Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.652
Filtrar
1.
J Neurophysiol ; 132(3): 922-928, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39110514

RESUMEN

Preclinical models indicate that amiloride (AMD) reduces baroreflex sensitivity and perturbs homeostatic blood pressure (BP) regulation. However, it remains unclear whether these findings translate to humans. This study investigated whether oral administration of AMD reduces spontaneous cardiac and sympathetic baroreflex sensitivity and perturbs BP regulation in healthy young humans. Heart rate (HR; electrocardiography), beat-to-beat BP (photoplethysmography), and muscle sympathetic activity (MSNA, microneurography) were continuously measured in 10 young subjects (4 females) during rest across two randomized experimental visits: 1) after 3 h of oral administration of placebo (PLA, 10 mg of methylcellulose within a gelatin capsule) and 2) after 3 h of oral administration of AMD (10 mg). Visits were separated for at least 48 h. We calculated the standard deviation and other indices of BP variability. Spontaneous cardiac baroreflex was assessed via the sequence technique and cardiac autonomic modulation through time- and frequency-domain HR variability. The sensitivity (gain) of the sympathetic baroreflex was determined via weighted linear regression analysis between MSNA and diastolic BP. AMD did not affect HR, BP, and MSNA compared with PLA. Indexes of cardiac autonomic modulation (time- and frequency-domain HR variability) and BP variability were also unchanged after AMD ingestion. Likewise, AMD did not modify the gain of both spontaneous cardiac and sympathetic arterial baroreflex. A single oral dose of AMD does not affect spontaneous arterial baroreflex sensitivity and BP variability in healthy young adults.NEW & NOTEWORTHY Preclinical models indicate that amiloride (AMD), a nonselective antagonist of the acid-sensing ion channels (ASICs), impairs baroreflex sensitivity and perturbs blood pressure regulation. We translated these findings into humans, investigating the impact of acute oral ingestion of AMD on blood pressure variability and spontaneous cardiac and sympathetic baroreflex sensitivity in healthy young humans. In contrast to preclinical evidence, AMD does not impair spontaneous arterial baroreflex sensitivity and blood pressure variability in healthy young adults.


Asunto(s)
Amilorida , Barorreflejo , Presión Sanguínea , Frecuencia Cardíaca , Humanos , Barorreflejo/efectos de los fármacos , Barorreflejo/fisiología , Amilorida/farmacología , Amilorida/administración & dosificación , Masculino , Femenino , Adulto , Frecuencia Cardíaca/efectos de los fármacos , Adulto Joven , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Administración Oral , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/fisiología , Bloqueadores del Canal de Sodio Epitelial/farmacología , Bloqueadores del Canal de Sodio Epitelial/administración & dosificación
2.
Artículo en Inglés | MEDLINE | ID: mdl-39089444

RESUMEN

There is a consensus that electroneutral Na+/H+ exchangers (NHEs) are important in branchial Na+ uptake in freshwater fish. There is also widespread belief, based on mammalian data, that EIPA [5-(N-ethyl-N-isopropyl)-amiloride]], and HMA [5-(N,N-hexamethylene)-amiloride)] are more potent and specific in blocking Na+ uptake than amiloride. We evaluated this idea by testing the three drugs at 10-7 to 10-4 M, i.e. 0.1 to 100 µM in two model species, rainbow trout (Oncorhynchus mykiss) and goldfish (Carassius auratus), using 22Na+ to measure unidirectional Na+ influx and efflux rates. In both species, the potency order for inhibiting unidirectional Na+ influx was HMA > amiloride > EIPA (IC50 values in the 10-70 µM range), very different from in mammals. At 100 µM, all three drugs inhibited Na+ influx by >90% in both species, except for amiloride in goldfish (65%). However, at 60-100 µM, all three drugs also stimulated unidirectional Na+ efflux rates, indicating non-specific effects. In trout, HMA and EIPA caused significant increases (2.1- to 2.3-fold) in efflux rates, whereas in goldfish, significant efflux elevations were greater (3.1- to 7.2-fold) with all three drugs. We conclude that the inhibitory potency profile established in mammals does not apply to the NHEs in fish gills, that non-specific effects on Na+ efflux rates are a serious concern, and that EIPA and HMA offer no clear benefits in terms of potency or specificity. Considering its much lower cost, we recommend amiloride as the drug of choice for in vivo experiments on freshwater fishes.


Asunto(s)
Amilorida , Carpa Dorada , Sodio , Animales , Amilorida/farmacología , Amilorida/análogos & derivados , Carpa Dorada/metabolismo , Sodio/metabolismo , Branquias/metabolismo , Branquias/efectos de los fármacos , Oncorhynchus mykiss/metabolismo , Agua Dulce , Intercambiadores de Sodio-Hidrógeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Transporte Iónico/efectos de los fármacos , Trucha/metabolismo
3.
J Am Chem Soc ; 146(35): 24537-24552, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39167680

RESUMEN

The envelope (E) protein of SARS-CoV-2 is the smallest of the three structural membrane proteins of the virus. E mediates budding of the progeny virus in the endoplasmic reticulum Golgi intermediate compartment of the cell. It also conducts ions, and this channel activity is associated with the pathogenicity of SARS-CoV-2. The structural basis for these functions is still poorly understood. Biochemical studies of E in detergent micelles found a variety of oligomeric states, but recent 19F solid-state NMR data indicated that the transmembrane domain (ETM, residues 8-38) forms pentamers in lipid bilayers. Hexamethylene amiloride (HMA), an E inhibitor, binds the pentameric ETM at the lipid-exposed helix-helix interface. Here, we investigate the oligomeric structure and drug interaction of an ectodomain-containing E construct, ENTM (residues 1-41). Unexpectedly, 19F spin diffusion NMR data reveal that ENTM adopts an average oligomeric state of dimers instead of pentamers in lipid bilayers. A new amiloride inhibitor, AV-352, shows stronger inhibitory activity than HMA in virus-like particle assays. Distance measurements between 13C-labeled protein and a trifluoromethyl group of AV-352 indicate that the drug binds ENTM with a higher stoichiometry than ETM. We measured protein-drug contacts using a sensitivity-enhanced two-dimensional 13C-19F distance NMR technique. The results indicate that AV-352 binds the C-terminal half of the TM domain, similar to the binding region of HMA. These data provide evidence for the existence of multiple oligomeric states of E in lipid bilayers, which may carry out distinct functions and may be differentially targeted by antiviral drugs.


Asunto(s)
Amilorida , Proteínas de la Envoltura de Coronavirus , SARS-CoV-2 , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Amilorida/farmacología , Amilorida/química , Amilorida/análogos & derivados , Proteínas de la Envoltura de Coronavirus/química , Proteínas de la Envoltura de Coronavirus/metabolismo , Dominios Proteicos , Humanos , Unión Proteica , Antivirales/farmacología , Antivirales/química , Antivirales/metabolismo , Multimerización de Proteína/efectos de los fármacos
4.
In Vivo ; 38(5): 2294-2299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39187341

RESUMEN

BACKGROUND/AIM: Cigarette smoke has been shown to induce a phenotype in humans known as "acquired cystic fibrosis". This occurs because the cystic fibrosis transmembrane conductance regulator (CFTR) functions are impaired systemically due to the deleterious effects of smoke components. Elucidation of cigarette smoke effects on the tracheal epithelium is important. The aim of this study was to develop an ex vivo sheep tracheal model to investigate tracheal ion function. In this model, the epithelial sodium channel (ENaC) is inhibited after exposure to cigarette smoke extract (CSE) as a proof of principle. MATERIALS AND METHODS: Tracheas were isolated from healthy sheep and the tracheal epithelium was surgically excised. Tissues were mounted in Ussing chambers and the short circuit current (Isc) was measured after incubation with 5% CSE in PBS or PBS alone for 30 min. The function of ENaC was investigated by the addition of amiloride (10-5M) apically. Western blot analysis was performed to assess differences in ENaC quantity after CSE exposure. Some specimens were stained with H&E for detection of histological alterations. RESULTS: The amiloride effect on normal epithelium led to a significant decrease in Isc [ΔI=33±5.92 µA/cm2; p<0.001 versus control experiments (ΔI=1.44±0.71 µA/cm2)]. After incubation with CSE, ENaC Isc was significantly reduced (ΔI=14.80±1.96 µA/cm2; p<0.001). No differences in αENaC expression were observed between CSE-exposed and normal tracheal epithelium. Histological images post CSE incubation revealed decreases in the height of the epithelium, with basal cell hyperplasia and loss of ciliated cells. CONCLUSION: Reduced ENaC inhibition by amiloride after CSE incubation could be due to alterations in the tracheal epithelium.


Asunto(s)
Canales Epiteliales de Sodio , Tráquea , Animales , Canales Epiteliales de Sodio/metabolismo , Ovinos , Tráquea/metabolismo , Tráquea/efectos de los fármacos , Tráquea/patología , Proyectos Piloto , Humo/efectos adversos , Amilorida/farmacología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/patología , Epitelio/efectos de los fármacos , Epitelio/metabolismo , Epitelio/patología
5.
Sci Rep ; 14(1): 20263, 2024 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217266

RESUMEN

Derivatives of the potassium-sparing diuretic amiloride are preferentially cytotoxic toward tumor cells relative to normal cells, and have the capacity to target tumor cell populations resistant to currently employed therapeutic agents. However, a major barrier to clinical translation of the amilorides is their modest cytotoxic potency, with estimated IC50 values in the high micromolar range. Here we report the synthesis of ten novel amiloride derivatives and the characterization of their cytotoxic potency toward MCF7 (ER/PR-positive), SKBR3 (HER2-positive) and MDA-MB-231 (triple negative) cell line models of breast cancer. Comparisons of derivative structure with cytotoxic potency toward these cell lines underscore the importance of an intact guanidine group, and uncover a strong link between drug-induced cytotoxicity and drug lipophilicity. We demonstrate that our most potent derivative called LLC1 is preferentially cytotoxic toward mouse mammary tumor over normal epithelial organoids, acts in the single digit micromolar range on breast cancer cell line models representing all major subtypes, acts on cell lines that exhibit both transient and sustained resistance to chemotherapeutic agents, but exhibits limited anti-tumor effects in a mouse model of metastatic breast cancer. Nonetheless, our observations offer a roadmap for the future optimization of amiloride-based compounds with preferential cytotoxicity toward breast tumor cells.


Asunto(s)
Amilorida , Antineoplásicos , Neoplasias de la Mama , Resistencia a Antineoplásicos , Amilorida/farmacología , Amilorida/análogos & derivados , Amilorida/química , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Animales , Ratones , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Células MCF-7
6.
J Ocul Pharmacol Ther ; 40(7): 419-427, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38935528

RESUMEN

Purpose: Antibody-drug conjugates (ADCs) are a relatively recent advance in the delivery of chemotherapeutics that improve targeting of cytotoxic agents. However, despite their antitumor activity, severe ocular adverse effects, including vision loss, have been reported for several ADCs. The nonspecific uptake of ADCs into human corneal epithelial cells (HCECs) and their precursors via macropinocytosis has been proposed to be the primary mechanism of ocular toxicity. In this study, we evaluated the ability of a novel polymer, poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG), to decrease the ADC rituximab-mc monomethylauristatin F (MMAF) (RIX) uptake into human corneal epithelial (HCE-T) cells. Methods: HCE-T cells were exposed to increasing concentrations of RIX to determine inhibition of cell proliferation. HCE-T cells were treated with PLL-g-PEG, the macropinocytosis inhibitor 5-(N-ethyl-N-isopropyl) amiloride (EIPA), or vehicle. After 30 min of incubation, RIX was added. ADC was detected by fluorescent anti-human immunoglobulin G and fluorescently conjugated dextran as viewed by microscopy. Results: RIX caused dose-dependent inhibition of HCE-T cell proliferation. EIPA significantly reduced RIX uptake and decreased macropinocytosis as assessed by direct quantification of RIX using a fluorescently conjugated anti-human antibody as well as quantification of macropinocytosis using fluorescently conjugated dextran. PLL-g-PEG resulted in a dose-dependent inhibition of RIX uptake with half-maximal inhibitory concentrations of 0.022%-0.023% PLL-g-PEG. Conclusion: The data show PLL-g-PEG to be a potent inhibitor of RIX uptake by corneal epithelial cells and support its use as a novel therapeutic approach for the prevention of ocular adverse events associated with ADC therapy.


Asunto(s)
Epitelio Corneal , Inmunoconjugados , Polietilenglicoles , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/administración & dosificación , Polietilenglicoles/química , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/metabolismo , Polilisina/análogos & derivados , Proliferación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Oligopéptidos/farmacología , Amilorida/farmacología , Amilorida/análogos & derivados , Polímeros/química , Células Cultivadas , Pinocitosis/efectos de los fármacos
7.
Acta Physiol (Oxf) ; 240(8): e14183, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38822593

RESUMEN

AIM: In rodent models of nephrotic syndrome (NS), edema formation was prevented by blockade of the epithelial sodium channel ENaC with amiloride. However, apart from case reports, there is no evidence favoring ENaC blockade in patients with NS. METHODS: The monocentric randomized controlled AMILOR study investigated the antiedematous effect of amiloride (starting dose 5 mg/day, max. 15 mg/day) in comparison to standard therapy with the loop diuretic furosemide (40 mg/day, max. 120 mg/day) over 16 days. Overhydration (OH) was measured by bioimpedance spectroscopy (BCM, Fresenius). Depending on the OH response, diuretic dose was adjusted on days 2, 5, 8 and 12, and if necessary, hydrochlorothiazide (HCT) was added from d8 (12.5 mg/day, max. 25 mg/day). The primary endpoint was the decrease in OH on d8. The study was terminated prematurely due to insufficient recruitment and a low statistical power due to a low actual effect size. RESULTS: Median baseline OH was +26.4 (interquartile range 15.5-35.1)% extracellular water (ECW) in the amiloride arm and + 27.9 (24.1-29.4)% ECW in the furosemide arm and decreased by 1.95 (0.80-6.40) and 5.15 (0.90-8.30)% ECW after 8 days, respectively, and by 10.10 (1.30-14.40) and 7.40 (2.80-10.10)% ECW after 16 days, respectively. OH decrease on d8 and d16 was not significantly different between both arms. CONCLUSION: The AMILOR study is the first randomized controlled pilot study suggesting a similar antiedematous effect as furosemide. Further studies are required to better define the role of amiloride in NS (EudraCT 2019-002607-18).


Asunto(s)
Amilorida , Diuréticos , Edema , Furosemida , Síndrome Nefrótico , Amilorida/uso terapéutico , Furosemida/uso terapéutico , Síndrome Nefrótico/tratamiento farmacológico , Síndrome Nefrótico/complicaciones , Humanos , Proyectos Piloto , Diuréticos/uso terapéutico , Masculino , Femenino , Edema/tratamiento farmacológico , Persona de Mediana Edad , Adulto , Bloqueadores del Canal de Sodio Epitelial/uso terapéutico , Anciano
8.
Am J Physiol Renal Physiol ; 327(3): F435-F449, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38779754

RESUMEN

We have previously observed that prolonged administration of rapamycin, an inhibitor targeting the mammalian target of rapamycin complex (mTORC)1, partially reduced hypertension and alleviated kidney inflammation in Dahl salt-sensitive (SS) rats. In contrast, treatment with PP242, an inhibitor affecting both mTORC1/mTORC2, not only completely prevented hypertension but also provided substantial protection against kidney injury. Notably, PP242 exhibited potent natriuretic effects that were not evident with rapamycin. The primary objective of this study was to pinpoint the specific tubular sites responsible for the natriuretic effect of PP242 in SS rats subjected to either 0.4% NaCl (normal salt) or 4.0% NaCl (high salt) diet. Acute effects of PP242 on natriuretic, diuretic, and kaliuretic responses were determined in unanesthetized SS rats utilizing benzamil, furosemide, or hydrochlorothiazide [inhibitors of epithelial Na+ channel (ENaC), Na-K-2Cl cotransporter (NKCC2), or Na-Cl cotransporter (NCC), respectively] either administered alone or in combination. The findings indicate that the natriuretic effects of PP242 in SS rats stem predominantly from the inhibition of NCC and a reduction of ENaC open probability. Molecular analysis revealed that mTORC2 regulates NCC activity through protein phosphorylation and ENaC activity through proteolytic cleavage in vivo. Evidence also indicated that PP242 also prevents the loss of K+ associated with the inhibition of NCC. These findings suggest that PP242 may represent an improved therapeutic approach for antihypertensive intervention, potentially controlling blood pressure and mitigating kidney injury in salt-sensitive human subjects.NEW & NOTEWORTHY This study explored mechanisms underlying the natriuretic effects of mammalian target of rapamycin protein complex 2 inhibition using PP242 and revealed both epithelial Na+ channel and Na-Cl cotransporter in the distal tubular segments were potentially inhibited. These observations, with prior lab evidence, indicate that PP242 prevents hypertension via its potent inhibitory effects on these specific sodium transporters and by reducing renal immune responses. This dual action, coupled with potassium sparing effects, suggests an improved approach for managing hypertension and associated kidney damage.


Asunto(s)
Canales Epiteliales de Sodio , Diana Mecanicista del Complejo 2 de la Rapamicina , Natriuresis , Ratas Endogámicas Dahl , Cloruro de Sodio Dietético , Miembro 3 de la Familia de Transportadores de Soluto 12 , Animales , Canales Epiteliales de Sodio/metabolismo , Natriuresis/efectos de los fármacos , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Masculino , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Hipertensión/metabolismo , Hipertensión/tratamiento farmacológico , Hipertensión/fisiopatología , Riñón/efectos de los fármacos , Riñón/metabolismo , Modelos Animales de Enfermedad , Ratas , Amilorida/farmacología , Amilorida/análogos & derivados , Presión Sanguínea/efectos de los fármacos , Fosforilación , Transducción de Señal/efectos de los fármacos , Indoles , Purinas
9.
Lab Chip ; 24(12): 3093-3100, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38779981

RESUMEN

The volume and composition of airway surface liquid (ASL) is regulated by liquid secretion and absorption across airway epithelia, controlling the pH, solute concentration, and biophysical properties of ASL in health and disease. Here, we developed a method integrating explanted tracheal tissue with a micro-machined device (referred to as "ex vivo trachea-chip") to study the dynamic properties of ASL volume regulation. The ex vivo trachea-chip allows real-time measurement of ASL transport (Jv) with intact airway anatomic structures, environmental control, high-resolution, and enhanced experimental throughput. Applying this technology to freshly excised tissue we observed ASL absorption under basal conditions. The apical application of amiloride, an inhibitor of airway epithelial sodium channels (ENaC), reduced airway liquid absorption. Furthermore, the basolateral addition of NPPB, a Cl- channel inhibitor, reduced the basal rate of ASL absorption, implicating a role for basolateral Cl- channels in ASL volume regulation. When tissues were treated with apical amiloride and basolateral methacholine, a cholinergic agonist that stimulates secretion from airway submucosal glands, the net airway surface liquid production shifted from absorption to secretion. This ex vivo trachea-chip provides a new tool to investigate ASL transport dynamics in pulmonary disease states and may aid the development of new therapies targeting ASL regulation.


Asunto(s)
Tráquea , Tráquea/metabolismo , Amilorida/farmacología , Animales , Dispositivos Laboratorio en un Chip , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/citología
10.
Am J Physiol Renal Physiol ; 327(1): F158-F170, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38779755

RESUMEN

Diabetes is closely associated with K+ disturbances during disease progression and treatment. However, it remains unclear whether K+ imbalance occurs in diabetes with normal kidney function. In this study, we examined the effects of dietary K+ intake on systemic K+ balance and renal K+ handling in streptozotocin (STZ)-induced diabetic mice. The control and STZ mice were fed low or high K+ diet for 7 days to investigate the role of dietary K+ intake in renal K+ excretion and K+ homeostasis and to explore the underlying mechanism by evaluating K+ secretion-related transport proteins in distal nephrons. K+-deficient diet caused excessive urinary K+ loss, decreased daily K+ balance, and led to severe hypokalemia in STZ mice compared with control mice. In contrast, STZ mice showed an increased daily K+ balance and elevated plasma K+ level under K+-loading conditions. Dysregulation of the NaCl cotransporter (NCC), epithelial Na+ channel (ENaC), and renal outer medullary K+ channel (ROMK) was observed in diabetic mice fed either low or high K+ diet. Moreover, amiloride treatment reduced urinary K+ excretion and corrected hypokalemia in K+-restricted STZ mice. On the other hand, inhibition of SGLT2 by dapagliflozin promoted urinary K+ excretion and normalized plasma K+ levels in K+-supplemented STZ mice, at least partly by increasing ENaC activity. We conclude that STZ mice exhibited abnormal K+ balance and impaired renal K+ handling under either low or high K+ diet, which could be primarily attributed to the dysfunction of ENaC-dependent renal K+ excretion pathway, despite the possible role of NCC.NEW & NOTEWORTHY Neither low dietary K+ intake nor high dietary K+ intake effectively modulates renal K+ excretion and K+ homeostasis in STZ mice, which is closely related to the abnormality of ENaC expression and activity. SGLT2 inhibitor increases urinary K+ excretion and reduces plasma K+ level in STZ mice under high dietary K+ intake, an effect that may be partly due to the upregulation of ENaC activity.


Asunto(s)
Diabetes Mellitus Experimental , Canales Epiteliales de Sodio , Potasio en la Dieta , Potasio , Animales , Diabetes Mellitus Experimental/metabolismo , Potasio/metabolismo , Potasio/orina , Masculino , Potasio en la Dieta/metabolismo , Canales Epiteliales de Sodio/metabolismo , Ratones Endogámicos C57BL , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Rectificación Interna/genética , Ratones , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/fisiopatología , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/fisiopatología , Hipopotasemia/metabolismo , Amilorida/farmacología , Eliminación Renal/efectos de los fármacos , Homeostasis , Miembro 3 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Glucósidos/farmacología , Estreptozocina , Compuestos de Bencidrilo , Transportador 2 de Sodio-Glucosa
11.
Am J Physiol Renal Physiol ; 327(1): F37-F48, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38779752

RESUMEN

Interleukin (IL)-17A contributes to hypertension in preclinical models. T helper 17 and dendritic cells are activated by NaCl, which could involve the epithelial Na+ channel (ENaC). We hypothesized that the ENaC blocker amiloride reduces plasma IL-17A and related cytokines in patients with hypertension. Concentrations of IL-17A, IFN-γ, TNF, IL-6, IL-1ß, and IL-10 were determined by immunoassays in plasma from two patient cohorts before and after amiloride treatment: 1) patients with type 2 diabetes mellitus (T2DM) and treatment-resistant hypertension (n = 69, amiloride 5-10 mg/day for 8 wk) and 2) patients with hypertension and type 1 diabetes mellitus (T1DM) (n = 29) on standardized salt intake (amiloride 20-40 mg/day, 2 days). Plasma and tissue from ANG II-hypertensive mice with T1DM treated with amiloride (2 mg/kg/day, 4 days) were analyzed. The effect of amiloride and benzamil on macrophage cytokines was determined in vitro. Plasma cytokines showed higher concentrations (IL-17A ∼40-fold) in patients with T2DM compared with T1DM. In patients with T2DM, amiloride had no effect on IL-17A but lowered TNF and IL-6. In patients with T1DM, amiloride had no effect on IL-17A but increased TNF. In both cohorts, blood pressure decline and plasma K+ increase did not relate to plasma cytokine changes. In mice, amiloride exerted no effect on IL-17A in the plasma, kidney, aorta, or left cardiac ventricle but increased TNF in cardiac and kidney tissues. In lipopolysaccharide-stimulated human THP-1 macrophages, amiloride and benzamil (from 1 nmol/L) decreased TNF, IL-6, IL-10, and IL-1ß. In conclusion, inhibition of ENaC by amiloride reduces proinflammatory cytokines TNF and IL-6 but not IL-17A in patients with T2DM, potentially by a direct action on macrophages.NEW & NOTEWORTHY ENaC activity may contribute to macrophage-derived cytokine release, since amiloride exerts anti-inflammatory effects by suppression of TNF and IL-6 cytokines in patients with resistant hypertension and type 2 diabetes and in THP-1-derived macrophages in vitro.


Asunto(s)
Amilorida , Diabetes Mellitus Tipo 2 , Bloqueadores del Canal de Sodio Epitelial , Hipertensión , Interleucina-17 , Interleucina-6 , Factor de Necrosis Tumoral alfa , Amilorida/farmacología , Amilorida/uso terapéutico , Humanos , Interleucina-17/sangre , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/inmunología , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Hipertensión/tratamiento farmacológico , Hipertensión/sangre , Femenino , Bloqueadores del Canal de Sodio Epitelial/farmacología , Factor de Necrosis Tumoral alfa/sangre , Anciano , Ratones , Canales Epiteliales de Sodio/metabolismo , Canales Epiteliales de Sodio/efectos de los fármacos , Ratones Endogámicos C57BL , Antihipertensivos/farmacología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/sangre
12.
Arch Pharm (Weinheim) ; 357(8): e2400063, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38704748

RESUMEN

Lithium induces nephrogenic diabetes insipidus (NDI) and microcystic chronic kidney disease (CKD). As previous clinical studies suggest that NDI is dose-dependent and CKD is time-dependent, we investigated the effect of low exposition to lithium in a long-term experimental rat model. Rats were fed with a normal diet (control group), with the addition of lithium (Li+ group), or with lithium and amiloride (Li+/Ami group) for 6 months, allowing obtaining low plasma lithium concentrations (0.25 ± 0.06 and 0.43 ± 0.16 mmol/L, respectively). Exposition to low concentrations of plasma lithium levels prevented NDI but not microcystic dilations of kidney tubules, which were identified as collecting ducts (CDs) on immunofluorescent staining. Both hypertrophy, characterized by an increase in the ratio of nuclei per tubular area, and microcystic dilations were observed. The ratio between principal cells and intercalated cells was higher in microcystic than in hypertrophied tubules. There was no correlation between AQP2 messenger RNA levels and cellular remodeling of the CD. Additional amiloride treatment in the Li+/Ami group did not allow consistent morphometric and cellular composition changes compared to the Li+ group. Low exposition to lithium prevented overt NDI but not microcystic dilations of the CD, with differential cellular composition in hypertrophied and microcystic CDs, suggesting different underlying cellular mechanisms.


Asunto(s)
Amilorida , Acuaporina 2 , Diabetes Insípida Nefrogénica , Modelos Animales de Enfermedad , Túbulos Renales Colectores , Animales , Diabetes Insípida Nefrogénica/inducido químicamente , Diabetes Insípida Nefrogénica/prevención & control , Túbulos Renales Colectores/efectos de los fármacos , Túbulos Renales Colectores/patología , Túbulos Renales Colectores/metabolismo , Masculino , Ratas , Acuaporina 2/metabolismo , Amilorida/farmacología , Ratas Wistar , Factores de Tiempo , Insuficiencia Renal Crónica/prevención & control , Insuficiencia Renal Crónica/inducido químicamente , Litio/farmacología , Relación Dosis-Respuesta a Droga
13.
Sleep Med ; 119: 417-423, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781664

RESUMEN

BACKGROUND: Obstructive sleep apnea (OSA) and hypertension are common conditions that may be linked through sympathetic activation and water retention. We hypothesized that diuretics, which reduce the body water content, may be more effective than amlodipine, a blood pressure (BP)-lowering agent implicated with edema, in controlling OSA in patients with hypertension. We also aimed to compare the effects of these treatments on ambulatory blood pressure monitoring (ABPM). METHODS: In a randomized, double-blind clinical trial, we compared the effects of chlorthalidone/amiloride 25/5 mg with amlodipine 10 mg on OSA measured by portable sleep monitor and BP measured by ABPM. The study included participants older than 40 who had moderate OSA (10-40 apneas/hour of sleep) and BP within the systolic range of 140-159 mmHg or diastolic range of 90-99 mmHg. RESULTS: The individuals in the experimental groups were comparable in age, gender, and other relevant characteristics. Neither the combination of diuretics nor amlodipine alone reduced the AHI after 8 weeks of treatment (AHI 26.3 with diuretics and 25.0 with amlodipine. P = 0.713). Both treatments significantly lowered office, 24-h, and nighttime ABP, but the two groups had no significant difference. CONCLUSION: Chlorthalidone associated with amiloride and amlodipine are ineffective in decreasing the frequency of sleep apnea episodes in patients with moderate OSA and hypertension. Both treatments have comparable effects in lowering both office and ambulatory blood pressure. The notion that treatments could offer benefits for both OSA and hypertension remains to be demonstrated. TRIAL REGISTRATION CLINICALTRIALS. GOV IDENTIFIER: NCT01896661.


Asunto(s)
Amilorida , Amlodipino , Antihipertensivos , Monitoreo Ambulatorio de la Presión Arterial , Clortalidona , Hipertensión , Apnea Obstructiva del Sueño , Humanos , Masculino , Femenino , Método Doble Ciego , Hipertensión/tratamiento farmacológico , Hipertensión/complicaciones , Persona de Mediana Edad , Antihipertensivos/uso terapéutico , Clortalidona/uso terapéutico , Amlodipino/uso terapéutico , Apnea Obstructiva del Sueño/tratamiento farmacológico , Apnea Obstructiva del Sueño/complicaciones , Amilorida/uso terapéutico , Diuréticos/uso terapéutico , Presión Sanguínea/efectos de los fármacos , Polisomnografía/efectos de los fármacos , Anciano
14.
Int J Pharm Compd ; 28(3): 246-248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768504

RESUMEN

Amiloride is a U.S. Food and Drug Administration-approved diuretic agent used to treat hypertension and congestive heart failure. Recent human and animal studies have suggested that amiloride may also have a role in treating anxiety through its acid-sensing ion channel antagonism. Intranasal administration of amiloride nasal spray via an extemporaneously compounded preparation has the potential for rapid delivery to the site of action to achieve therapeutic outcomes in individual patients with anxiety disorders. However, these patient-specific preparations do not have the pre-formulation characterization, including chemical stability, that conventional manufactured dosage forms have. The objective of this study was to assess the estimated chemical stability of compounded amiloride nasal spray over 6 months and 12 months utilizing accelerated degradation with high heat and the Arrhenius equation. A stability-indicating highperformance liquid chromatography analytical method was employed at appropriate intervals over a 12-month period to reveal that amiloride remained chemically stable over the period tested and by extrapolation. Physical stability and compatibility with the preservative benzyl alcohol were also confirmed via visual inspection, pH monitoring, and measurement of turbidity.


Asunto(s)
Amilorida , Composición de Medicamentos , Estabilidad de Medicamentos , Rociadores Nasales , Amilorida/química , Amilorida/administración & dosificación , Amilorida/análisis , Administración Intranasal , Cromatografía Líquida de Alta Presión , Concentración de Iones de Hidrógeno
15.
Am J Physiol Renal Physiol ; 326(6): F1066-F1077, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634134

RESUMEN

The epithelial Na+ channel (ENaC) γ subunit is essential for homeostasis of Na+, K+, and body fluid. Dual γ subunit cleavage before and after a short inhibitory tract allows dissociation of this tract, increasing channel open probability (PO), in vitro. Cleavage proximal to the tract occurs at a furin recognition sequence (143RKRR146, in the mouse γ subunit). Loss of furin-mediated cleavage prevents in vitro activation of the channel by proteolysis at distal sites. We hypothesized that 143RKRR146 mutation to 143QQQQ146 (γQ4) in 129/Sv mice would reduce ENaC PO, impair flow-stimulated flux of Na+ (JNa) and K+ (JK) in perfused collecting ducts, reduce colonic amiloride-sensitive short-circuit current (ISC), and impair Na+, K+, and body fluid homeostasis. Immunoblot of γQ4/Q4 mouse kidney lysates confirmed loss of a band consistent in size with the furin-cleaved proteolytic fragment. However, γQ4/Q4 male mice on a low Na+ diet did not exhibit altered ENaC PO or flow-induced JNa, though flow-induced JK modestly decreased. Colonic amiloride-sensitive ISC in γQ4/Q4 mice was not altered. γQ4/Q4 males, but not females, exhibited mildly impaired fluid volume conservation when challenged with a low Na+ diet. Blood Na+ and K+ were unchanged on a regular, low Na+, or high K+ diet. These findings suggest that biochemical evidence of γ subunit cleavage should not be used in isolation to evaluate ENaC activity. Furthermore, factors independent of γ subunit cleavage modulate channel PO and the influence of ENaC on Na+, K+, and fluid volume homeostasis in 129/Sv mice, in vivo.NEW & NOTEWORTHY The epithelial Na+ channel (ENaC) is activated in vitro by post-translational proteolysis. In vivo, low Na+ or high K+ diets enhance ENaC proteolysis, and proteolysis is hypothesized to contribute to channel activation in these settings. Using a mouse expressing ENaC with disruption of a key proteolytic cleavage site, this study demonstrates that impaired proteolytic activation of ENaC's γ subunit has little impact upon channel open probability or the ability of mice to adapt to low Na+ or high K+ diets.


Asunto(s)
Canales Epiteliales de Sodio , Proteolisis , Sodio , Animales , Canales Epiteliales de Sodio/metabolismo , Canales Epiteliales de Sodio/genética , Masculino , Femenino , Sodio/metabolismo , Túbulos Renales Colectores/metabolismo , Homeostasis , Furina/metabolismo , Furina/genética , Ratones , Colon/metabolismo , Potasio/metabolismo , Dieta Hiposódica , Ratones de la Cepa 129 , Mutación , Amilorida/farmacología
16.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612396

RESUMEN

Acid-sensing ion channels (ASICs) play a key role in the perception and response to extracellular acidification changes. These proton-gated cation channels are critical for neuronal functions, like learning and memory, fear, mechanosensation and internal adjustments like synaptic plasticity. Moreover, they play a key role in neuronal degeneration, ischemic neuronal injury, seizure termination, pain-sensing, etc. Functional ASICs are homo or heterotrimers formed with (ASIC1-ASIC3) homologous subunits. ASIC1a, a major ASIC isoform in the central nervous system (CNS), possesses an acidic pocket in the extracellular region, which is a key regulator of channel gating. Growing data suggest that ASIC1a channels are a potential therapeutic target for treating a variety of neurological disorders, including stroke, epilepsy and pain. Many studies were aimed at identifying allosteric modulators of ASIC channels. However, the regulation of ASICs remains poorly understood. Using all available crystal structures, which correspond to different functional states of ASIC1, and a molecular dynamics simulation (MD) protocol, we analyzed the process of channel inactivation. Then we applied a molecular docking procedure to predict the protein conformation suitable for the amiloride binding. To confirm the effect of its sole active blocker against the ASIC1 state transition route we studied the complex with another MD simulation run. Further experiments evaluated various compounds in the Enamine library that emerge with a detectable ASIC inhibitory activity. We performed a detailed analysis of the structural basis of ASIC1a inhibition by amiloride, using a combination of in silico approaches to visualize its interaction with the ion pore in the open state. An artificial activation (otherwise, expansion of the central pore) causes a complex modification of the channel structure, namely its transmembrane domain. The output protein conformations were used as a set of docking models, suitable for a high-throughput virtual screening of the Enamine chemical library. The outcome of the virtual screening was confirmed by electrophysiological assays with the best results shown for three hit compounds.


Asunto(s)
Amilorida , Benzamidinas , Humanos , Simulación del Acoplamiento Molecular , Canales Iónicos Sensibles al Ácido , Dolor
17.
Exp Physiol ; 109(5): 766-778, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38551893

RESUMEN

It has been proposed that diuretics can improve renal tissue oxygenation through inhibition of tubular sodium reabsorption and reduced metabolic demand. However, the impact of clinically used diuretic drugs on the renal cortical and medullary microcirculation is unclear. Therefore, we examined the effects of three commonly used diuretics, at clinically relevant doses, on renal cortical and medullary perfusion and oxygenation in non-anaesthetised healthy sheep. Merino ewes received acetazolamide (250 mg; n = 9), furosemide (20 mg; n = 10) or amiloride (10 mg; n = 7) intravenously. Systemic and renal haemodynamics, renal cortical and medullary tissue perfusion and P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ , and renal function were then monitored for up to 8 h post-treatment. The peak diuretic response occurred 2 h (99.4 ± 14.8 mL/h) after acetazolamide, at which stage cortical and medullary tissue perfusion and P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ were not significantly different from their baseline levels. The peak diuretic response to furosemide occurred at 1 h (196.5 ± 12.3 mL/h) post-treatment but there were no significant changes in cortical and medullary tissue oxygenation during this period. However, cortical tissue P O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ fell from 40.1 ± 3.8 mmHg at baseline to 17.2 ± 4.4 mmHg at 3 h and to 20.5 ± 5.3 mmHg at 6 h after furosemide administration. Amiloride did not produce a diuretic response and was not associated with significant changes in cortical or medullary tissue oxygenation. In conclusion, clinically relevant doses of diuretic agents did not improve regional renal tissue oxygenation in healthy animals during the 8 h experimentation period. On the contrary, rebound renal cortical hypoxia may develop after dissipation of furosemide-induced diuresis.


Asunto(s)
Acetazolamida , Amilorida , Diuréticos , Furosemida , Corteza Renal , Médula Renal , Animales , Furosemida/farmacología , Acetazolamida/farmacología , Amilorida/farmacología , Diuréticos/farmacología , Ovinos , Femenino , Corteza Renal/efectos de los fármacos , Corteza Renal/metabolismo , Médula Renal/efectos de los fármacos , Médula Renal/metabolismo , Oxígeno/metabolismo , Hemodinámica/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos
18.
J Physiol ; 602(4): 737-757, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38345534

RESUMEN

Paraoxonase 3 (PON3) is expressed in the aldosterone-sensitive distal nephron, where filtered Na+ is reabsorbed mainly via the epithelial Na+ channel (ENaC) and Na+ -coupled co-transporters. We previously showed that PON3 negatively regulates ENaC through a chaperone mechanism. The present study aimed to determine the physiological role of PON3 in renal Na+ and K+ homeostasis. Pon3 knockout (KO) mice had higher amiloride-induced natriuresis and lower plasma [K+ ] at baseline. Single channel recordings in split-open tubules showed that the number of active channels per patch was significantly higher in KO mice, resulting in a higher channel activity in the absence of PON3. Although whole kidney abundance of ENaC subunits was not altered in Pon3 KOs, ENaC gamma subunit was more apically distributed within the connecting tubules and cortical collecting ducts of Pon3 KO kidneys. Additionally, small interfering RNA-mediated knockdown of PON3 in cultured mouse cortical collecting duct cells led to an increased surface abundance of ENaC gamma subunit. As a result of lower plasma [K+ ], sodium chloride co-transporter phosphorylation was enhanced in the KO kidneys, a phenotype that was corrected by a high K+ diet. Finally, PON3 expression was upregulated in mouse kidneys under dietary K+ restriction, potentially providing a mechanism to dampen ENaC activity and associated K+ secretion. Taken together, our results show that PON3 has a role in renal Na+ and K+ homeostasis through regulating ENaC functional expression in the distal nephron. KEY POINTS: Paraoxonase 3 (PON3) is expressed in the distal nephron of mouse kidneys and functions as a molecular chaperone to reduce epithelial Na+ channel (ENaC) expression and activity in heterologous expression systems. We examined the physiological role of PON3 in renal Na+ and K+ handling using a Pon3 knockout (KO) mouse model. At baseline, Pon3 KO mice had lower blood [K+ ], more functional ENaC in connecting tubules/cortical collecting ducts, higher amiloride-induced natriuresis, and enhanced sodium chloride co-transporter (NCC) phosphorylation. Upon challenge with a high K+ diet, Pon3 KO mice had normalized blood [K+ ] and -NCC phosphorylation but lower circulating aldosterone levels compared to their littermate controls. Kidney PON3 abundance was altered in mice under dietary K+ loading or K+ restriction, providing a potential mechanism for regulating ENaC functional expression and renal Na+ and K+ homeostasis in the distal nephron.


Asunto(s)
Amilorida , Simportadores , Ratones , Animales , Amilorida/farmacología , Arildialquilfosfatasa/metabolismo , Canales Epiteliales de Sodio/metabolismo , Aldosterona/metabolismo , Cloruro de Sodio/metabolismo , Sodio/metabolismo , Nefronas/metabolismo
19.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338690

RESUMEN

Tafalgin (Taf) is a tetrapeptide opioid used in clinical practice in Russia as an analgesic drug for subcutaneous administration as a solution (4 mg/mL; concentration of 9 mM). We found that the acid-sensing ion channels (ASICs) are another molecular target for this molecule. ASICs are proton-gated sodium channels that mediate nociception in the peripheral nervous system and contribute to fear and learning in the central nervous system. Using electrophysiological methods, we demonstrated that Taf could increase the integral current through heterologically expressed ASIC with half-maximal effective concentration values of 0.09 mM and 0.3 mM for rat and human ASIC3, respectively, and 1 mM for ASIC1a. The molecular mechanism of Taf action was shown to be binding to the channel in the resting state and slowing down the rate of desensitization. Taf did not compete for binding sites with both protons and ASIC3 antagonists, such as APETx2 and amiloride (Ami). Moreover, Taf and Ami together caused an unusual synergistic effect, which was manifested itself as the development of a pronounced second desensitizing component. Thus, the ability of Taf to act as a positive allosteric modulator of these channels could potentially cause promiscuous effects in clinical practice. This fact must be considered in patients' treatment.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Analgésicos Opioides , Ratas , Humanos , Animales , Canales Iónicos Sensibles al Ácido/metabolismo , Analgésicos Opioides/farmacología , Amilorida/farmacología , Protones , Sitios de Unión
20.
Bioorg Med Chem ; 99: 117603, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38246115

RESUMEN

NHE5, an isoform of the Na+/H+ exchanger (NHE) protein, is an ion-transporting membrane protein that regulates intracellular pH and is highly expressed in colorectal adenocarcinoma. Therefore, we hypothesized that NHE5 inhibitors can be used as anticancer drugs. However, because NHE1 is ubiquitously expressed in all cells, it is extremely important to demonstrate its selective inhibitory activity against NHE5. We used amiloride, an NHE non-selective inhibitor, as a lead compound and created UTX-143, which has NHE5-selective inhibitory activity, using a structure-activity relationship approach. UTX-143 showed selective cytotoxic effects on cancer cells and reduced the migratory and invasive abilities of cancer cells. These results suggest a new concept wherein drugs exhibit cancer-specific cytotoxic effects through selective inhibition of NHE5 and the possibility of UTX-143 as a lead NHE5-selective inhibitor.


Asunto(s)
Amilorida , Sodio , Amilorida/farmacología , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas de la Membrana/metabolismo , Hidrógeno , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA