Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Angew Chem Int Ed Engl ; 61(10): e202112832, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34935241

RESUMEN

Many soluble proteins can self-assemble into macromolecular structures called amyloids, a subset of which are implicated in a range of neurodegenerative disorders. The nanoscale size and structural heterogeneity of prefibrillar and early aggregates, as well as mature amyloid fibrils, pose significant challenges for the quantification of amyloid morphologies. We report a fluorescent amyloid sensor AmyBlink-1 and its application in super-resolution imaging of amyloid structures. AmyBlink-1 exhibits a 5-fold increase in ratio of the green (thioflavin T) to red (Alexa Fluor 647) emission intensities upon interaction with amyloid fibrils. Using AmyBlink-1, we performed nanoscale imaging of four different types of amyloid fibrils, achieving a resolution of ≈30 nm. AmyBlink-1 enables nanoscale visualization and subsequent quantification of morphological features, such as the length and skew of individual amyloid aggregates formed at different times along the amyloid assembly pathway.


Asunto(s)
Amiloide/análisis , Colorantes Fluorescentes/química , Amiloide/síntesis química , Colorantes Fluorescentes/síntesis química , Humanos , Estructura Molecular , Espectrometría de Fluorescencia
2.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502074

RESUMEN

Amyloids are supramolecular assemblies composed of polypeptides stabilized by an intermolecular beta-sheet core. These misfolded conformations have been traditionally associated with pathological conditions such as Alzheimer's and Parkinson´s diseases. However, this classical paradigm has changed in the last decade since the discovery that the amyloid state represents a universal alternative fold accessible to virtually any polypeptide chain. Moreover, recent findings have demonstrated that the amyloid fold can serve as catalytic scaffolds, creating new opportunities for the design of novel active bionanomaterials. Here, we review the latest advances in this area, with particular emphasis on the design and development of catalytic amyloids that exhibit hydrolytic activities. To date, three different types of activities have been demonstrated: esterase, phosphoesterase and di-phosphohydrolase. These artificial hydrolases emerge upon the self-assembly of small peptides into amyloids, giving rise to catalytically active surfaces. The highly stable nature of the amyloid fold can provide an attractive alternative for the design of future synthetic hydrolases with diverse applications in the industry, such as the in situ decontamination of xenobiotics.


Asunto(s)
Amiloide/química , Hidrolasas/química , Amiloide/síntesis química , Amiloide/metabolismo , Animales , Dominio Catalítico , Humanos , Hidrolasas/síntesis química , Hidrolasas/metabolismo
3.
J Am Chem Soc ; 143(20): 7777-7791, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33998793

RESUMEN

Electrostatic interactions play crucial roles in protein function. Measuring pKa value perturbations upon complex formation or self-assembly of e.g. amyloid fibrils gives valuable information about the effect of electrostatic interactions in those processes. Site-specific pKa value determination by solution NMR spectroscopy is challenged by the high molecular weight of amyloid fibrils. Here we report a pH increase during fibril formation of α-synuclein, observed using three complementary experimental methods: pH electrode measurements in water; colorimetric changes of a fluorescent indicator; and chemical shift changes for histidine residues using solution state NMR spectroscopy. A significant pH increase was detected during fibril formation in water, on average by 0.9 pH units from 5.6 to 6.5, showing that protons are taken up during fibril formation. The pH upshift was used to calculate the average change in the apparent pKaave value of the acidic residues, which was found to increase by at least 1.1 unit due to fibril formation. Metropolis Monte Carlo simulations were performed on a comparable system that also showed a proton uptake due to fibril formation. Fibril formation moreover leads to a significant change in proton binding capacitance. Parallel studies of a mutant with five charge deletions in the C-terminal tail revealed a smaller pH increase due to fibril formation, and a smaller change (0.5 units on average) in the apparent pKaave values of the acidic residues. We conclude that the proton uptake during the fibril formation is connected to the high density of acidic residues in the C-terminal tail of α-synuclein.


Asunto(s)
Amiloide/síntesis química , alfa-Sinucleína/química , Amiloide/química , Electrodos , Humanos , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Método de Montecarlo , Electricidad Estática
4.
Angew Chem Int Ed Engl ; 60(28): 15445-15451, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33891789

RESUMEN

Pulsed-field gradient (PFG) NMR is an important tool for characterization of biomolecules and supramolecular assemblies. However, for micrometer-sized objects, such as amyloid fibrils, these experiments become difficult to interpret because in addition to translational diffusion they are also sensitive to rotational diffusion. We have constructed a mathematical theory describing the outcome of PFG NMR experiments on rod-like fibrils. To test its validity, we have studied the fibrils formed by Sup35NM segment of the prion protein Sup35. The interpretation of the PFG NMR data in this system is fully consistent with the evidence from electron microscopy. Contrary to some previously expressed views, the signals originating from disordered regions in the fibrils can be readily differentiated from the similar signals representing small soluble species (e.g. proteolytic fragments). This paves the way for diffusion-sorted NMR experiments on complex amyloidogenic samples.


Asunto(s)
Amiloide/síntesis química , Resonancia Magnética Nuclear Biomolecular , Proteínas Priónicas/síntesis química , Amiloide/química , Difusión , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Proteínas Priónicas/química , Rotación
5.
Chembiochem ; 22(3): 585-591, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-32956537

RESUMEN

The self-assembly of short peptides into catalytic amyloid-like nanomaterials has proven to be a powerful tool in both understanding the evolution of early proteins and identifying new catalysts for practically useful chemical reactions. Here we demonstrate that both parallel and antiparallel arrangements of ß-sheets can accommodate metal ions in catalytically productive coordination environments. Moreover, synergistic relationships, identified in catalytic amyloid mixtures, can be captured in macrocyclic and sheet-loop-sheet species, that offer faster rates of assembly and provide more complex asymmetric arrangements of functional groups, thus paving the way for future designs of amyloid-like catalytic proteins. Our findings show how initial catalytic activity in amyloid assemblies can be propagated and improved in more-complex molecules, providing another link in a complex evolutionary chain between short, potentially abiotically produced peptides and modern-day enzymes.


Asunto(s)
Amiloide/síntesis química , Compuestos Organometálicos/química , Amiloide/química , Catálisis , Ciclización
6.
Chemphyschem ; 22(1): 83-91, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33080105

RESUMEN

Amyloidal protein fibrils occur in many biological events, but their formation and structural variability are understood rather poorly. We systematically explore fibril polymorphism for polyglutamic acid (PGA), insulin and hen egg white lysozyme. The fibrils were grown in the presence of "seeds", that is fibrils of the same or different protein. The seeds in concentrations higher than about 5 % of the total protein amount fully determined the structure of the final fibrils. Fibril structure was monitored by vibrational circular dichroism (VCD) spectroscopy and other techniques. The VCD shapes significantly differ for different fibril samples. Infrared (IR) and VCD spectra of PGA were also simulated using density functional theory (DFT) and a periodic model. The simulation provides excellent basis for data interpretation and reveals that the spectral shapes and signs depend both on fibril length and twist. The understanding of fibril formation and interactions may facilitate medical treatment of protein misfolding diseases in the future.


Asunto(s)
Amiloide/síntesis química , Insulina/química , Muramidasa/química , Ácido Poliglutámico/química , Amiloide/análisis , Catálisis , Dicroismo Circular , Teoría Funcional de la Densidad , Muramidasa/metabolismo , Conformación Proteica , Vibración
7.
Biomol Concepts ; 11(1): 102-115, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32374275

RESUMEN

Atomic force microscopy, AFM, is a powerful tool that can produce detailed topographical images of individual nano-structures with a high signal-to-noise ratio without the need for ensemble averaging. However, the application of AFM in structural biology has been hampered by the tip-sample convolution effect, which distorts images of nano-structures, particularly those that are of similar dimensions to the cantilever probe tips used in AFM. Here we show that the tip-sample convolution results in a feature-dependent and non-uniform distribution of image resolution on AFM topographs. We show how this effect can be utilised in structural studies of nano-sized upward convex objects such as spherical or filamentous molecular assemblies deposited on a flat surface, because it causes 'magnification' of such objects in AFM topographs. Subsequently, this enhancement effect is harnessed through contact-point based deconvolution of AFM topographs. Here, the application of this approach is demonstrated through the 3D reconstruction of the surface envelope of individual helical amyloid filaments without the need of cross-particle averaging using the contact-deconvoluted AFM topographs. Resolving the structural variations of individual macromolecular assemblies within inherently heterogeneous populations is paramount for mechanistic understanding of many biological phenomena such as amyloid toxicity and prion strains. The approach presented here will also facilitate the use of AFM for high-resolution structural studies and integrative structural biology analysis of single molecular assemblies.


Asunto(s)
Amiloide/química , Imagenología Tridimensional/métodos , Microscopía de Fuerza Atómica/métodos , Péptidos/química , Amiloide/síntesis química , Nanofibras , Péptidos/síntesis química
8.
J Colloid Interface Sci ; 574: 229-240, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32325288

RESUMEN

Ensembles of protein aggregates are characterized by a nano- and micro-scale heterogeneity of the species. This diversity translates into a variety of effects that protein aggregates may have in biological systems, both in connection to neurodegenerative diseases and immunogenic risk of protein drug products. Moreover, this naturally occurring variety offers unique opportunities in the field of protein-based biomaterials. In the above-mentioned fields, the isolation and structural analysis of the different amyloid types within the same ensemble remain a priority, still representing a significant experimental challenge. Here we address such complexity in the case of insulin for its relevance as biopharmaceutical and its involvement in insulin-derived amyloidosis. By combining Fourier Transform Infrared Microscopy (micro-FTIR) and fluorescence lifetime imaging microscopy (FLIM) we show the occurrence, within the same ensemble of insulin protein aggregates, of a variable ß-structure architecture and content not only dependent on the species analyzed (spherulites or fibrils), but also on the position within a single spherulite at submicron scale. We unambiguously reveal that the surface of the spherulites are characterized by ß-structures with an enhanced H-bond coupling compared to the core. This information, inaccessible via bulk methods, allows us to relate the aggregate structure at molecular level to the overall morphology of the aggregates. Our findings robustly solve the problem of probing the ensemble and single particle heterogeneity of amyloid samples. Furthermore, we offer a unique, scalable and ready-to-use screening methodology for in-depth characterization of self-assembled structures, being this translatable to material sciences, drug quality control and clinical imaging of amyloid-affected tissues.


Asunto(s)
Amiloide/síntesis química , Insulina/química , Agregado de Proteínas , Amiloide/química , Insulina/síntesis química , Microscopía Fluorescente , Imagen Óptica , Tamaño de la Partícula , Conformación Proteica , Propiedades de Superficie
9.
Biopolymers ; 111(6): e23352, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32203628

RESUMEN

The effect of adding ethylammonium nitrate (EAN), which is an ionic liquid (IL), on the aggregate formation of α-synuclein (α-Syn) in aqueous solution has been investigated. FTIR and Raman spectroscopy were used to investigate changes in the secondary structure of α-Syn and in the states of water molecules and EAN. The results presented here show that the addition of EAN to α-Syn causes the formation of an intermolecular ß-sheet structure in the following manner: native disordered state → polyproline II (PPII)-helix → intermolecular ß-sheet (α-Syn amyloid-like aggregates: α-SynA). Although cations and anions of EAN play roles in masking the charged side chains and PPII-helix-forming ability involved in the formation of α-SynA, water molecules are not directly related to its formation. We conclude that EAN-induced α-Syn amyloid-like aggregates form at hydrophobic associations in the middle of the molecules after masking the charged side chains at the N- and C-terminals of α-Syn.


Asunto(s)
Agregado de Proteínas , Compuestos de Amonio Cuaternario/química , alfa-Sinucleína/química , Amiloide/síntesis química , Amiloide/química , Precipitación Química/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Agregado de Proteínas/efectos de los fármacos , Conformación Proteica en Lámina beta/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Estructura Secundaria de Proteína , Compuestos de Amonio Cuaternario/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Agua/química
10.
Macromol Rapid Commun ; 41(8): e1900619, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32125062

RESUMEN

The periodic twist behaviors of amyloid fibrils initiated and formed on block copolymer films with nanoscale features are studied. The discovery of twist variations even in a single amyloid fibril is reported: the fibril can vary its twist extents in response to the underlying nanopatterned surfaces by keeping its neighboring crossover sections right above the periodic nanodomains and tuning the distance between neighboring crossover sections based on either the periodic nanodomain distance or the fibril contour direction. This nanopattern-induced twist polymorphism arises from the fibril's two edges, exhibiting different hydrophobic interactions with the periodic nanodomains, as demonstrated by simulation studies. This work contributes to the understanding of surface effects on twist polymorphism in amyloid fibril structures that may be important to fibril polymorphism in amyloid pathologies and bioapplications of amyloid fibrils.


Asunto(s)
Amiloide/síntesis química , Nanopartículas/química , Polímeros/química , Amiloide/química , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Propiedades de Superficie
11.
Phys Chem Chem Phys ; 21(47): 26184-26194, 2019 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-31755512

RESUMEN

Amyloid fibrils are homo-molecular protein polymers that play an important role in disease and biological function. While much is known about their kinetics and mechanisms of formation, the origin and magnitude of their thermodynamic stability has received significantly less attention. This is despite the fact that the thermodynamic stability of amyloid fibrils is an important determinant of their lifetimes and processing in vivo. Here we use depolymerization by chemical denaturants of amyloid fibrils of two different proteins (PI3K-SH3 and glucagon) at different concentrations and show that the previously applied isodesmic linear polymerization model is an oversimplification that does not capture the concentration dependence of chemical depolymerization of amyloid fibrils. We show that cooperative polymerization, which is compatible with the picture of amyloid formation as a nucleated polymerization process, is able to quantitatively describe the thermodynamic data. We use this combined experimental and conceptual framework in order to probe the ionic strength dependence of amyloid fibril stability. In combination with previously published data on the ionic strength dependence of amyloid fibril growth kinetics, our results provide strong evidence for the product-like nature of the transition state of amyloid fibril growth.


Asunto(s)
Amiloide/química , Termodinámica , Amiloide/síntesis química , Animales , Bovinos , Humanos , Polimerizacion
12.
Biomolecules ; 9(10)2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31569739

RESUMEN

Assembly of amyloid fibrils and small globular oligomers is associated with a significant number of human disorders that include Alzheimer's disease, senile systemic amyloidosis, and type II diabetes. Recent findings implicate small amyloid oligomers as the dominant aggregate species mediating the toxic effects in these disorders. However, validation of this hypothesis has been hampered by the dearth of experimental techniques to detect, quantify, and discriminate oligomeric intermediates from late-stage fibrils, in vitro and in vivo. We have shown that the onset of significant oligomer formation is associated with a transition in thioflavin T kinetics from sigmoidal to biphasic kinetics. Here we showed that this transition can be exploited for screening fluorophores for preferential responses to oligomer over fibril formation. This assay identified crystal violet as a strongly selective oligomer-indicator dye for lysozyme. Simultaneous recordings of amyloid kinetics with thioflavin T and crystal violet enabled us to separate the combined signals into their underlying oligomeric and fibrillar components. We provided further evidence that this screening assay could be extended to amyloid-ß peptides under physiological conditions. Identification of oligomer-selective dyes not only holds the promise of biomedical applications but provides new approaches for unraveling the mechanisms underlying oligomer versus fibril formation in amyloid assembly.


Asunto(s)
Amiloide/química , Benzotiazoles/química , Colorantes Fluorescentes/química , Violeta de Genciana/química , Amiloide/síntesis química , Humanos , Cinética
13.
Chem Commun (Camb) ; 55(59): 8556-8559, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31271173

RESUMEN

Non-hydrated organic solutions of a diphenylalanine amphiphile blocked at the C-terminus with a fluorenylmethyl ester and stabilized at the N-terminus with a trifluoroacetate have been used to prepare amyloid fibrils. The solvent used to prepare the stock solution together with the co-solvent added enables regulation of the characteristics of the fibrils, which is important for their use in technological applications.


Asunto(s)
Amiloide/síntesis química , Proteínas Amiloidogénicas/química , Dipéptidos/química , Tensoactivos/química , Teoría Funcional de la Densidad , Dimetilformamida/química , Metanol/química , Propanoles/química , Conformación Proteica en Lámina beta , Multimerización de Proteína , Teoría Cuántica
14.
J Am Chem Soc ; 141(18): 7320-7326, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30998340

RESUMEN

Infrared (IR) spectroscopy has provided considerable insight into the structures, dynamics, and formation mechanisms of amyloid fibrils. IR probes, such as main chain 13C═18O, have been widely employed to obtain site-specific structural information, yet only secondary structures and strand-to-strand arrangements can be probed. Very few nonperturbative IR probes are available to report on the side-chain conformation and environments, which are critical to determining sheet-to-sheet arrangements in steric zippers within amyloids. Polar residues, such as glutamine, contribute significantly to the stability of amyloids and thus are frequently found in core regions of amyloid peptides/proteins. Furthermore, polyglutamine (polyQ) repeats form toxic aggregates in several neurodegenerative diseases. Here we report the synthesis and application of a new nonperturbative IR probe-glutamine side chain 13C═18O. We use side chain 13C═18O labeling and isotope dilution to detect the presence of intermolecularly hydrogen-bonded arrays of glutamine side chains (Gln ladders) in amyloid-forming peptides. Moreover, the line width of the 13C═18O peak is highly sensitive to its local hydration environment. The IR data from side chain labeling allows us to unambiguously determine the sheet-to-sheet arrangement in a short amyloid-forming peptide, GNNQQNY, providing insight that was otherwise inaccessible through main chain labeling. With several different fibril samples, we also show the versatility of this IR probe in studying the structures and aggregation kinetics of amyloids. Finally, we demonstrate the capability of modeling amyloid structures with IR data using the integrative modeling platform (IMP) and the potential of integrating IR with other biophysical methods for more accurate structural modeling. Together, we believe that side chain 13C═18O will complement main chain isotope labeling in future IR studies of amyloids and integrative modeling using IR data will significantly expand the power of IR spectroscopy to elucidate amyloid assemblies.


Asunto(s)
Amiloide/síntesis química , Glutamina/química , Marcaje Isotópico , Sondas Moleculares/química , Amiloide/química , Espectrofotometría Infrarroja
15.
J Chem Phys ; 150(9): 095101, 2019 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849871

RESUMEN

Peptides build from D-amino acids resist enzymatic degradation. The resulting extended time of biological activity makes them prime candidates for the development of pharmaceuticals. Of special interest are D-retro-inverso (DRI) peptides where a reversed sequence of D-amino acids leads to molecules with almost the same structure, stability, and bioactivity as the parent L-peptides but increased resistance to proteolytic degradation. Here, we study the effect of DRI-Aß40 and DRI-Aß42 peptides on fibril formation. Using molecular dynamics simulations, we compare the stability of typical amyloid fibril models with such where the L-peptides are replaced by DRI-Aß40 and DRI-Aß42 peptides. We then explore the likelihood for cross fibrilization of Aß L- and DRI-peptides by investigating how the presence of DRI peptides alters the elongation and stability of L-Aß-fibrils. Our data suggest that full-length DRI-peptides may enhance the fibril formation and decrease the ratio of soluble toxic Aß oligomers, pointing out potential for D-amino-acid-based drug design targeting Alzheimer's disease.


Asunto(s)
Aminoácidos/química , Amiloide/síntesis química , Simulación de Dinámica Molecular , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Aminoácidos/metabolismo , Amiloide/antagonistas & inhibidores , Amiloide/química , Diseño de Fármacos , Humanos , Solubilidad , Estereoisomerismo
16.
J Colloid Interface Sci ; 543: 256-262, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30818141

RESUMEN

Proteins are naturally exposed to diverse interfaces in living organisms, from static solid to dynamic fluid. Solid interfaces can enrich proteins as corona, and then catalyze, retard or hinder amyloid fibrillation. But fluid interfaces abundant in biology have rarely been studied for their correlation with protein fibrillation. Unsaturated fatty acids own growing essential roles in diet, whose fluid interfaces are found in vitro to catalyze amyloid fibrillation under certain physiologic conditions. It is determined by the location of double bonds within alkyl chains as well as the presence of physical shear. Docosahexaenoic acid (DHA) shows low catalysis because its unique alkyl chain does not favor to stabilize cross-ß nucleus. Mixtures of different fatty acids also decelerate their catalytic activity. High catalysis poses an unprecedented approach to synthesize biologic nanofibrils as one-dimensional (1D) building blocks of functional hybrids. Fibrillation inhibition implied that appropriate diet would be a preventive strategy for amyloid-related diseases. Thus these results may find their significances in diverse fields of science as chemistry, biotechnology, nanotechnology, nutrition, amyloid pathobiology and nanomedicine.


Asunto(s)
Amiloide/antagonistas & inhibidores , Amiloide/síntesis química , Ácidos Grasos Insaturados/farmacología , Oro/química , Lípidos/química , Nanopartículas del Metal/química , Amiloide/química , Catálisis , Ácidos Grasos Insaturados/química , Fluorescencia
17.
Chem Phys Lipids ; 220: 57-65, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30826264

RESUMEN

Aggregation of the protein α-Synuclein (αSyn) is of great interest due to its involvement in the pathology of Parkinson's disease. However, under in vitro conditions αSyn is very soluble and kinetically stable for extended time periods. As a result, most αSyn aggregation assays rely on conditions that artificially induce or enhance aggregation, often by introducing rather non-native conditions. It has been shown that αSyn interacts with membranes and conditions have been identified in which membranes can promote as well as inhibit αSyn aggregation. It has also been shown that αSyn has the intrinsic capability to assemble lipid-protein-particles, in a similar way as apolipoproteins can form lipid-bilayer nanodiscs. Here we show that these αSyn-lipid particles (αSyn-LiPs) can also effectively induce, accelerate or inhibit αSyn aggregation, depending on the applied conditions. αSyn-LiPs therefore provide a general platform and additional tool, complementary to other setups, to study various aspects of αSyn amyloid fibril formation.


Asunto(s)
Amiloide/síntesis química , Lípidos/química , alfa-Sinucleína/química , Amiloide/química , Humanos , Tamaño de la Partícula , Propiedades de Superficie
18.
Biomolecules ; 9(2)2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30769878

RESUMEN

Amyloid fibrils, highly ordered protein aggregates, play an important role in the onset of several neurological disorders. Many studies have assessed amyloid fibril formation under specific solution conditions, but they all lack an important phenomena in biological solutions-buffer specific effects. We have focused on the formation of hen egg-white lysozyme (HEWL) fibrils in aqueous solutions of different buffers in both acidic and basic pH range. By means of UV-Vis spectroscopy, fluorescence measurements and CD spectroscopy, we have managed to show that fibrillization of HEWL is affected by buffer identity (glycine, TRIS, phosphate, KCl-HCl, cacodylate, HEPES, acetate), solution pH, sample incubation (agitated vs. static) and added excipients (NaCl and PEG). HEWL only forms amyloid fibrils at pH = 2.0 under agitated conditions in glycine and KCl-HCl buffers of high enough ionic strength. Phosphate buffer on the other hand stabilizes the HEWL molecules. Similar stabilization effect was achieved by addition of PEG12000 molecules to the solution.


Asunto(s)
Amiloide/síntesis química , Muramidasa/síntesis química , Acetatos/química , Amiloide/química , Amiloide/metabolismo , Animales , Tampones (Química) , Ácido Cacodílico/química , Glicina/química , Ácido Clorhídrico/química , Concentración de Iones de Hidrógeno , Muramidasa/química , Muramidasa/metabolismo , Fosfatos/química , Cloruro de Potasio/química
19.
J Chem Phys ; 149(16): 163333, 2018 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-30384716

RESUMEN

Using light scattering and Atomic Force Microscopy techniques, we have studied the kinetics and equilibrium scattering intensity of collagen association, which is pertinent to the vitreous of the human eye. Specifically, we have characterized fibrillization dependence on pH, temperature, and ionic strength. At higher and lower pH, collagen triple helices remain stable in solution without fibrillization. At physiological pH, fibrillization occurs and the fibril growth is slowed upon either an increase in ionic strength or a decrease in temperature. The total light scattering with respect to ionic strength is non-monotonic in these conditions as a result of a competing dependence of fibril concentration and size on ionic strength. Fibril concentration is the highest at lower ionic strengths and rapidly decays for higher ionic strengths. On the other hand, fibril size is larger in solutions with higher ionic strength. We present a theoretical model, based on dipolar interactions in solutions, to describe the observed electrostatic nature of collagen assembly. At extreme pH values, either very low or very high, collagen triple helices carry a large net charge of the same sign preventing their assembly into fibrils. At intermediate pH values, fluctuations in the charge distribution of the collagen triple helices around roughly zero net charge lead to fibrillization. The growth kinetics of fibrils in this regime can be adequately described by dipolar interactions arising from charge fluctuations.


Asunto(s)
Amiloide/síntesis química , Colágeno/química , Electricidad Estática , Concentración de Iones de Hidrógeno , Iones , Cinética , Microscopía de Fuerza Atómica , Nefelometría y Turbidimetría , Estructura Secundaria de Proteína , Propiedades de Superficie
20.
J Phys Chem B ; 122(50): 11962-11968, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30461273

RESUMEN

Organisms having tolerances against extreme environments produce and accumulate stress proteins and/or sugars in cells against the extreme environment such as high or low temperature, drying, and so forth. Sugars and/or polyols are known to prevent protein denaturation and enzyme deactivation. In particular, trehalose has received considerable attention because of its association with cryptobiosis and anhydrobiosis. This study focuses on the restoration of acid-denatured amyloid transition of myoglobin by trehalose. Myoglobin is known to proceed amyloidogenic reaction under denaturation conditions. We found that acid-denatured myoglobin at an initial process of amyloidogenic reaction (helix-to-sheet transition followed by oligomerization) at 25 °C was substantially restored to its native structure by trehalose. This action was prominent during the early stage of amyloid formation. Recent results showed that sugars are preferentially excluded from the protein surface to preserve its hydration shell and stabilize the protein structure against chemical and thermal denaturation. Therefore, the present results suggest that trehalose will restore the tightly bound water molecules around the hotspot (G-helix) of myoglobin on the amyloid transition by its intrinsic preservative action of the native hydration shell against denaturation. The present finding on the restorative action by trehalose could provide new insights into protein folding and amyloidosis.


Asunto(s)
Amiloide/síntesis química , Mioglobina/química , Trehalosa/química , Amiloide/química , Concentración de Iones de Hidrógeno , Desnaturalización Proteica , Pliegue de Proteína , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA