Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.055
Filtrar
1.
Prosthet Orthot Int ; 48(3): 337-343, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38857166

RESUMEN

BACKGROUND: Hip- and pelvic-level amputations are devastating injuries that drastically alter patient function and quality of life. This study examined the experience of military beneficiaries with a hip- or pelvic-level amputation to better characterize their challenges and specific needs and to optimize treatment in the future. METHODS: We conducted a retrospective review of the Military Health System and identified 118 patients with a history of one or more amputation(s) at the hip or pelvic level between October 2001 and September 2017. Surviving participants (n = 97) were mailed a letter which explained the details of the study and requested participation in a telephonic interview. A total of six individuals (one female, five males) participated in structured interviews. RESULTS: The study group included four participants with hip disarticulations and two participants with hemipelvectomies (one internal, one external). All six participants reported significant challenges with activities related to prosthetic use, mobility, residual limb health, pain, gastrointestinal and genitourinary function, psychiatric health, and sexual function. CONCLUSIONS: These interviews highlight the unique needs of individuals with hip- and pelvic-level amputations and may improve access to higher echelons of care that would enhance the function and quality of life for these participants.


Asunto(s)
Miembros Artificiales , Personal Militar , Calidad de Vida , Humanos , Masculino , Femenino , Estudios Retrospectivos , Adulto , Persona de Mediana Edad , Personal Militar/psicología , Amputación Quirúrgica/rehabilitación , Amputación Quirúrgica/psicología , Hemipelvectomía , Amputados/psicología , Amputados/rehabilitación , Estados Unidos , Pelvis
2.
Sci Rep ; 14(1): 13456, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38862558

RESUMEN

The agonist-antagonist myoneural interface (AMI) is an amputation surgery that preserves sensorimotor signaling mechanisms of the central-peripheral nervous systems. Our first neuroimaging study investigating AMI subjects conducted by Srinivasan et al. (2020) focused on task-based neural signatures, and showed evidence of proprioceptive feedback to the central nervous system. The study of resting state neural activity helps non-invasively characterize the neural patterns that prime task response. In this study on resting state functional magnetic resonance imaging in AMI subjects, we compared functional connectivity in patients with transtibial AMI (n = 12) and traditional (n = 7) amputations (TA). To test our hypothesis that we would find significant neurophysiological differences between AMI and TA subjects, we performed a whole-brain exploratory analysis to identify a seed region; namely, we conducted ANOVA, followed by t-test statistics to locate a seed in the salience network. Then, we implemented a seed-based connectivity analysis to gather cluster-level inferences contrasting our subject groups. We show evidence supporting our hypothesis that the AMI surgery induces functional network reorganization resulting in a neural configuration that significantly differs from the neural configuration after TA surgery. AMI subjects show significantly less coupling with regions functionally dedicated to selecting where to focus attention when it comes to salient stimuli. Our findings provide researchers and clinicians with a critical mechanistic understanding of the effect of AMI amputation on brain networks at rest, which has promising implications for improved neurorehabilitation and prosthetic control.


Asunto(s)
Amputación Quirúrgica , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Descanso/fisiología , Tibia/cirugía , Tibia/fisiopatología , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Neurofisiología/métodos , Amputados/rehabilitación , Mapeo Encefálico/métodos
3.
Math Biosci Eng ; 21(4): 5712-5734, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38872555

RESUMEN

This research introduces a novel dual-pathway convolutional neural network (DP-CNN) architecture tailored for robust performance in Log-Mel spectrogram image analysis derived from raw multichannel electromyography signals. The primary objective is to assess the effectiveness of the proposed DP-CNN architecture across three datasets (NinaPro DB1, DB2, and DB3), encompassing both able-bodied and amputee subjects. Performance metrics, including accuracy, precision, recall, and F1-score, are employed for comprehensive evaluation. The DP-CNN demonstrates notable mean accuracies of 94.93 ± 1.71% and 94.00 ± 3.65% on NinaPro DB1 and DB2 for healthy subjects, respectively. Additionally, it achieves a robust mean classification accuracy of 85.36 ± 0.82% on amputee subjects in DB3, affirming its efficacy. Comparative analysis with previous methodologies on the same datasets reveals substantial improvements of 28.33%, 26.92%, and 39.09% over the baseline for DB1, DB2, and DB3, respectively. The DP-CNN's superior performance extends to comparisons with transfer learning models for image classification, reaffirming its efficacy. Across diverse datasets involving both able-bodied and amputee subjects, the DP-CNN exhibits enhanced capabilities, holding promise for advancing myoelectric control.


Asunto(s)
Algoritmos , Amputados , Electromiografía , Gestos , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador , Extremidad Superior , Humanos , Electromiografía/métodos , Extremidad Superior/fisiología , Masculino , Adulto , Femenino , Adulto Joven , Persona de Mediana Edad , Reproducibilidad de los Resultados
4.
Sci Robot ; 9(90): eadl0085, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809994

RESUMEN

Sensory feedback for prosthesis control is typically based on encoding sensory information in specific types of sensory stimuli that the users interpret to adjust the control of the prosthesis. However, in physiological conditions, the afferent feedback received from peripheral nerves is not only processed consciously but also modulates spinal reflex loops that contribute to the neural information driving muscles. Spinal pathways are relevant for sensory-motor integration, but they are commonly not leveraged for prosthesis control. We propose an approach to improve sensory-motor integration for prosthesis control based on modulating the excitability of spinal circuits through the vibration of tendons in a closed loop with muscle activity. We measured muscle signals in healthy participants and amputees during different motor tasks, and we closed the loop by applying vibration on tendons connected to the muscles, which modulated the excitability of motor neurons. The control signals to the prosthesis were thus the combination of voluntary control and additional spinal reflex inputs induced by tendon vibration. Results showed that closed-loop tendon vibration was able to modulate the neural drive to the muscles. When closed-loop tendon vibration was used, participants could achieve similar or better control performance in interfaces using muscle activation than without stimulation. Stimulation could even improve prosthetic grasping in amputees. Overall, our results indicate that closed-loop tendon vibration can integrate spinal reflex pathways in the myocontrol system and open the possibility of incorporating natural feedback loops in prosthesis control.


Asunto(s)
Amputados , Miembros Artificiales , Retroalimentación Sensorial , Mano , Músculo Esquelético , Diseño de Prótesis , Reflejo , Vibración , Humanos , Adulto , Mano/fisiología , Masculino , Femenino , Retroalimentación Sensorial/fisiología , Reflejo/fisiología , Músculo Esquelético/fisiología , Músculo Esquelético/inervación , Electromiografía , Tendones/fisiología , Neuronas Motoras/fisiología , Persona de Mediana Edad , Fuerza de la Mano/fisiología , Adulto Joven
5.
J Rehabil Med ; 56: jrm34141, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770700

RESUMEN

OBJECTIVE: To describe and evaluate the combination of osseointegration and nerve transfers in 3 transhumeral amputees. DESIGN: Case series. PATIENTS: Three male patients with a unilateral traumatic transhumeral amputation. METHODS: Patients received a combination of osseointegration and targeted muscle reinnervation surgery. Rehabilitation included graded weight training, range of motion exercises, biofeedback, table-top prosthesis training, and controlling the actual device. The impairment in daily life, health-related quality of life, and pain before and after the intervention was evaluated in these patients. Their shoulder range of motion, prosthesis embodiment, and function were documented at a 2- to 5-year follow-up. RESULTS: All 3 patients attended rehabilitation and used their myoelectric prosthesis on a daily basis. Two patients had full shoulder range of motion with the prosthesis, while the other patient had 55° of abduction and 45° of anteversion. They became more independent in their daily life activities after the intervention and incorporated their prosthesis into their body scheme to a high extent. CONCLUSION: These results indicate that patients can benefit from the combined procedure. However, the patients' perspective, risks of the surgical procedures, and the relatively long rehabilitation procedure need to be incorporated in the decision-making.


Asunto(s)
Amputados , Miembros Artificiales , Transferencia de Nervios , Oseointegración , Rango del Movimiento Articular , Humanos , Masculino , Oseointegración/fisiología , Adulto , Amputados/rehabilitación , Transferencia de Nervios/métodos , Rango del Movimiento Articular/fisiología , Biónica , Resultado del Tratamiento , Músculo Esquelético , Persona de Mediana Edad , Húmero/cirugía , Calidad de Vida , Amputación Traumática/rehabilitación , Amputación Traumática/cirugía , Actividades Cotidianas
6.
J Am Heart Assoc ; 13(10): e033304, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38726914

RESUMEN

BACKGROUND: Amputation confers disabilities upon patients and is linked to substantial morbidity and death attributed to heart disease. While some studies have focused on traumatic amputees in veterans, few studies have focused on traumatic amputees within the general population. Therefore, the present study aimed to assess the risk of heart disease in patients with traumatic amputation with disability within the general population using a large-scale nationwide population-based cohort. METHODS AND RESULTS: We used data from the Korean National Health Insurance System. A total of 22 950 participants with amputation were selected with 1:3 age, sex-matched controls between 2010 and 2018. We used Cox proportional hazard models to calculate the risk of myocardial infarction, heart failure, and atrial fibrillation among amputees. Participants with amputation had a higher risk of myocardial infarction (adjusted hazard ratio [aHR], 1.30 [95% CI, 1.14-1.47]), heart failure (aHR, 1.27 [95% CI, 1.17-1.38]), and atrial fibrillation (aHR, 1.17 [95% CI, 1.03-1.33]). The risks of myocardial infarction and heart failure were further increased by the presence of disability (aHR, 1.43 [95% CI, 1.04-1.95]; and aHR, 1.38 [95% CI, 1.13-1.67], respectively). CONCLUSIONS: We demonstrate an increased risk of myocardial infarction, heart failure, and atrial fibrillation among individuals with amputation, and the risk further increased in those with disabilities. Clinicians should pay attention to the increased risk for heart disease in patients with amputation.


Asunto(s)
Infarto del Miocardio , Humanos , Masculino , Femenino , República de Corea/epidemiología , Persona de Mediana Edad , Adulto , Anciano , Medición de Riesgo , Infarto del Miocardio/epidemiología , Factores de Riesgo , Amputación Quirúrgica/estadística & datos numéricos , Amputación Quirúrgica/efectos adversos , Incidencia , Insuficiencia Cardíaca/epidemiología , Fibrilación Atrial/epidemiología , Fibrilación Atrial/cirugía , Cardiopatías/epidemiología , Amputados
7.
Tunis Med ; 102(4): 200-204, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38746958

RESUMEN

INTRODUCTION: Stump hyperhidrosis is a common condition after lower limb amputation. It affects the prosthesis use, and the quality of life of patients. Several case reports tried to prove benefit of using Botulinum toxin in its treatment. AIM: This study was to conduct a larger workforce clinical trial and to demonstrate benefits of botulinum toxin injection in the treatment of stump hyperhidrosis. METHODS: A prospective study was conducted. War amputees who complained of annoying excessive sweating of the stump were included. They received intradermal injection of botulinum toxin A in the residual limb area in contact with prosthetic socket. Abundance of sweating and degree of functional discomfort associated with it were assessed before, after 3 weeks, 6 and 12 months. RESULTS: Seventeen male patients, followed for post-traumatic limb amputation were included in the study. Discomfort and bothersome in relation to Hyperhidrosis did decrease after treatment (p<0,001). Reported satisfaction after 3 weeks was 73,33%. Improvement of prothesis loosening up after 3 weeks was 72,5% [±15,6]. Mean injection-induced pain on the visual analogue scale was 5.17/10 (±1.58). The mean interval after the onset of improvement was 5.13 days [min:3, max:8]. The mean time of improvement was 10.4 months after the injection [min:6, max:12]. No major adverse events were reported following treatment. CONCLUSION: Intradermal injections of botulinum toxin in the symptomatic treatment of stump hyperhidrosis are effective and have few adverse effects. It improves the quality of life of our patients thanks to a better tolerance of the prosthesis.


Asunto(s)
Muñones de Amputación , Amputados , Toxinas Botulínicas Tipo A , Hiperhidrosis , Humanos , Hiperhidrosis/tratamiento farmacológico , Masculino , Adulto , Toxinas Botulínicas Tipo A/administración & dosificación , Toxinas Botulínicas Tipo A/efectos adversos , Estudios Prospectivos , Miembros Artificiales/efectos adversos , Inyecciones Intradérmicas , Persona de Mediana Edad , Guerra , Calidad de Vida , Adulto Joven , Resultado del Tratamiento
8.
Sci Rep ; 14(1): 11668, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778165

RESUMEN

This study was aimed to compare the variability of inter-joint coordination in the lower-extremities during gait between active individuals with transtibial amputation (TTAs) and healthy individuals (HIs). Fifteen active male TTAs (age: 40.6 ± 16.24 years, height: 1.74 ± 0.09 m, and mass: 71.2 ± 8.87 kg) and HIs (age: 37.25 ± 13.11 years, height: 1.75 ± 0.06 m, and mass: 74 ± 8.75 kg) without gait disabilities voluntarily participated in the study. Participants walked along a level walkway covered with Vicon motion capture system, and their lower-extremity kinematics data were recorded during gait. The spatiotemporal gait parameters, lower-extremity joint range of motion (ROM), and their coordination and variability were calculated and averaged to report a single value for each parameter based on biomechanical symmetry assumption in the lower limbs of HIs. Additionally, these parameters were separately calculated and reported for the intact limb (IL) and the prosthesis limb (PL) in TTAs individuals. Finally, a comparison was made between the averaged values in HIs and those in the IL and PL of TTAs subjects. The results showed that the IL had a significantly lower stride length than that of the PL and averaged value in HIs, and the IL had a significantly lower knee ROM and greater stance-phase duration than that of HIs. Moreover, TTAs showed different coordination patterns in pelvis-to-hip, hip-to-knee, and hip-to-ankle couplings in some parts of the gait cycle. It concludes that the active TTAs with PLs walked with more flexion of the knee and hip, which may indicate a progressive walking strategy and the differences in coordination patterns suggest active TTA individuals used different neuromuscular control strategies to adapt to their amputation. Researchers can extend this work by investigating variations in these parameters across diverse patient populations, including different amputation etiologies and prosthetic designs. Moreover, Clinicians can use the findings to tailor rehabilitation programs for TTAs, emphasizing joint flexibility and coordination.


Asunto(s)
Amputación Quirúrgica , Miembros Artificiales , Marcha , Rango del Movimiento Articular , Humanos , Masculino , Marcha/fisiología , Adulto , Fenómenos Biomecánicos , Extremidad Inferior , Articulación de la Rodilla/fisiopatología , Articulación de la Rodilla/cirugía , Persona de Mediana Edad , Tibia/cirugía , Tibia/fisiopatología , Articulación del Tobillo/fisiopatología , Articulación de la Cadera/cirugía , Amputados , Caminata/fisiología , Adulto Joven
9.
Medicina (Kaunas) ; 60(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792967

RESUMEN

Background and Objectives: mortality and morbidity due to cardiovascular causes are frequently experienced in amputees. Research on the effects of chronic exercise on biomarkers and cardiac damage indicators in these individuals is limited. The aim of this study was to investigate the effects of a core training program on brain natriuretic-related peptide, as well as hematological and biochemical parameters in amputee soccer players. Materials and Methods: The participants were randomly allocated to the following two groups: a core exercise group (CEG) and a control group (CG). While the CG continued routine soccer training, the CEG group was included in a core exercise program different from this group. During the study, routine hemogram parameters of the participants, various biochemical markers, and the concentration of brain natriuretic-related peptide (NT-pro-BNP) were analyzed. Results: after the training period, notable improvements in various hematological parameters were observed in both groups. In the CEG, there were significant enhancements in red blood cell count (RBC), hematocrit (HCT), mean corpuscular hemoglobin concentration (MCHC), and mean corpuscular hemoglobin (MCH) values. Similarly, the CG also showed substantial improvements in RBC, HCT, mean corpuscular volume (MCV), MCHC, MCH, red cell distribution width-standard deviation (RDW-SD), platelet-to-lymphocyte ratio (PLCR), mean platelet volume (MPV), and platelet distribution width (PDW). Moreover, in the CEG, serum triglycerides (TG) and maximal oxygen uptake (MaxVO2) exhibited significant increases. Conversely, TG levels decreased in the CG, while high-density lipoprotein (HDL), low-density lipoprotein (LDL), and MaxVO2 levels demonstrated substantial elevations. Notably, the N-terminal pro-brain natriuretic peptide (BNP) levels did not undergo significant changes in either the CEG or the CG following the core exercise program (p > 0.05). However, in the CEG, a meaningful positive correlation was observed between NT-pro-BNP and creatine kinase (CK) levels before and after the core exercise program. Conclusions: the findings emphasized the potential benefits of core training in enhancing specific physiological aspects, such as erythrocyte-related parameters and lipid metabolism, as well as aerobic capacity. Furthermore, the observed correlation between NT-pro-BNP and CK levels in the CEG provides intriguing insights into the unique physiological adaptations of amputee athletes.


Asunto(s)
Amputados , Atletas , Ejercicio Físico , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Humanos , Péptido Natriurético Encefálico/sangre , Masculino , Atletas/estadística & datos numéricos , Adulto , Ejercicio Físico/fisiología , Fragmentos de Péptidos/sangre , Amputados/rehabilitación , Biomarcadores/sangre , Fútbol/fisiología , Hematócrito/métodos , Índices de Eritrocitos/fisiología
10.
Sci Rep ; 14(1): 11168, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750086

RESUMEN

It is essential that people with limb amputation maintain proper prosthetic socket fit to prevent injury. Monitoring and adjusting socket fit, for example by removing the prosthesis to add prosthetic socks, is burdensome and can adversely affect users' function and quality-of-life. This study presents results from take-home testing of a motor-driven adaptive socket that automatically adjusted socket size during walking. A socket fit metric was calculated from inductive sensor measurements of the distance between the elastomeric liner surrounding the residual limb and the socket's inner surface. A proportional-integral controller was implemented to adjust socket size. When tested on 12 participants with transtibial amputation, the controller was active a mean of 68% of the walking time. In general, participants who walked more than 20 min/day demonstrated greater activity, less doff time, and fewer manual socket size adjustments for the adaptive socket compared with a locked non-adjustable socket and a motor-driven socket that participants adjusted with a smartphone application. Nine of 12 participants reported that they would use a motor-driven adjustable socket if it were available as it would limit their socket fit issues. The size and weight of the adaptive socket were considered the most important variables to improve.


Asunto(s)
Amputación Quirúrgica , Miembros Artificiales , Diseño de Prótesis , Tibia , Caminata , Humanos , Masculino , Femenino , Persona de Mediana Edad , Tibia/cirugía , Adulto , Ajuste de Prótesis/métodos , Anciano , Amputados/rehabilitación , Calidad de Vida
11.
Artículo en Inglés | MEDLINE | ID: mdl-38739519

RESUMEN

Intuitive regression control of prostheses relies on training algorithms to correlate biological recordings to motor intent. The quality of the training dataset is critical to run-time regression performance, but accurately labeling intended hand kinematics after hand amputation is challenging. In this study, we quantified the accuracy and precision of labeling hand kinematics using two common training paradigms: 1) mimic training, where participants mimic predetermined motions of a prosthesis, and 2) mirror training, where participants mirror their contralateral intact hand during synchronized bilateral movements. We first explored this question in healthy non-amputee individuals where the ground-truth kinematics could be readily determined using motion capture. Kinematic data showed that mimic training fails to account for biomechanical coupling and temporal changes in hand posture. Additionally, mirror training exhibited significantly higher accuracy and precision in labeling hand kinematics. These findings suggest that the mirror training approach generates a more faithful, albeit more complex, dataset. Accordingly, mirror training resulted in significantly better offline regression performance when using a large amount of training data and a non-linear neural network. Next, we explored these different training paradigms online, with a cohort of unilateral transradial amputees actively controlling a prosthesis in real-time to complete a functional task. Overall, we found that mirror training resulted in significantly faster task completion speeds and similar subjective workload. These results demonstrate that mirror training can potentially provide more dexterous control through the utilization of task-specific, user-selected training data. Consequently, these findings serve as a valuable guide for the next generation of myoelectric and neuroprostheses leveraging machine learning to provide more dexterous and intuitive control.


Asunto(s)
Algoritmos , Miembros Artificiales , Electromiografía , Mano , Humanos , Electromiografía/métodos , Fenómenos Biomecánicos , Masculino , Femenino , Adulto , Mano/fisiología , Reproducibilidad de los Resultados , Amputados/rehabilitación , Redes Neurales de la Computación , Diseño de Prótesis , Movimiento/fisiología , Adulto Joven , Voluntarios Sanos , Dinámicas no Lineales
12.
Artículo en Inglés | MEDLINE | ID: mdl-38753529

RESUMEN

BACKGROUND: There are various factors affecting the use of prostheses. This study was aimed to examine satisfaction, psychological state, quality of life, and the factors affecting these in individuals who use prostheses because of lower-extremity amputation. METHODS: Sixty-three patients were included in this study. Demographic data and features related amputation and prosthesis were recorded. Quality of life was evaluated with the Nottingham Health Profile (NHP), anxiety and depression levels were evaluated with the Hospital Anxiety Depression Scale (HADS), body image was evaluated by the Amputee Body Image Scale (ABIS), prosthesis satisfaction was evaluated with the Prosthesis Satisfaction Questionnaire (PSQ), and the relationship between them was examined. RESULTS: There was a positive correlation between all HADS scores, NHP-emotional reactions, NHP-sleep, NHP-social isolation, NHP-total, and ABIS (P < .05). A negative correlation was found between HADS-anxiety and PSQ results (r = -0.394, P = .003). A positive correlation was found between HADS-depression scores and NHP-pain, NHP-emotional reactions, NHP-social isolation, NHP-total, and ABIS (P < .05); and a negative correlation was found with PSQ questionnaire scores (r = -0.427, P = .001). There was a positive correlation between HADS-total scores and all parameters except NHP-energy level and ABIS (P < .05). A positive correlation was found between ABIS and all parameters except NHP-energy level (P < .05). A negative correlation was found between PSQ and NHP-social isolation, NHP-physical activity, and NHP-total scores (r = -0.312, P = 0.019; r = -0.312, P = .019; and r = -0.277, P = .039, respectively). The presence of residual extremity pain was found to be an effective factor on the psychological state (ß = 0.429, P = .001). The presence of residual limb pain and phantom pain were found to be effective factors on the prosthesis satisfaction (ß = -0.41, P = .001; and ß = -0.406, P = .001, respectively). The presence of residual extremity pain and anxiety level were found independent risk factors on the NHP (ß = -0.401, P = .006; and ß = -0.445, P = .006, respectively). CONCLUSIONS: Individuals using prostheses because of lower-extremity amputation should be examined in detail from various perspectives.


Asunto(s)
Amputados , Miembros Artificiales , Extremidad Inferior , Satisfacción del Paciente , Calidad de Vida , Humanos , Masculino , Proyectos Piloto , Femenino , Persona de Mediana Edad , Miembros Artificiales/psicología , Adulto , Extremidad Inferior/cirugía , Amputados/psicología , Anciano , Encuestas y Cuestionarios , Ansiedad/psicología , Depresión/psicología , Amputación Quirúrgica/psicología , Imagen Corporal/psicología
13.
Biomed Phys Eng Express ; 10(4)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697026

RESUMEN

Powered prosthetic hands capable of executing various grasp patterns are highly sought-after solutions for upper limb amputees. A crucial requirement for such prosthetic hands is the accurate identification of the intended grasp pattern and subsequent activation of the prosthetic digits accordingly. Vision-based grasp classification techniques offer improved coordination between amputees and prosthetic hands without physical contact. Deep learning methods, particularly Convolutional Neural Networks (CNNs), are utilized to process visual information for classification. The key challenge lies in developing a model that can effectively generalize across various object shapes and accurately classify grasp classes. To address this, a compact CNN model named GraspCNet is proposed, specifically designed for grasp classification in prosthetic hands. The use of separable convolutions reduces the computational burden, making it potentially suitable for real-time applications on embedded systems. The GraspCNet model is designed to learn and generalize from object shapes, allowing it to effectively classify unseen objects beyond those included in the training dataset. The proposed model was trained and tested using various standard object data sets. A cross-validation strategy has been adopted to perform better in seen and unseen object class scenarios. The average accuracy achieved was 82.22% and 75.48% in the case of seen, and unseen object classes respectively. In computer-based real-time experiments, the GraspCNet model achieved an accuracy of 69%. A comparative analysis with state-of-the-art techniques revealed that the proposed GraspCNet model outperformed most benchmark techniques and demonstrated comparable performance with the DcnnGrasp method. The compact nature of the GraspCNet model suggests its potential for integration with other sensing modalities in prosthetic hands.


Asunto(s)
Miembros Artificiales , Fuerza de la Mano , Mano , Redes Neurales de la Computación , Humanos , Aprendizaje Profundo , Amputados , Algoritmos , Diseño de Prótesis/métodos
14.
Clin Biomech (Bristol, Avon) ; 115: 106250, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657356

RESUMEN

BACKGROUND: Lower limb amputation does not affect only physical and psychological functioning but the use of a prosthetic device can also lead to increased cognitive demands. Measuring cognitive load objectively is challenging, and therefore, most studies use questionnaires that are easy to apply but can suffer from subjective bias. Motivated by this, the present study investigated whether a mobile eye tracker can be used to objectively measure cognitive load by monitoring gaze behavior during a set of motor tasks. METHODS: Five prosthetic users and eight able-bodied controls participated in this study. Eye tracking data and kinematics were recorded during a set of motor tasks (level ground walking, walking on uneven terrain, obstacle avoidance, stairs up and ramp down, as well as ramp up and stairs down) while the participants were asked to focus their gaze on a visual target for as long as possible. Target fixation times and increase in pupil diameters were determined and correlated to subjective ratings of cognitive load. FINDINGS: Overall, target fixation time and pupil diameter showed strong negative and positive correlations, respectively, to the subjective rating of cognitive load in the able-bodied controls (-0.75 and 0.80, respectively). However, the individual correlation strength, and in some cases, even the sign, was different across participants. A similar trend could be observed in prosthetic users. INTERPRETATION: The results of this study showed that a mobile eye tracker may be used to estimate cognitive load in prosthesis users during locomotor tasks. This paves the way to establish a new approach to assessing cognitive load, which is objective and yet practical and simple to administer. Nevertheless, future studies should corroborate these results by comparing them to other objective measures as well as focus on translating the proposed approach outside of a laboratory.


Asunto(s)
Miembros Artificiales , Cognición , Tecnología de Seguimiento Ocular , Caminata , Humanos , Caminata/fisiología , Masculino , Cognición/fisiología , Adulto , Femenino , Fijación Ocular/fisiología , Extremidad Inferior/fisiopatología , Fenómenos Biomecánicos , Persona de Mediana Edad , Amputados , Movimientos Oculares/fisiología
15.
Prosthet Orthot Int ; 48(3): 300-314, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38579197

RESUMEN

Prosthesis rejection is a significant barrier to rehabilitation of persons with upper limb difference. Many individual factors can affect device rejection, including a person's sex or gender. The objective of this narrative review was to explore the reported differences between the sexes and genders in upper limb prosthesis rejection. This review considered peer-reviewed, published research studies in which the study population were adults (aged 18 and older) who had unilateral or bilateral limb difference (any level) of any etiology with current, past, or no history of prosthetic device usage. Using identified keywords, index terms, and a peer-reviewed search filter, the literature was searched in MEDLINE, Embase, and PsycInfo. The reasons for rejection, disuse, or abandonment of prosthetic devices were extracted, with the focus on reported differences between sex and genders. After searching, 29 articles were selected for full-text review and 15 were included. Only 5 of 15 articles examined differences between the sexes. Women tend to reject upper extremity prostheses more than men both before and after being fit with a device; device characteristics, such as weight and cosmesis, do not appear to be appropriately designed for women; and there may not be adequate consideration of the goals for women with limb difference(s). There is inadequate reporting of sex and gender in the literature on prosthesis rejection; future studies should report and explore these factors to determine whether the needs of the full population with limb loss are being met.


Asunto(s)
Miembros Artificiales , Extremidad Superior , Humanos , Femenino , Masculino , Factores Sexuales , Diseño de Prótesis , Amputados/rehabilitación
16.
J Neuroeng Rehabil ; 21(1): 55, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622634

RESUMEN

BACKGROUND: The therapeutic benefits of motor imagery (MI) are now well-established in different populations of persons suffering from central nervous system impairments. However, research on similar efficacy of MI interventions after amputation remains scarce, and experimental studies were primarily designed to explore the effects of MI after upper-limb amputations. OBJECTIVES: The present comparative study therefore aimed to assess the effects of MI on locomotion recovery following unilateral lower-limb amputation. METHODS: Nineteen participants were assigned either to a MI group (n = 9) or a control group (n = 10). In addition to the course of physical therapy, they respectively performed 10 min per day of locomotor MI training or neutral cognitive exercises, five days per week. Participants' locomotion functions were assessed through two functional tasks: 10 m walking and the Timed Up and Go Test. Force of the amputated limb and functional level score reflecting the required assistance for walking were also measured. Evaluations were scheduled at the arrival at the rehabilitation center (right after amputation), after prosthesis fitting (three weeks later), and at the end of the rehabilitation program. A retention test was also programed after 6 weeks. RESULTS: While there was no additional effect of MI on pain management, data revealed an early positive impact of MI for the 10 m walking task during the pre-prosthetic phase, and greater performance during the Timed Up and Go Test during the prosthetic phase. Also, a lower proportion of participants still needed a walking aid after MI training. Finally, the force of the amputated limb was greater at the end of rehabilitation for the MI group. CONCLUSION: Taken together, these data support the integration of MI within the course of physical therapy in persons suffering from lower-limb amputations.


Asunto(s)
Amputados , Miembros Artificiales , Humanos , Equilibrio Postural , Estudios de Tiempo y Movimiento , Amputación Quirúrgica , Amputados/rehabilitación , Caminata/fisiología
17.
J Psychosom Res ; 181: 111677, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657566

RESUMEN

OBJECTIVE: To estimate the prevalence of depression in people with limb amputation. Additionally, factors affecting the prevalence or pattern of depression following limb amputation were explored. METHODS: Systematic literature search to identify all relevant studies assessing prevalence of depression following limb amputations was conducted through following databases: PubMed/ MEDLINE, Scopus, Embase, and Web of Science. Search period was since inception of database till December 2021. Meta-analyses using random-effects model were conducted to estimate pooled prevalence of depression. RESULTS: A total of 61 studies comprising 9852 limb amputees were included. Pooled prevalence of depression following limb amputations was 33.85% (95% CI: 27.15% to 40.54%), with significant heterogeneity (I2 = 98.57%; p < 0.001). Sub-group meta-analysis showed that pooled prevalence of depression was significantly higher in studies conducted from middle-income (45.31%, 95% CI: 28.92% to 61.70%) as compared high income countries (28.31%, 95% CI: 23.97% to 32.64%). Greater activity restriction, amputation-related body image disturbances, social discomfort, perceived vulnerability regarding disability, and avoidant coping style were commonly reported factors associated with greater depression symptomatology. Whereas, good perceived social support, and use of more active coping strategies were commonly reported protective factors. CONCLUSION: About one-third of all limb amputees suffered from clinically significant depression. This emphasizes need to sensitize health care professionals involved in providing care to people following limb amputation regarding the importance of periodically screening this vulnerable group of patients for depression and liaising with psychiatrists. Further, addressing risk factors identified in this review could help in reducing the rates of depression post-amputation.


Asunto(s)
Amputación Quirúrgica , Amputados , Depresión , Humanos , Amputación Quirúrgica/psicología , Amputación Quirúrgica/efectos adversos , Prevalencia , Depresión/epidemiología , Depresión/psicología , Depresión/etiología , Amputados/psicología , Adaptación Psicológica , Femenino , Masculino
18.
Medicina (Kaunas) ; 60(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38674211

RESUMEN

Background and Objectives: Medical registries evolved from a basic epidemiological data set to further applications allowing deriving decision making. Revision rates after non-traumatic amputation are high and dramatically impact the following rehabilitation of the amputee. Risk scores for revision surgery after non-traumatic lower limb amputation are still missing. The main objective was to create an amputation registry allowing us to determine risk factors for revision surgery after non-traumatic lower-limb amputation and to develop a score for an early detection and decision-making tool for the therapeutic course of patients at risk for non-traumatic lower limb amputation and/or revision surgery. Materials and Methods: Retrospective data analysis was of patients with major amputations lower limbs in a four-year interval at a University Hospital of maximum care. Medical records of 164 patients analysed demographics, comorbidities, and amputation-related factors. Descriptive statistics analysed demographics, prevalence of amputation level and comorbidities of non-traumatic lower limb amputees with and without revision surgery. Correlation analysis identified parameters determining revision surgery. Results: In 4 years, 199 major amputations were performed; 88% were amputated for non-traumatic reasons. A total of 27% of the non-traumatic cohort needed revision surgery. Peripheral vascular disease (PVD) (72%), atherosclerosis (69%), diabetes (42%), arterial hypertension (38%), overweight (BMI > 25), initial gangrene (47%), sepsis (19%), age > 68.2 years and nicotine abuse (17%) were set as relevant within this study and given a non-traumatic amputation score. Correlation analysis revealed delayed wound healing (confidence interval: 64.1% (47.18%; 78.8%)), a hospital length of stay before amputation of longer than 32 days (confidence interval: 32.3 (23.2; 41.3)), and a BKA amputation level (confidence interval: 74.4% (58%; 87%)) as risk factors for revision surgery after non-traumatic amputation. A combined score including all parameters was drafted to identify non-traumatic amputees at risk for revision surgery. Conclusions: Our results describe novel scoring systems for risk assessment for non-traumatic amputations and for revision surgery at non-traumatic amputations. It may be used after further prospective evaluation as an early-warning system for amputated limbs at risk of revision.


Asunto(s)
Amputación Quirúrgica , Amputados , Reoperación , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Reoperación/estadística & datos numéricos , Amputación Quirúrgica/estadística & datos numéricos , Amputación Quirúrgica/efectos adversos , Anciano , Amputados/rehabilitación , Adulto , Factores de Riesgo , Anciano de 80 o más Años , Extremidad Inferior/cirugía , Extremidad Inferior/lesiones
19.
Sci Rep ; 14(1): 9725, 2024 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678076

RESUMEN

Transtibial prosthetic users do often struggle to achieve an optimal prosthetic fit, leading to residual limb pain and stump-socket instability. Prosthetists face challenges in objectively assessing the impact of prosthetic adjustments on residual limb loading. Understanding the mechanical behaviour of the pseudo-joint formed by the residual bone and prosthesis may facilitate prosthetic adjustments and achieving optimal fit. This study aimed to assess the feasibility of using B-mode ultrasound to monitor in vivo residual bone movement within a transtibial prosthetic socket during different stepping tasks. Five transtibial prosthesis users participated, and ultrasound images were captured using a Samsung HM70A system during five dynamic conditions. Bone movement relative to the socket was quantified by tracking the bone contour using Adobe After-Effect. During the study a methodological adjustment was made to improve data quality, and the first two participants were excluded from analysis. The remaining three participants exhibited consistent range of motion, with a signal to noise ratio ranging from 1.12 to 2.59. Medial-lateral and anterior-posterior absolute range of motion varied between 0.03 to 0.88 cm and 0.14 to 0.87 cm, respectively. This study demonstrated that it is feasible to use B-mode ultrasound to monitor in vivo residual bone movement inside an intact prosthetic socket during stepping tasks.


Asunto(s)
Miembros Artificiales , Tibia , Ultrasonografía , Humanos , Masculino , Tibia/diagnóstico por imagen , Tibia/cirugía , Tibia/fisiología , Ultrasonografía/métodos , Persona de Mediana Edad , Femenino , Adulto , Rango del Movimiento Articular , Anciano , Muñones de Amputación/fisiopatología , Muñones de Amputación/diagnóstico por imagen , Movimiento/fisiología , Diseño de Prótesis , Amputados
20.
Artículo en Inglés | MEDLINE | ID: mdl-38683719

RESUMEN

To overcome the challenges posed by the complex structure and large parameter requirements of existing classification models, the authors propose an improved extreme learning machine (ELM) classifier for human locomotion intent recognition in this study, resulting in enhanced classification accuracy. The structure of the ELM algorithm is enhanced using the logistic regression (LR) algorithm, significantly reducing the number of hidden layer nodes. Hence, this algorithm can be adopted for real-time human locomotion intent recognition on portable devices with only 234 parameters to store. Additionally, a hybrid grey wolf optimization and slime mould algorithm (GWO-SMA) is proposed to optimize the hidden layer bias of the improved ELM classifier. Numerical results demonstrate that the proposed model successfully recognizes nine daily motion modes including low-, mid-, and fast-speed level ground walking, ramp ascent/descent, sit/stand, and stair ascent/descent. Specifically, it achieves 96.75% accuracy with 5-fold cross-validation while maintaining a real-time prediction time of only 2 ms. These promising findings highlight the potential of onboard real-time recognition of continuous locomotion modes based on our model for the high-level control of powered knee prostheses.


Asunto(s)
Algoritmos , Amputados , Intención , Prótesis de la Rodilla , Aprendizaje Automático , Humanos , Amputados/rehabilitación , Masculino , Modelos Logísticos , Locomoción/fisiología , Caminata , Fémur , Reconocimiento de Normas Patrones Automatizadas/métodos , Adulto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA