Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 522
Filtrar
1.
J Forensic Leg Med ; 105: 102710, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38954889

RESUMEN

This short report describes research on N-piperidinyl etonitazene, also known as etonitazepipne, in keratinous matrices (hair and nails) after death related to a suspected opioid overdose. Etonitazepipne belongs to the family of benzimidazole opioids, a class of new synthetic opioids that has penetrated the illicit drug market. Analysis in the case under study showed the presence of etonitazepipne in both hair and nails, confirming that the substance accumulates in the body with repeated intake.


Asunto(s)
Cabello , Uñas , Humanos , Cabello/química , Uñas/química , Masculino , Cadáver , Toxicología Forense , Sobredosis de Droga , Bencimidazoles , Analgésicos Opioides/análisis
2.
Sci Rep ; 14(1): 17221, 2024 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060331

RESUMEN

Oxycodone, often used as an analgesic, is a potent opioid. While its effectiveness has been proven in the control of moderate to acute pain, excessive use of oxycodone imposes heart failure, heart palpitations, reduction of red blood cells, bone pain, and even death. Therefore, monitoring the oxycodone concentration in blood is vital for emergency care. For this purpose, a novel electrochemical sensor was designed based on a glassy carbon electrode modified with mesoporous g-C3N4 (M-C3N4), carbon nano-onions doped with nitrogen (N-CNO), and gold nanoparticles. At first, the SEM and XRD techniques were employed to characterize prepared M-C3N4 and N-CNO samples. The electro-oxidation behavior of the oxycodone was evaluated by cyclic and differential pulse voltammetric methods. Based on the influence of the potential scanning rate and solution pH on the voltammetric response of oxycodone oxidation, a redox mechanism was proposed. A 16 nM detection limit was acquired for the oxycodone analysis with a linear response in the 0.05-150 µM range. This sensor showed a remarkable ability for oxycodone detection in plasma samples. The long-term stability, superior selectivity, and reproducibility of this sensor prove its ability to measure oxycodone accurately and precisely in authentic spices.


Asunto(s)
Técnicas Electroquímicas , Oro , Nanopartículas del Metal , Oxicodona , Oxicodona/sangre , Oxicodona/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Oro/química , Humanos , Oxidación-Reducción , Límite de Detección , Porosidad , Electrodos , Analgésicos Opioides/sangre , Analgésicos Opioides/análisis , Reproducibilidad de los Resultados
3.
Mikrochim Acta ; 191(8): 463, 2024 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995455

RESUMEN

The intensifying global opioid crisis, majorly attributed to fentanyl (FT) and its analogs, has necessitated the development of rapid and ultrasensitive remote/on-site FT sensing modalities. However, current approaches for tracking FT exposure through wastewater-based epidemiology (WBE) are unadaptable, time-consuming, and require trained professionals. Toward developing an extended in situ wastewater opioid monitoring system, we have developed a screen-printed electrochemical FT sensor and integrated it with a customized submersible remote sensing probe. The sensor composition and design have been optimized to address the challenges for extended in situ FT monitoring. Specifically, ZIF-8 metal-organic framework (MOF)-derived mesoporous carbon (MPC) nanoparticles (NPs) are incorporated in the screen-printed carbon electrode (SPCE) transducer to improve FT accumulation and its electrocatalytic oxidation. A rapid (10 s) and sensitive square wave voltammetric (SWV) FT detection down to 9.9 µgL-1 is thus achieved in aqueous buffer solution. A protective mixed-matrix membrane (MMM) has been optimized as the anti-fouling sensor coating to mitigate electrode passivation by FT oxidation products and enable long-term, intermittent FT monitoring. The unique MMM, comprising an insulating polyvinyl chloride (PVC) matrix and carboxyl-functionalized multi-walled carbon nanotubes (CNT-COOH) as semiconductive fillers, yielded highly stable FT sensor operation (> 95% normalized response) up to 10 h in domestic wastewater, and up to 4 h in untreated river water. This sensing platform enables wireless data acquisition on a smartphone via Bluetooth. Such effective remote operation of submersible opioid sensing probes could enable stricter surveillance of community water systems toward timely alerts, countermeasures, and legal enforcement.


Asunto(s)
Analgésicos Opioides , Técnicas Electroquímicas , Fentanilo , Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Fentanilo/análisis , Fentanilo/sangre , Analgésicos Opioides/análisis , Estructuras Metalorgánicas/química , Electrodos , Aguas Residuales/análisis , Monitoreo del Ambiente/métodos , Límite de Detección , Carbono/química , Nanopartículas/química , Tecnología de Sensores Remotos/métodos
4.
Sci Total Environ ; 946: 174382, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38955278

RESUMEN

In this study, a comprehensive and sensitive method for the simultaneous detection of 17 opioids (OPs) and their human metabolites in wastewater using high-performance liquid chromatography coupled to tandem mass spectrometry was validated. The chromatographic separations of opioids were carried out on a Kinetex® Biphenyl column (1.7 µm, 100 Å, 50 × 2.1 mm). A synthetic wastewater approach was used for recovery studies to mimic a contaminant-free matrix. Two solid-phase extraction (SPE) sorbents (hydrophilic-lipophilic balance and mixed mode with the previous phase and a weak cationic exchange) were studied to optimize sample treatment and obtain higher recoveries. The mixed mode was chosen because the recoveries of 17 target analytes at three spiked concentrations (25, 50, and 100 ng mL-1) were > 80 % for 75 % of the analytes in a simulated wastewater. The intra- and inter-day relative standard deviations (RSDs) were between ±1 % and ±20 %. The method limits of quantification ranged from 5 to 25 ng L-1, the only exceptions being heroin (275 ng L-1) and morphine-3ß-glucuronide (250 ng L-1). Suppression/enhancement is comparable between the synthetic and the influent wastewater. The analytical method was applied to the OPs analysis in twenty-one influent samples collected from the treatment plants treating the wastewater of Valencia City (Spain). Twelve OPs were detected with total daily concentrations ranging from 1 ng L-1 to 2135 ng L-1. The widespread presence of these compounds in water suggests potential widespread exposure, highlighting the need for increased environmental awareness. Furthermore, the estimated daily intake results raise concerns about opioid use as a potential future health and social issue.


Asunto(s)
Analgésicos Opioides , Monitoreo del Ambiente , Espectrometría de Masas en Tándem , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Analgésicos Opioides/análisis , España , Extracción en Fase Sólida , Cromatografía Liquida/métodos , Cromatografía Líquida de Alta Presión , Ciudades , Cromatografía Líquida con Espectrometría de Masas
5.
Harm Reduct J ; 21(1): 115, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877522

RESUMEN

BACKGROUND: Fentanyl test strips (FTS) are lateral flow immunoassay strips designed for detection of ng/mL levels of fentanyl in urine. In 2021, the US Centers for Disease Control and the Substance Abuse and Mental Health Administration stated that federal funds could be used for procurement of FTS for harm reduction strategies approved by the government such as drug checking. The market for FTS has expanded rapidly in the US and Canada. However, there is no regulatory oversight by either government to ensure proper function of FTS that are being marketed for drug checking. MAIN BODY: Many brands of FTS have rapidly entered the harm reduction market, creating concerns about the reproducibility and accuracy of their performance from brand to brand and lot to lot. Some examples are provided in this Comment. Similar problems with product quality were observed in the mid 2000's when lateral flow immunoassays for malaria were funded in many countries and again in 2020, when COVID-19 tests were in huge demand. The combination of high demand and low levels of regulation and enforcement led some manufacturers to join the goldrush without adequate field testing or quality assurance. We argue that the harm reduction community urgently needs to set a lot checking program in place. A set of simple protocols for conducting the tests and communicating the results have been developed, and are described in the following Perspectives paper in this issue. CONCLUSION: In the absence of governmental regulation and enforcement, the harm reduction community should implement a FTS lot checking program. Based on previous experience with the malaria diagnostic lot checking program, this inexpensive effort could identify products that are not suitable for harm reduction applications and provide valuable feedback to manufacturers. Dissemination of the results will help harm reduction organizations to ensure that FTS they use for drug checking are fit for the purpose.


Asunto(s)
Fentanilo , Reducción del Daño , Tiras Reactivas , Humanos , Fentanilo/orina , Fentanilo/análisis , Reproducibilidad de los Resultados , Detección de Abuso de Sustancias/métodos , Inmunoensayo/métodos , Analgésicos Opioides/orina , Analgésicos Opioides/análisis , COVID-19 , América del Norte
6.
Anal Chim Acta ; 1312: 342686, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38834256

RESUMEN

BACKGROUND: Fentanyl and its derivatives are a type of potent opioid analgesics, with the characteristics of diverse structure, high toxicity, extremely low content, and high fatality rate. Currently, they have become one of the most serious problems in international drug abuse control due to their extensive use in drug production and use. Therefore, the development of a rapid, sensitive, and accurate method for detecting trace fentanyl is of great significance. In this study, in view of its complex structure and trace concentration, a new molecular imprinting electrochemical sensor was developed through molecular simulations followed by experimental validation to detect trace fentanyl. RESULTS: The process consisted of first obtaining the optimal functional monomer and its molar ratio through molecular simulations. The recognition sites of fentanyl-imprinted polymers were predicted to guide the synthesis of imprinted membranes with precision approach to ensure an efficient and accurate reaction process. Reduced graphene oxide (ErGO) was then deposited on glassy carbon electrode surface by electrochemical reduction to yield large numbers of active sites suitable for catalyzing reactions of fentanyl piperidine for promoted efficient electron transfer and amplified sensitivity of the sensor. Accordingly, fentanyl molecularly imprinted film was formed through one-step electropolymerization to yield greatly improved sensing selectivity due to the specific recognition of molecularly imprinted polymer. Under optimal experimental conditions, the fentanyl sensor showed an extended detection range of 3.84 × 10-9 mol L-1-1.72 × 10-6 mol L-1 and a detection limit of 1.28 × 10-9 mol L-1. SIGNIFICANCE: A distinctive feature of this sensor is its molecularly imprinted polymerized membrane, which offers excellent specific recognition, thereby boosting the sensor's selectivity. Throughout the sensor's development process, molecular simulations were employed to steer the synthesis of molecularly imprinted polymers and predict the recognition sites of fentanyl-imprinted polymers. The experimental outcomes proved to align with the simulation data. The final sensor exhibited outstanding selectivity, repeatability, stability, and high sensitivity. The sensor was effectively used to reliably track fentanyl in human serum samples, with acceptable analytical reliability, suggesting its potential for practical applications.


Asunto(s)
Técnicas Electroquímicas , Fentanilo , Impresión Molecular , Fentanilo/análisis , Fentanilo/sangre , Fentanilo/química , Polímeros Impresos Molecularmente/química , Electrodos , Límite de Detección , Grafito/química , Simulación de Dinámica Molecular , Analgésicos Opioides/sangre , Analgésicos Opioides/análisis , Analgésicos Opioides/química , Humanos
7.
J Am Soc Mass Spectrom ; 35(7): 1609-1621, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38907730

RESUMEN

2-Benzylbenzimidazoles, or "nitazenes", are a class of novel synthetic opioids (NSOs) that are increasingly being detected alongside fentanyl analogs and other opioids in drug overdose cases. Nitazenes can be 20× more potent than fentanyl but are not routinely tested for during postmortem or clinical toxicology drug screens; thus, their prevalence in drug overdose cases may be under-reported. Traditional analytical workflows utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS) often require additional confirmation with authentic reference standards to identify a novel nitazene. However, additional analytical measurements with ion mobility spectrometry (IMS) may provide a path toward reference-free identification, which would greatly accelerate NSO identification rates in toxicology laboratories. Presented here are the first IMS and collision cross section (CCS) measurements on a set of fourteen nitazene analogs using a structures for lossless ion manipulations (SLIM)-orbitrap MS. All nitazenes exhibited two high intensity baseline-separated IMS distributions, which fentanyls and other drug and druglike compounds also exhibit. Incorporating water into the electrospray ionization (ESI) solution caused the intensities of the higher mobility IMS distributions to increase and the intensities of the lower mobility IMS distributions to decrease. Nitazenes lacking a nitro group at the R1 position exhibited the greatest shifts in signal intensities due to water. Furthermore, IMS-MS/MS experiments showed that the higher mobility IMS distributions of all nitazenes possessing a triethylamine group produced fragment ions with m/z 72, 100, and other low intensity fragments while the lower mobility IMS distributions only produced fragment ions with m/z 72 and 100. The IMS, solvent, and fragmentation studies provide experimental evidence that nitazenes potentially exhibit three gas-phase protomers. The cyclic IMS capability of SLIM was also employed to partially resolve four sets of structurally similar nitazene isomers (e.g., protonitazene/isotonitazene, butonitazene/isobutonitazene/secbutonitazene), showcasing the potential of using high-resolution IMS separations in MS-based workflows for reference-free identification of emerging nitazenes and other NSOs.


Asunto(s)
Espectrometría de Movilidad Iónica , Espectrometría de Movilidad Iónica/métodos , Analgésicos Opioides/química , Analgésicos Opioides/análisis , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Bencimidazoles/química , Bencimidazoles/análisis , Gases/química , Nitrocompuestos/química , Nitrocompuestos/análisis , Iones/química
8.
J Pharm Biomed Anal ; 248: 116298, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38876038

RESUMEN

Surveillance testing is an essential component to ensuring safe, effective, and high-quality drug products are available in the commercially marketed US supply chain. Surveillance allows the agency to assess product quality and monitor for potential adulteration of drug products being used by consumers. Opioid drug products can be adulterated to enhance the effect of the intended active ingredient. Numerous accounts have been reported where fentanyl has been used as an adulterant in illicit street drugs such as heroin, cocaine, or methamphetamine. To efficiently surveil the legitimate opioid supply chain, an analytical method with the ability to simultaneously detect, identify and quantify opioid molecules is desired. In this study, a multi-opioid protocol (MOP) using liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) technology was developed and validated for the detection and quantification of 27 opioid drugs. The MOP analytical procedure was applied to the analysis of drug substance and finished dosage forms. MOP was used to identify and quantify active pharmaceutical ingredients (API) listed on the label claim, and in the case of suspected economically motivated adulteration could identify and quantify undeclared opioid APIs. The analytical method analysis time was 16 minutes and the LOD and LOQ in full MS mode were (average) 0.3 and 0.8 ng/mL, respectively. The validation criteria parameters were satisfactory based on international guidelines (ICH). The MOP was successfully applied to the analysis of over 160 drug substances and finished products. For all samples tested in the study, their identities were confirmed, and assays met specifications. Overall, there was no evidence of illegal substitution or adulteration in any of the ingredients and products tested from the legitimate commercial marketed US supply chain.


Asunto(s)
Analgésicos Opioides , Contaminación de Medicamentos , Cromatografía Líquida de Alta Presión/métodos , Analgésicos Opioides/análisis , Drogas Ilícitas/análisis , Espectrometría de Masas/métodos , Límite de Detección , Reproducibilidad de los Resultados
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124614, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38865892

RESUMEN

Celecoxib and tramadol have been combined in a novel FDA-approved medication to address acute pain disorders requiring opioid treatment when other analgesics proved either intolerable or ineffective. The absorbance spectra of celecoxib and tramadol exhibit significant overlap, posing challenges for their individual quantification. This study introduces a spectrophotometric quantification approach for celecoxib and tramadol using a principle component regression assistive model to assist resolving the overlapped spectra and quantifying both drugs in their binary mixture. The model was constructed by establishing calibration and validation sets for the celecoxib and tramadol mixture, employing a five-level, two-factor experimental design, resulting in 25 samples. Spectral data from these mixtures were measured and preprocessed to eliminate noise in the 200-210 nm range and zero absorbance values in the 290-400 nm range. Consequently, the dataset was streamlined to 81 variables. The predicted concentrations were compared with the known concentrations of celecoxib and tramadol, and the errors in the predictions were evidenced calculating root mean square error of cross-validation and root mean square error of prediction. Validation results demonstrate the efficacy of the models in predicting outcomes; recovery rates approaching 100 % are demonstrated with relative root mean square error of prediction (RRMSEP) values of 0.052 and 0.164 for tramadol and celecoxib, respectively. The selectivity was further evaluated by quantifying celecoxib and tramadol in the presence of potentially interfering drugs. The model demonstrated success in quantifying celecoxib and tramadol in laboratory-prepared tablets, producing metrics consistent with those reported in previously established spectrophotometric methods.


Asunto(s)
Celecoxib , Análisis de Componente Principal , Espectrofotometría , Tramadol , Celecoxib/análisis , Celecoxib/química , Tramadol/análisis , Espectrofotometría/métodos , Calibración , Reproducibilidad de los Resultados , Formas de Dosificación , Analgésicos Opioides/análisis
10.
Anal Chem ; 96(26): 10648-10653, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38896456

RESUMEN

Fentanyl is an extremely potent opioid that is commonly laced into other drugs. Fentanyl poses a danger to users but also to responders or bystanders who may unknowingly ingest a lethal dose (∼2 mg) of fentanyl from aerosolized powder or vapor. Electrochemistry offers a small, simple, and affordable platform for the direct detection of illicit substances; however, it is largely limited to solution-phase measurements. Here, we demonstrate the hands-free capture and electroanalyzation of aerosols containing fentanyl. A novel electrochemical cell is constructed by a microwire (cylindrical working electrode) traversing an ionic liquid film that is suspended within a conductive loop (reference/counter electrode). We provide a quantitative finite element simulation of the resulting electrochemical system. The suspended film maintains a high-surface area:volume, allowing the electrochemical cell to act as an effective aerosol collector. The low vapor pressure (negligible evaporation) of ionic liquid makes it a robust candidate for in-field applications, and the use of a hydrophobic ionic liquid allows for the extraction of fentanyl from solids and sprayed aqueous aerosols.


Asunto(s)
Aerosoles , Técnicas Electroquímicas , Fentanilo , Fentanilo/análisis , Aerosoles/química , Aerosoles/análisis , Líquidos Iónicos/química , Electrodos , Analgésicos Opioides/análisis
11.
Int J Legal Med ; 138(5): 1801-1811, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38831139

RESUMEN

Novel synthetic opioids (NSOs) represent an emerging group of novel psychoactive substances, acting as agonists at the opioid receptors. NSOs include fentanyl-related compounds, e.g. methoxyacetylfentanyl (MeACF), and non-fentanyl analogs, e.g. "U compounds" including U-47700. Here we present three cases of death involving MeACF and U-47700, with particular reference to preliminary data on pharmacokinetics and tissue distribution.After a complete post-mortem examination, general unknown screenings and analysis of drugs of abuse were performed on postmortem samples by immunoassays, gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry. To quantify the analytes of interest in post-mortem blood and tissues, the standard addition method was used. A toxicological significance score (TSS), weighing the role of the NSO in each death case, was assigned.Case 1 died at the hospital after consumption of U-47700, methadone (serum levels: 2,600 ng/ml and 37 ng/ml), tilidine and benzodiazepines. In case 2, U-47700 (204 ng/ml) together with methadone (290 ng/ml), flubromazepam (480 ng/ml) and diazepam (300 ng/ml) were detected in peripheral blood. In case 3, methoxyacetylfentanyl (266 ng/ml), furanylfentanyl (4.3 ng/ml) 4-ANPP (15 ng/ml) and alprazolam (69 ng/ml) were quantified in femoral blood. In all cases, the NSO likely contributed to the death (TSS = 3).NSOs appear to be often consumed in the setting of polydrug intoxications, especially in combination with other opioids and benzodiazepines, which often exert synergistic effects. The standard addition method remains the most reliable in post-mortem analysis and toxicological results should always be evaluated together with circumstantial and autopsy data.


Asunto(s)
Fentanilo , Humanos , Fentanilo/análogos & derivados , Fentanilo/envenenamiento , Fentanilo/sangre , Fentanilo/análisis , Masculino , Adulto , Analgésicos Opioides/envenenamiento , Analgésicos Opioides/sangre , Analgésicos Opioides/análisis , Metadona/envenenamiento , Metadona/sangre , Metadona/análisis , Toxicología Forense , Cromatografía Liquida , Benzodiazepinas/sangre , Benzodiazepinas/envenenamiento , Femenino , Persona de Mediana Edad , Cromatografía de Gases y Espectrometría de Masas , Drogas Ilícitas/sangre , Drogas Ilícitas/envenenamiento , Detección de Abuso de Sustancias , Benzamidas
12.
Anal Biochem ; 692: 115579, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38797485

RESUMEN

Synthetic opioids like Tramadol are used to treat mild to moderate pain. Its ability to relieve pain is about a tenth that of morphine. Furthermore, Tramadol shares similar effects on serotonin and norepinephrine to several antidepressants known as serotonin-norepinephrine reuptake inhibitors (SNRIs), such as venlafaxine and duloxetine. The present review paper discusses the recent developments in analytical methods for identifying drugs in pharmaceutical preparations and toxicological materials, such as blood, saliva, urine, and hair. In recent years, a wide variety of analytical instruments, including capillary electrophoresis, NMR, UV-visible spectroscopy, HPTLC, HPLC, LC-MS, GC, GC-MS, and electrochemical sensors, have been used for drug identification in pharmaceutical preparations and toxicological samples. The primary quantification techniques currently employed for its quantification in various matrices are highlighted in this research.


Asunto(s)
Analgésicos Opioides , Tramadol , Tramadol/análisis , Tramadol/orina , Analgésicos Opioides/análisis , Analgésicos Opioides/orina , Humanos
13.
Clin Chem ; 70(7): 978-986, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38757262

RESUMEN

BACKGROUND: Abuse of fentanyl and its analogs is a major contributor to the opioid overdose epidemic in the United States, but detecting and quantifying trace amounts of such drugs remains a challenge without resorting to sophisticated mass spectrometry-based methods. METHODS: A sensitive immunoassay with a sub-picogram limit of detection for fentanyl and a wide range of fentanyl analogs has been developed, using a novel high-affinity antibody fused with NanoLuc, a small-size luciferase that can emit strong and stable luminescence. When used with human urine samples, the assay has a sub-picogram limit of detection for fentanyl, with results fully concordant with LC-MS. RESULTS: When applied to clinical samples, the novel chemiluminescence immunoassay can detect low positive fentanyl missed by routine screening immunoassays, with a limit of detection of 0.8 pg/mL in human urine. When applied to environmental samples, the assay can detect levels as low as 0.25 pg fentanyl per inch2 of environment surface. Assay turnaround time is less than 1 h, with inexpensive equipment and the potential for high-throughput automation or in-field screening. CONCLUSIONS: We have established a novel assay that may have broad applications in clinical, environmental, occupational, and forensic scenarios for detection of trace amounts of fentanyl and its analogs.


Asunto(s)
Fentanilo , Mediciones Luminiscentes , Fentanilo/orina , Fentanilo/análisis , Humanos , Inmunoensayo/métodos , Mediciones Luminiscentes/métodos , Límite de Detección , Detección de Abuso de Sustancias/métodos , Analgésicos Opioides/orina , Analgésicos Opioides/análisis
14.
ACS Sens ; 9(6): 3198-3204, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38775258

RESUMEN

Fentanyl is a potent synthetic opioid with an alarmingly low lethal dosage of 2 mg. The equipment necessary to detect fentanyl in field settings (e.g., hand-held spectrometers) is restricted to highly trained, well-funded, and specialized personnel. Established point-of-need technologies, such as lateral flow immunochromatographic strips, are available; however, they often involve multiple contact-based steps (e.g., collection, mixing) that pose a higher risk to users handling unknown substances. Herein, we developed a colorimetric displacement assay capable of contactless detection of fentanyl in liquid or solid samples. The basis of our assay relies on the presence of fentanyl to displace a redox mediator, ferrocene carboxylic acid, inclusively bound in the cavity of a supramolecular host, CB[7]. The displacement is only possible in the presence of high affinity binding guests, like fentanyl (KA ∼ 106 M-1). The liberated redox guest can then react with indicator reagents that are free in solution, producing either: (i) a distinct blue color to indicate the presence of fentanyl or (ii) a pale blue tint in the absence of fentanyl. We demonstrate rapid and specific detection of fentanyl free base and fentanyl derivatives (e.g., acetyl fentanyl and furanyl fentanyl) against a panel of 9 other common drugs of abuse (e.g., morphine, cocaine, and heroin). Furthermore, we highlight the intended use of this assay by testing grains of fentanyl derivatives on a surface with a drop (i.e., 25 µL) of the assay reagent. We anticipate that this approach can be applied broadly to identify the presence of fentanyl at the point of need.


Asunto(s)
Colorimetría , Fentanilo , Fentanilo/análisis , Colorimetría/métodos , Metalocenos/química , Compuestos Ferrosos/química , Propiedades de Superficie , Límite de Detección , Analgésicos Opioides/análisis , Analgésicos Opioides/química
15.
Angew Chem Int Ed Engl ; 63(25): e202401729, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38657037

RESUMEN

We developed a simple, paper-based device that enables sensitive detection by mass spectrometry (MS) without solid phase extraction or other sample preparation. Using glass fiber filter papers within a 3D printed holder, the device employs electrokinetic manipulations to stack, separate, and desalt charged molecules on paper prior to spray into the MS. Due to counter-balanced electroosmotic flow and electrophoresis, charged analytes stack on the paper and desalting occurs in minutes. One end of the paper strip was cut into a sharp point and positioned near the inlet of a MS. The stacked analyte bands move toward the paper tip with the EOF where they are ionized by paper spray. The device was applied to analysis of PFAS in tap water with sub part-per-trillion detection limits in less than ten minutes with no sample pretreatment. Analysis of opioids in urine also occurs in minutes. The crucial parameters to enable stacking, separation, and MS ionization of both positively and negatively charged analytes were determined and optimized. Experimental and computational modeling studies confirm the electrokinetic stacking and analyte transport mechanisms. On-paper separations were carried out by stacking analyte bands at different locations depending on their electrophoretic mobility, achieving baseline separation in some cases.


Asunto(s)
Analgésicos Opioides , Espectrometría de Masas , Papel , Espectrometría de Masas/métodos , Analgésicos Opioides/orina , Analgésicos Opioides/análisis , Humanos , Agua/química , Fluorocarburos/química , Fluorocarburos/análisis , Fluorocarburos/orina , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/orina
16.
Chem Pharm Bull (Tokyo) ; 72(3): 271-279, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38432909

RESUMEN

Codeine is a common analgesic drug that is a pro-drug of morphine. It also has a high risk of abuse as a recreational drug because of its extensive distribution as an OTC drug. Therefore, sensitive and selective screening methods for codeine are crucial in forensic analytical chemistry. To date, a commercial analytical kit has not been developed for dedicated codeine determination, and there is a need for an analytical method to quantify codeine in the field. In the present work, potential modulation was combined with electrochemiluminescence (ECL) for sensitive determination of codeine. The potential modulated technique involved applying a signal to electrodes by superimposing an AC potential on the DC potential. When tris(2,2'-bipyridine)ruthenium(II) ([Ru(bpy)3]2+) was used as an ECL emitter, ECL activity was confirmed for codeine. A detailed investigation of the electrochemical reaction mechanism suggested a characteristic ECL reaction mechanism involving electrochemical oxidation of the opioid framework. Besides the usual ECL reaction derived from the amine framework, selective detection of codeine was possible under the measurement conditions, with clear luminescence observed in an acidic solution. The sensitivity of codeine detection by potential modulated-ECL was one order of magnitude higher than that obtained with the conventional potential sweep method. The proposed method was applied to codeine determination in actual prescription medications and OTC drug samples. Codeine was selectively determined from other compounds in medications and showed good linearity with a low detection limit (150 ng mL-1).


Asunto(s)
Analgésicos Opioides , Codeína , Aminas , Analgésicos Opioides/análisis , Analgésicos Opioides/química , Codeína/análisis , Codeína/química , Electrodos , Medicamentos sin Prescripción , Luminiscencia
17.
J Anal Toxicol ; 48(3): 150-164, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38459917

RESUMEN

Novel Synthetic Opioids (NSO) are frequently found in postmortem (PM) and human performance (HP) forensic toxicology casework, resulting in impairment and fatal overdoses. Developing a broad NSO method benefits public health, as it can be used to identify trends in potent opioid use to develop risk management programs. This project aimed to design a comprehensive, rapid and routine method for the selective analysis of over 250 novel synthetic opioids in blood and urine. This method rapidly extracted 150 µL of blood or urine via protein precipitation followed by size-exclusion filtration, evaporation and reconstitution. Separation and data acquisition were achieved on a 12 min LC-MS-MS method using an F5 column. Data processing was expedited with a custom built-in query created in-house that automated processing and enhanced quality assurance. Validation according to ASB/ANSI Standard 036 was performed and applicability of the method was assessed using proficiency test and authentic casework samples. Assessed in blood and urine qualitatively were 261 unique analytes including fentanyl analogs (fentalogs), nitazenes and other miscellaneous synthetic opioids. As 59 isomeric target analytes were placed into groups due to co-elution, there were 202 distinct acquired targets or target - groups. To demonstrate applicability, 27 proficiency test blood samples received over an approximate 4-year period were analyzed with 126 expected results assessed comprising 25 unique target analytes. Additionally, 617 fatal accidental overdoses within San Francisco in 2022 were retroactively analyzed by this method with almost 10% of cases containing a new NSO substance(s). Such trends and NSO substances were previously unknown in this community.


Asunto(s)
Analgésicos Opioides , Sobredosis de Droga , Humanos , Analgésicos Opioides/análisis , Cromatografía Liquida/métodos , Xilazina , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem/métodos , Fentanilo
18.
Harm Reduct J ; 21(1): 63, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491435

RESUMEN

BACKGROUND: Drug checking services aim to provide compositional information for the illicit drug supply and are being employed in public health responses to extreme rates of overdose associated with fentanyl within street opioids. The technologies used within these services range from basic qualitative tests, such as immunoassay test strips, to comprehensive quantitative analyses, such as mass spectrometry. In general, there is concern that heterogeneity of a drug mixture adds significant uncertainty when using drug checking results based on a small subsamples. The presence of hot spots of active drug components in this context is often termed the 'chocolate chip cookie effect'. Establishing the limitations of the service are essential for interpretation of the results. METHODS: This study assesses the consequence of drug heterogeneity and sampling of consumer level opioid purchased in Victoria, British Columbia ( n = 21 , 50-100 mg each) on quantitative fentanyl results determined from testing with paper spray mass spectrometry. RESULTS: Using descriptive statistics, such as relative standard deviation and interquartile range, the results demonstrate varied distributions of fentanyl concentrations within a single drug batch. However, the presence of hot spots, defined as outliers, were relatively rare. CONCLUSIONS: This study found that the variability in fentanyl concentration from drug heterogeneity and sampling is greater than that attributed to the analytical technique. On a practical level, this provides data to help guide communication of limitations of drug checking services, supporting the aim of trust and transparency between services and people who use drugs. However, if drug checking services continue to be restricted from fully engaging with the reality of manufacturing, buying, selling, mixing and dosing practices, the accuracy, usefulness, and impact will always be limited.


Asunto(s)
Sobredosis de Droga , Drogas Ilícitas , Humanos , Analgésicos Opioides/análisis , Reducción del Daño , Fentanilo/análisis , Drogas Ilícitas/análisis
19.
J Appl Lab Med ; 9(3): 629-634, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38300830

RESUMEN

Historically, xylazine has been utilized in veterinary medicine for decades as an anesthetic and analgesic sedative to facilitate safe handling, diagnostic testing, and surgical procedures in large animals. Currently, xylazine is an emerging threat to human health. It has been detected in the illicit drug supply chain, often as an adulterant. It has been more commonly added to illicit substances, most notably fentanyl, by drugmakers to enhance drug effect. End users are often unaware of its presence. This is alarming given the large number of xylazine-involved overdose deaths while laboratory detections are deficient and reversal agents are absent. Herein, we present the first documented case of xylazine identified via gas chromatography-tandem mass spectrometry at University of California Davis Health despite a peculiarly mild clinical presentation. We hope to increase awareness of this potentially fatal adulterant that is often missed in evaluation and engender further opportunities to study this ongoing issue.


Asunto(s)
Fentanilo , Xilazina , Humanos , Masculino , Analgésicos Opioides/análisis , Contaminación de Medicamentos , Sobredosis de Droga/diagnóstico , Fentanilo/análogos & derivados , Fentanilo/análisis , Fentanilo/administración & dosificación , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas en Tándem/métodos , Xilazina/efectos adversos , Adulto
20.
J Pharm Biomed Anal ; 243: 116054, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422647

RESUMEN

INTRODUCTION: In the dynamic universe of new psychoactive substances (NPS), the identification of multiple and chemically diverse compounds remains a challenge for forensic laboratories. Since hair analysis represents a gold-standard to assess the prevalence of NPS, which are commonly detected together with classical drugs of abuse (DoA), our study aimed at developing a wide-screen method to detect and quantify 127 NPS and 15 DoA on hair. MATERIALS AND METHODS: A multi-analyte ultra-high performance liquid chromatography mass spectrometry method for the identification and quantification of 127 NPS (phenethylamines, arylcyclohexylamines, synthetic opioids, tryptamines, synthetic cannabinoids, synthetic cathinones, designer benzodiazepines) and 15 DoA in hair samples was developed. A full validation was performed according to the European medicines Agency (EMA) guidelines, by assessing selectivity, linearity, accuracy, precision, limit of quantification (LOQ), limit of detection (LOD), matrix effect and recovery. As a proof of the applicability, the method was applied to 22 authentic hair samples collected for forensic purposes. RESULTS: Successful validation was achieved, by meeting the required technical parameters, for 137 compounds (122 NPS and 15 DoA), with LOQ set at 4 pg/mg for 129 compounds, at 10 pg/mg for 6 and at 40 pg/mg for 2. The method was not considered validated for 5 NPS, as LLOQ resulted too high for a forensic analysis (80 pg/mg). Among authentic forensic samples, 17 tested positive for DoA, and 10 to NPS, most samples showing positivity for both. Detected NPS were ketamine and norketamine, 5-MMPA, ritalinic acid, methoxyacetyl fentanyl, methylone and RCS-4. CONCLUSION: The present methodology represents an easy, low cost, wide-panel method for the quantification of 122 NPS and 15 DoA, for a total of 137 analytes, in hair samples. The method can be profitably applied by forensic laboratories. Similar multi-analyte methods on the hair matrix might be useful in the future to study the prevalence of NPS and the co-occurrence of NPS-DoA abuse.


Asunto(s)
Cannabinoides , Drogas Ilícitas , Trastornos Relacionados con Sustancias , Humanos , Detección de Abuso de Sustancias/métodos , Drogas Ilícitas/análisis , Analgésicos Opioides/análisis , Cannabinoides/análisis , Cabello/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA