Cardiac function was evaluated by echocardiographic and hemodynamic parameters. Heart tissues were harvested and subjected to 2,3,5-triphenyl-tetrazolium chloride, Masson's trichrome, hematoxylin-eosin, and immunohistochemical staining. Gene expression was determined by quantitative polymerase chain reaction. Western blot gave a qualitative assessment of protein levels. AMY or ExT improved cardiac function and reduced infarct size in MI rats. AMY or ExT also suppressed myocardial fibrosis and attenuated inflammation in the infarct border zone of hearts from MI rats, as evidenced by inhibition of collagen deposition, inflammatory cell infiltration, and pro-inflammatory markers (interleukin 1ß, interleukin 6, tumor necrosis factor-α, and cyclooxygenase 2). Notably, the effects of AMY combined with ExT were superior to those of AMY alone or ExT alone. Mechanistically, these beneficial functions were correlated with the inhibition of MI-induced activation of the transforming growth factor-ß/Smad pathway. Collectively, AMY and ExT exert a synergistic effect on improving cardiac performance and ameliorating cardiac inflammation and fibrosis after MI, and the effects of long-term intervention were better than short-term intervention.


Asunto(s)
Amigdalina , Infarto del Miocardio , Animales , Ratas , Ratas Sprague-Dawley , Amigdalina/farmacología , Infarto del Miocardio/terapia , Inflamación/terapia , Fibrosis
11.
Iran J Allergy Asthma Immunol ; 22(5): 430-439, 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-38085145

RESUMEN

Asthma, characterized by persistent inflammation and increased sensitivity of the airway, is the most common chronic condition among children. Novel, safe, and reliable treatment strategies are the focus of current research on pediatric asthma. Amygdalin, mainly present in bitter almonds, has anti-inflammatory and immunoregulatory potential, but its effect on asthma remains uninvestigated. Here, the impact of amygdalin on the thymic stromal lymphopoietin (TSLP)-dendritic cell (DC)-OX40L axis was investigated. A BALB/c mouse model for allergic asthma was established using the ovalbumin-sensitization method. Amygdalin treatment was administered between days 21 and 27 of the protocol. Cell numbers and hematoxylin and eosin (H&E) staining in bronchoalveolar lavage fluid (BALF) were used to observe the impact of amygdalin on airway inflammation. TSLP, IL-4, IL-5, IL-13, and IFN-γ concentrations were determined via Enzyme-linked immunosorbent assay (ELISA). TSLP, GATA-3, and T-bet proteins were measured using western blotting. Cell-surface receptor expression on DCs (MHC II, CD80, and CD86) was assessed via flow cytometry. OX40L mRNA and protein levels were detected using western blotting and qRT-PCR, respectively. Amygdalin treatment attenuated airway inflammation decreased BALF TSLP levels, inhibited DC maturation, restrained TSLP-induced DC surface marker expression (MHCII, CD80, and CD86), and further decreased OX40L levels in activated DCs. This occurred together with decreased Th2 cytokine levels (IL-4, IL-5, and IL-13) and GATA3 expression, whereas Th1 cytokine (IFN-γ) levels and T-bet expression increased. Amygdalin thus regulates the Th1/Th2 balance through the TSLP-DC-OX40L axis to participate in inflammation development in the airways, providing a basis for potential allergic asthma treatments.


Asunto(s)
Amigdalina , Asma , Ratones , Animales , Niño , Humanos , Linfopoyetina del Estroma Tímico , Interleucina-13/metabolismo , Interleucina-13/farmacología , Amigdalina/farmacología , Amigdalina/uso terapéutico , Amigdalina/metabolismo , Ligando OX40/metabolismo , Ligando OX40/farmacología , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Interleucina-5/farmacología , Citocinas/metabolismo , Asma/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Células Th2/metabolismo , Células Dendríticas/metabolismo , Ratones Endogámicos BALB C
12.
Asian Pac J Cancer Prev ; 24(12): 4329-4337, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38156870

RESUMEN

AIM: This study aimed to evaluate the inhibitory effect of laetrile, vinblastine, and their mixture on cervical cancer cells and probe potential synergistic consequences. METHOD: The study scrutinized the inhibitory impact of laetrile vinblastine and their mixture on the growth of human cervical cancer cells (Hela cancer cell line). The cells were incubated for 24, 48, and 72 hours with concentrations varying from 1 microgram to 10,000 micrograms of each substance. RESULT: study results showed, the combination of vinblastine and laetrile effectively reduced the viability of human cervical cancer cells. This effect was stronger than the individual cytotoxic effects of each compound. The results suggest that the cytotoxicity of the vinblastine and laetrile combination increases with higher concentrations of the compounds. Additionally, the study revealed a synergistic effect between the mixture ingredients, particularly at the lowest and highest concentrations during the 24 and 72-hour incubation periods. CONCLUSION: The antiproliferative effect of (the combination of laetrile and vinblastine) was greater than the antiproliferative effect of either compound used alone, suggesting a synergistic relationship between the two.


Asunto(s)
Amigdalina , Neoplasias del Cuello Uterino , Femenino , Humanos , Vinblastina/farmacología , Amigdalina/farmacología , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Apoptosis , Células HeLa , Proliferación Celular
13.
ACS Appl Mater Interfaces ; 15(48): 56397-56412, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38011283

RESUMEN

Cyanoglycoside-modified flexible protein films, exhibiting a high level of transparency of ≈46 to 83%, were successfully prepared from lysozyme and glycerol with varying amounts of amygdalin (20, 40, and 60%) using water as a solvent. The increasing percentage of amygdalin leads to a drastic improvement of the hydrophilicity of the surface with a decrease in the water contact angle to 5.6°, resulting in superhydrophilicity. The increasing percentage of amygdalin led to a significant improvement in the surface's hydrophilicity, resulting in a reduced water contact angle of 5.6° and achieving superhydrophilicity. This superhydrophilic characteristic is particularly relevant to the excellent antifogging and self-cleaning properties of the resulting protein films. In addition to enhanced flexibility, the films also exhibited considerably improved thermal stability with a 40% loading of amygdalin in the protein solution. The superior mechanical, optical, and thermal properties of amygdalin-modified films are due to the strong hydrogen bonding with the peptides of lysozyme, as evidenced by the disappearance of amide bands in the cured protein films. Therefore, these transparent protein films, with their antifogging and enhanced thermal stability properties, can be potentially used for different packaging and coating applications.


Asunto(s)
Amigdalina , Muramidasa , Interacciones Hidrofóbicas e Hidrofílicas , Agua/química
14.
Sci Rep ; 13(1): 16770, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798424

RESUMEN

Loquat (Eriobotrya japonica) leaves contain many bioactive components such as ursolic acid (UA) and amygdalin. We investigated the effects of loquat leaf powder and methanol extract in human neuroglioma H4 cells stably expressing the Swedish-type APP695 (APPNL-H4 cells) and C57BL/6 J mice. Surprisingly, the extract greatly enhanced cellular amyloid-beta peptide (Aß) 42 productions in APPNL-H4 cells. Administration of leaf powder increased Aß42 levels after 3 months and decreased levels after 12 months compared to control mice. Leaf powder had no effect on working memory after 3 months, but improved working memory after 12 months. Administration of UA decreased Aß42 and P-tau levels and improved working memory after 12 months, similar to the administration of leave powder for 12 months. Amygdalin enhanced cellular Aß42 production in APPNL-H4 cells, which was the same as the extract. Three-month administration of amygdalin increased Aß42 levels slightly but did not significantly increase them, which is similar to the trend observed with the administration of leaf powder for 3 months. UA was likely the main compound contained in loquat leaves responsible for the decrease in intracerebral Aß42 and P-tau levels. Also, amygdalin might be one of the compounds responsible for the transiently increased intracerebral Aß42 levels.


Asunto(s)
Amigdalina , Eriobotrya , Humanos , Animales , Ratones , Eriobotrya/química , Polvos/análisis , Ratones Endogámicos C57BL , Hojas de la Planta/química , Extractos Vegetales/química , Péptidos beta-Amiloides/análisis , Ácido Ursólico
15.
Dent Med Probl ; 60(3): 473-481, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37815512

RESUMEN

BACKGROUND: Radiotherapy is used as a treatment for head and neck cancers but increases the risk of salivary gland hypofunction. The management strategies include pharmacotherapies such as salivary substitutes and sialagogues which are largely temporary. In this study, we examine the regenerative potential of vitamin B17 to improve salivary gland function. OBJECTIVES: The present investigation aims to identify the effect of vitamin B17 (amygdaline) on the irradiated parotid salivary gland of albino rats. MATERIAL AND METHODS: Twenty-eight adult male albino rats were randomly divided into two groups subjected to irradiation procedure. Fourteen were in the control group, receiving a daily 5 mL saline by oral gavage (7 rats for 14 days and 7 rats for 30 days) while the other fourteen were treated with a daily dose of vitamin B17 (grounded apricot kernel; GAK) at 400 mg/kg in 5 mL of saline by oral gavage (7 rats for 14 days and 7 rats for 30 days). The parotid glands were dissected from the two groups at 14 and 30 days from the day of exposure to irradiation. The parotid gland sections were subjected to H&E stain, immunohistochemical localization of epidermal growth factor (EGF) and PCR using transforming growth factor beta 2 (TGF-ß2). RESULTS: The histological abnormalities corroborate with the immunohistochemical localization of EGF and the PCR results of TGF ß2, as their up-regulation in the control group demonstrate oxidative stresses and inflammation. The Treatment with GAK decreased oxidative stress and inflammation while promoting tissue regeneration. CONCLUSIONS: Vitamin B17 is a promising anti-inflammatory agent that boosts immunity, as the experimental group showed better histological architecture of the parotid gland than the other one.


Asunto(s)
Amigdalina , Prunus armeniaca , Ratas , Masculino , Animales , Amigdalina/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Ratas Wistar , Glándulas Salivales/metabolismo , Glándulas Salivales/efectos de la radiación , Inflamación/metabolismo
16.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4394-4401, 2023 Aug.
Artículo en Chino | MEDLINE | ID: mdl-37802865

RESUMEN

This study focused on the separation, characterization, content determination, and antiviral efficacy research on colloidal particles with different sizes in Maxing Shigan Decoction(MXSG). The mixed colloidal phase of MXSG was initially separated into small colloidal particle segment(S), medium colloidal particle segment(M), and big colloidal particle segment(B) using ultrafiltration. Further fine separation was performed using size-exclusion chromatography. Dynamic light scattering(DLS) and transmission electron microscopy(TEM) were employed to characterize the size and morphology of the separated colloidal particles. UPLC-MS/MS was used to determine the content of ephedrine, amygdalin, glycyrrhizic acid, and the EDTA complexometric titration was used to measure the calcium(Ca~(2+)) content in different colloidal phases. Finally, a respiratory syncytial virus(RSV) infection mouse model was established using intranasal administration. The experimental groups included a blank group, a model group, a ribavirin group, an MXSG group, an S group, an M group, and a B group. Oral administration was given for treatment, and pathological changes in mouse lung tissue and organ indices were evaluated. The results of the study showed that the distribution of ephedrine, amygdalin, glycyrrhizic acid, and Ca~(2+) content was not uniform among different colloidal segments. Among them, the B segment had the highest proportions of the three components, except for Ca~(2+), accounting for 46.35%, 53.72%, and 92.36%, respectively. Size-exclusion chromatography separated colloidal particles with uniform morphology in the size range of 100-500 nm. Compared to the S and M segments, the B segment showed an increased lung index inhibition rate(38.31%), spleen index, and thymus index in RSV-infected mice, and it improved the infiltration of inflammatory cells and lung injury in the lung tissue of mice. The complex components in MXSG form colloidal particles of various sizes and morphologies through heating, and small-molecule active components such as ephedrine, amygdalin, glycyrrhizic acid, and Ca~(2+) participate in the assembly to varying degrees. The main material basis for the antiviral effect of MXSG is the colloidal particles with certain particle sizes formed by the assembly of active components during the heating process.


Asunto(s)
Amigdalina , Medicamentos Herbarios Chinos , Ratones , Animales , Amigdalina/química , Medicamentos Herbarios Chinos/química , Ácido Glicirrínico/análisis , Efedrina/análisis , Cromatografía Liquida , Espectrometría de Masas en Tándem , Antivirales/farmacología
17.
Molecules ; 28(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894605

RESUMEN

The limitations of current medications for treating rheumatoid arthritis (RA) emphasize the urgent need for the development of new drugs. This study aimed to investigate the potential anti-RA mechanism of amygdalin using tandem mass tag (TMT)-based quantitative proteomics technology. First, the anti-RA activity of amygdalin was evaluated in a Complete Freund's adjuvant (CFA)-induced rat model. Then, the roles and importance of proteins in the extracted rat joint tissue were evaluated using TMT-based quantitative proteomics technology. A bioinformatics analysis was used to analyze differentially abundant proteins (DAPs). A proteomics analysis identified 297 DAPs in the amygdalin group compared with the model group, of which 53 upregulated proteins and 51 downregulated proteins showed opposite regulatory trends to the DAPs produced after modeling. According to enrichment analyses of the DAPs, the signaling pathways with a high correlation degree were determined to be the complement and coagulation cascades. Furthermore, western blotting and molecular docking were used to further validate the key node proteins, e.g., complement C1s subcomponent (C1s), component C3 (C3) and kininogen 1 (Kng1). These results suggest that amygdalin may be a promising agent for treating RA by regulating the complement and coagulation cascades.


Asunto(s)
Amigdalina , Artritis Reumatoide , Ratas , Animales , Amigdalina/farmacología , Proteómica/métodos , Simulación del Acoplamiento Molecular , Proteínas del Sistema Complemento , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/tratamiento farmacológico
18.
BMC Complement Med Ther ; 23(1): 329, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726740

RESUMEN

BACKGROUND: Sorafenib (Sor) is the only approved multikinase inhibitor indicated for the treatment of HCC. Previous studies have shown that amygdalin (Amy) possesses anticancer activities against several cancer cell lines; we suggested that these compounds might disrupt AMPK/mTOR and BCL-2. Therefore, the current study used integrated in vitro and in silico approaches to figure out Amy and Sor's possible synergistic activity in targeting AMPK/mTOR and BCL-2 for anti-angiogenesis and apoptosis cell death in HepG2 cells. RESULTS: Notably, Amy demonstrated exceptional cytotoxic selectivity against HepG2 cells in comparison to normal WI-38 cells (IC50 = 5.21 mg/ml; 141.25 mg/ml), respectively. In contrast, WI-38 cells were far more sensitive to the toxicity of Sor. A substantial synergistic interaction between Amy and Sor was observed (CI50 = 0.56), which was connected to cell cycle arrest at the S and G2/M stages and increased apoptosis and potential necroptosis. Amy and Sor cotreatment resulted in the highest glutathione levels and induction of pro-autophagic genes AMPK, HGMB1, ATG5, Beclin 1, and LC3, suppressed the mTOR and BCL2 anti-apoptotic gene. Finally, the docking studies proposed that Amy binds to the active site of the AMPK enzyme, thus inhibiting its activity. This inhibition of AMPK ultimately leads to inhibition of mTOR and thus induces apoptosis in the HepG2 cells. CONCLUSION: Although more in vivo research using animal models is needed to confirm the findings, our findings contribute to the evidence supporting Amy's potential anticancer effectiveness as an alternative therapeutic option for HCC.


Asunto(s)
Amigdalina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Sorafenib/farmacología , Proteínas Quinasas Activadas por AMP , Amigdalina/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2 , Apoptosis , Línea Celular
19.
Mol Biol Rep ; 50(11): 9085-9098, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37741810

RESUMEN

BACKGROUND: A gastric ulcer is a painful lesion of the gastric mucosa that can be debilitating or even fatal. The effectiveness of several plant extracts in the therapy of this illness has been demonstrated in traditional pharmacopoeias. AIM: this study was aimed to see if propolis, ginseng in normal or nano form, and amygdalin might help in preventing the ulcerative effects of absolute ethanol. METHODS: Gastroprotective properties of pretreatments before ethanol gavage in rats were compared to omeprazole. The ulcer and stomach parameters (ulcerated regions) were measured (mm2), ulcer inhibition percentage, the stomachs were assessed macroscopically with gastric biopsy histological examinations. RESULTS: Amygdalin, normal and nano ginseng, nano propolis followed by propolis all showed great efficacy in protecting the cyto-architecture and function of the gastric mucosa. The number of ulcerated sites was greatly reduced, and the percentage of stomach protection was increased. Histopathological examination had confirmed great protective effects of the nanoformulations followed by amygdalin. The protection and healing rate was completed to about 100% in all tested materials while ulcer areas were still partially unhealed in normal propolis and omeprazole. Quantitative assay of the m-RNA levels Enothelin 1(ET-1), leukotriene4 (LT-4), and caspase 3(Cas-3) genes and Histamine were done and revealed significant up-regulations in ethanol group and the maximum protective effect was reported with ginseng nano, moreover the histamine content was significantly decreased with nano- formulated extracts. CONCLUSION: Amygdalin and the nanoformulated ginseng and propolis had exhibited a marked protective effect against the ulcerative toxic effects of ethanol.


Asunto(s)
Amigdalina , Antiulcerosos , Própolis , Úlcera Gástrica , Ratas , Animales , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/patología , Úlcera/tratamiento farmacológico , Úlcera/patología , Própolis/farmacología , Amigdalina/farmacología , Histamina/farmacología , Histamina/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antiulcerosos/farmacología , Antiulcerosos/uso terapéutico , Mucosa Gástrica , Omeprazol/farmacología , Etanol/efectos adversos
20.
J Microbiol Biotechnol ; 33(10): 1281-1291, 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37559205

RESUMEN

Infectious diseases caused by drug-resistant Escherichia coli (E. coli) pose a critical concern for medical institutions as they can lead to high morbidity and mortality rates. In this study, amygdalin exhibited anti-inflammatory and antioxidant activities, as well as other potentials. However, whether it could influence the drug-resistant E. coli-infected cells remained unanswered. Amygdalin was therefore tested in a cellular model in which human macrophages were exposed to resistant E. coli. Apoptosis was measured by flow cytometry and the lactate dehydrogenase (LDH) assay. Western immunoblotting and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were used to quantify interleukin-18 (IL-18), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6). The production of reactive oxygen species (ROS) in macrophages was detected by ROS kit. The expression of panapoptotic proteins in macrophages was measured by qRT-PCR and Western immunoblotting. Drug-Resistant E. coli inhibited cell viability and enhanced apoptosis in the cellular model. In cells treated with amygdalin, this compound can inhibit cell apoptosis and reduce the expression of pro - inflammatory cytokines such as IL-1ß, IL-18 and IL-6. Additionally, it decreases the production of PANoptosis proteins, Furthermore, amygdalin lowered the levels of reactive oxygen species induced by drug-resistant E. coli, in cells, demonstrating its antioxidant effects. Amygdalin, a drug with a protective role, alleviated cell damage caused by drug-resistant E. coli in human macrophages by inhibiting the PANoptosis signaling pathway.


Asunto(s)
Amigdalina , Humanos , Amigdalina/farmacología , Interleucina-6/genética , Interleucina-18 , Escherichia coli/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Macrófagos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA