Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
JCI Insight ; 9(17)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088281

RESUMEN

Diamond-Blackfan anemia syndrome (DBA) is a ribosomopathy associated with loss-of-function variants in more than 20 ribosomal protein (RP) genes. Here, we report the genetic, functional, and biochemical dissection of 2 multigenerational pedigrees with variants in RPL17, a large ribosomal subunit protein-encoding gene. Affected individuals had clinical features and erythroid proliferation defects consistent with DBA. Further, RPL17/uL22 depletion resulted in anemia and micrognathia in zebrafish larvae, and in vivo complementation studies indicated that RPL17 variants were pathogenic. Lymphoblastoid cell lines (LCLs) derived from patients displayed a ribosomal RNA maturation defect reflecting haploinsufficiency of RPL17. The proteins encoded by RPL17 variants were not incorporated into ribosomes, but 10%-20% of 60S ribosomal subunits contained a short form of 5.8S rRNA (5.8SC), a species that is marginal in normal cells. These atypical 60S subunits were actively engaged in translation. Ribosome profiling showed changes of the translational profile, but those are similar to LCLs bearing RPS19 variants. These results link an additional RP gene to DBA. They show that ribosomes can be modified substantially by RPL17 haploinsufficiency but support the paradigm that translation alterations in DBA are primarily related to insufficient ribosome production rather than to changes in ribosome structure or composition.


Asunto(s)
Anemia de Diamond-Blackfan , Proteínas Ribosómicas , Pez Cebra , Anemia de Diamond-Blackfan/genética , Proteínas Ribosómicas/genética , Humanos , Pez Cebra/genética , Animales , Masculino , Femenino , Linaje , Haploinsuficiencia
2.
J Biol Chem ; 300(8): 107542, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992436

RESUMEN

Diamond Blackfan Anemia (DBA) is a rare macrocytic red blood cell aplasia that usually presents within the first year of life. The vast majority of patients carry a mutation in one of approximately 20 genes that results in ribosomal insufficiency with the most significant clinical manifestations being anemia and a predisposition to cancers. Nemo-like Kinase (NLK) is hyperactivated in the erythroid progenitors of DBA patients and inhibition of this kinase improves erythropoiesis, but how NLK contributes to the pathogenesis of the disease is unknown. Here we report that activated NLK suppresses the critical upregulation of mitochondrial biogenesis required in early erythropoiesis. During normal erythropoiesis, mTORC1 facilitates the translational upregulation of Transcription factor A, mitochondrial (TFAM), and Prohibin 2 (PHB2) to increase mitochondrial biogenesis. In our models of DBA, active NLK phosphorylates the regulatory component of mTORC1, thereby suppressing mTORC1 activity and preventing mTORC1-mediated TFAM and PHB2 upregulation and subsequent mitochondrial biogenesis. Improvement of erythropoiesis that accompanies NLK inhibition is negated when TFAM and PHB2 upregulation is prevented. These data demonstrate that a significant contribution of NLK on the pathogenesis of DBA is through loss of mitochondrial biogenesis.


Asunto(s)
Anemia de Diamond-Blackfan , Eritropoyesis , Diana Mecanicista del Complejo 1 de la Rapamicina , Mitocondrias , Biogénesis de Organelos , Prohibitinas , Proteínas Serina-Treonina Quinasas , Anemia de Diamond-Blackfan/metabolismo , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/patología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Animales , Ratones , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Fosforilación , Proteínas Mitocondriales
3.
Stem Cell Res ; 79: 103479, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38908299

RESUMEN

Diamond-Blackfan anemia syndrome (DBAS) is an inherited bone marrow failure disorder that typically presents in infancy as hypoplastic anemia and developmental abnormalities in approximately 50% of cases. DBAS is caused by haploinsufficiency in one of 24 ribosomal protein genes, with RPS19 mutations accounting for 25% of cases. We generated iPSC lines from two patients with different heterozygous RPS19 mutations (c.191T > C and c.184C > T) and isogenic lines in which the mutations were corrected by Cas9-mediated homology directed repair.


Asunto(s)
Anemia de Diamond-Blackfan , Células Madre Pluripotentes Inducidas , Mutación , Proteínas Ribosómicas , Femenino , Humanos , Masculino , Anemia de Diamond-Blackfan/genética , Línea Celular , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Ribosómicas/genética
4.
Cells ; 13(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891052

RESUMEN

Diamond-Blackfan anemia (DBA) is a rare genetic disorder affecting the bone marrow's ability to produce red blood cells, leading to severe anemia and various physical abnormalities. Approximately 75% of DBA cases involve heterozygous mutations in ribosomal protein (RP) genes, classifying it as a ribosomopathy, with RPS19 being the most frequently mutated gene. Non-RP mutations, such as in GATA1, have also been identified. Current treatments include glucocorticosteroids, blood transfusions, and hematopoietic stem cell transplantation (HSCT), with HSCT being the only curative option, albeit with challenges like donor availability and immunological complications. Gene therapy, particularly using lentiviral vectors and CRISPR/Cas9 technology, emerges as a promising alternative. This review explores the potential of gene therapy, focusing on lentiviral vectors and CRISPR/Cas9 technology in combination with non-integrating lentiviral vectors, as a curative solution for DBA. It highlights the transformative advancements in the treatment landscape of DBA, offering hope for individuals affected by this condition.


Asunto(s)
Anemia de Diamond-Blackfan , Terapia Genética , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/terapia , Terapia Genética/métodos , Humanos , Sistemas CRISPR-Cas/genética , Vectores Genéticos , Lentivirus/genética , Animales , Proteínas Ribosómicas/genética , Mutación/genética , Edición Génica/métodos
5.
Lancet Haematol ; 11(5): e368-e382, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38697731

RESUMEN

Diamond-Blackfan anaemia (DBA), first described over 80 years ago, is a congenital disorder of erythropoiesis with a predilection for birth defects and cancer. Despite scientific advances, this chronic, debilitating, and life-limiting disorder continues to cause a substantial physical, psychological, and financial toll on patients and their families. The highly complex medical needs of affected patients require specialised expertise and multidisciplinary care. However, gaps remain in effectively bridging scientific discoveries to clinical practice and disseminating the latest knowledge and best practices to providers. Following the publication of the first international consensus in 2008, advances in our understanding of the genetics, natural history, and clinical management of DBA have strongly supported the need for new consensus recommendations. In 2014 in Freiburg, Germany, a panel of 53 experts including clinicians, diagnosticians, and researchers from 27 countries convened. With support from patient advocates, the panel met repeatedly over subsequent years, engaging in ongoing discussions. These meetings led to the development of new consensus recommendations in 2024, replacing the previous guidelines. To account for the diverse phenotypes including presentation without anaemia, the panel agreed to adopt the term DBA syndrome. We propose new simplified diagnostic criteria, describe the genetics of DBA syndrome and its phenocopies, and introduce major changes in therapeutic standards. These changes include lowering the prednisone maintenance dose to maximum 0·3 mg/kg per day, raising the pre-transfusion haemoglobin to 9-10 g/dL independent of age, recommending early aggressive chelation, broadening indications for haematopoietic stem-cell transplantation, and recommending systematic clinical surveillance including early colorectal cancer screening. In summary, the current practice guidelines standardise the diagnostics, treatment, and long-term surveillance of patients with DBA syndrome of all ages worldwide.


Asunto(s)
Anemia de Diamond-Blackfan , Consenso , Humanos , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/terapia , Anemia de Diamond-Blackfan/genética , Manejo de la Enfermedad , Trasplante de Células Madre Hematopoyéticas
6.
Exp Hematol ; 135: 104235, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740323

RESUMEN

The emergence of multiomic single-cell technologies over the last decade has led to improved insights into both normal hematopoiesis and its perturbation in a variety of hematological disorders. Diamond-Blackfan anemia (DBA) syndrome is one such disorder where single-cell assays have helped to delineate the cellular and molecular defects underlying the disease. DBA is caused by heterozygous loss-of-function germline variants in genes encoding ribosomal proteins (RPs). Despite the widespread role of ribosomes in hematopoiesis, the most frequent and severe cytopenia in DBA is anemia. In this review we discussed how single-cell studies, including clonogenic cell culture assays, fluorescence-activated cell sorting (FACS) and single-cell RNA sequencing (scRNA-seq), have led to insights into the pathogenesis of DBA. The main therapies are regular blood transfusions, glucocorticoids, or hematopoietic stem cell transplantation (HSCT) but all are associated with significant morbidity and mortality. We will therefore outline how single-cell studies can inform new therapies for DBA. Furthermore, we discussed how DBA serves as a useful model for understanding normal erythropoiesis in terms of its cellular hierarchy, molecular regulation during homeostasis, and response to "stress."


Asunto(s)
Anemia de Diamond-Blackfan , Análisis de la Célula Individual , Anemia de Diamond-Blackfan/terapia , Anemia de Diamond-Blackfan/genética , Humanos , Eritropoyesis/genética , Trasplante de Células Madre Hematopoyéticas , Proteínas Ribosómicas/genética
7.
Leukemia ; 38(6): 1256-1265, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740980

RESUMEN

Recent advances in in-depth data-independent acquisition proteomic analysis have enabled comprehensive quantitative analysis of >10,000 proteins. Herein, an integrated proteogenomic analysis for inherited bone marrow failure syndrome (IBMFS) was performed to reveal their biological features and to develop a proteomic-based diagnostic assay in the discovery cohort; dyskeratosis congenita (n = 12), Fanconi anemia (n = 11), Diamond-Blackfan anemia (DBA, n = 9), Shwachman-Diamond syndrome (SDS, n = 6), ADH5/ALDH2 deficiency (n = 4), and other IBMFS (n = 18). Unsupervised proteomic clustering identified eight independent clusters (C1-C8), with the ribosomal pathway specifically downregulated in C1 and C2, enriched for DBA and SDS, respectively. Six patients with SDS had significantly decreased SBDS protein expression, with two of these not diagnosed by DNA sequencing alone. Four patients with ADH5/ALDH2 deficiency showed significantly reduced ADH5 protein expression. To perform a large-scale rapid IBMFS screening, targeted proteomic analysis was performed on 417 samples from patients with IBMFS-related hematological disorders (n = 390) and healthy controls (n = 27). SBDS and ADH5 protein expressions were significantly reduced in SDS and ADH5/ALDH2 deficiency, respectively. The clinical application of this first integrated proteogenomic analysis would be useful for the diagnosis and screening of IBMFS, where appropriate clinical screening tests are lacking.


Asunto(s)
Enfermedades de la Médula Ósea , Trastornos de Fallo de la Médula Ósea , Proteogenómica , Humanos , Trastornos de Fallo de la Médula Ósea/genética , Trastornos de Fallo de la Médula Ósea/patología , Proteogenómica/métodos , Masculino , Femenino , Enfermedades de la Médula Ósea/genética , Enfermedades de la Médula Ósea/patología , Niño , Adulto , Adolescente , Preescolar , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/diagnóstico , Adulto Joven , Anemia de Fanconi/genética , Anemia de Fanconi/diagnóstico , Proteómica/métodos , Lactante , Síndrome de Shwachman-Diamond/genética , Disqueratosis Congénita/genética , Disqueratosis Congénita/diagnóstico , Disqueratosis Congénita/patología
8.
JCI Insight ; 9(10)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775150

RESUMEN

This study lays the groundwork for future lentivirus-mediated gene therapy in patients with Diamond Blackfan anemia (DBA) caused by mutations in ribosomal protein S19 (RPS19), showing evidence of a new safe and effective therapy. The data show that, unlike patients with Fanconi anemia (FA), the hematopoietic stem cell (HSC) reservoir of patients with DBA was not significantly reduced, suggesting that collection of these cells should not constitute a remarkable restriction for DBA gene therapy. Subsequently, 2 clinically applicable lentiviral vectors were developed. In the former lentiviral vector, PGK.CoRPS19 LV, a codon-optimized version of RPS19 was driven by the phosphoglycerate kinase promoter (PGK) already used in different gene therapy trials, including FA gene therapy. In the latter one, EF1α.CoRPS19 LV, RPS19 expression was driven by the elongation factor alpha short promoter, EF1α(s). Preclinical experiments showed that transduction of DBA patient CD34+ cells with the PGK.CoRPS19 LV restored erythroid differentiation, and demonstrated the long-term repopulating properties of corrected DBA CD34+ cells, providing evidence of improved erythroid maturation. Concomitantly, long-term restoration of ribosomal biogenesis was verified using a potentially novel method applicable to patients' blood cells, based on ribosomal RNA methylation analyses. Finally, in vivo safety studies and proviral insertion site analyses showed that lentivirus-mediated gene therapy was nontoxic.


Asunto(s)
Anemia de Diamond-Blackfan , Terapia Genética , Vectores Genéticos , Células Madre Hematopoyéticas , Lentivirus , Proteínas Ribosómicas , Anemia de Diamond-Blackfan/terapia , Anemia de Diamond-Blackfan/genética , Humanos , Terapia Genética/métodos , Lentivirus/genética , Proteínas Ribosómicas/genética , Vectores Genéticos/genética , Células Madre Hematopoyéticas/metabolismo , Animales , Ratones , Masculino , Femenino , Ribosomas/metabolismo , Ribosomas/genética , Regiones Promotoras Genéticas , Mutación , Trasplante de Células Madre Hematopoyéticas/métodos
9.
Tidsskr Nor Laegeforen ; 144(4)2024 03 19.
Artículo en Noruego | MEDLINE | ID: mdl-38506013

RESUMEN

Background: Anemia in children is common and finding the underlying cause is often uncomplicated. However, in some cases, the underlying diagnosis is rare and difficult to diagnose. Case presentation: A toddler presented with severe anemia with normal red cell indices and a low reticulocyte count. The remaining hematological parameters were normal, bar a slight thrombocytosis. At this point a diagnosis of transient erythroblastopenia of childhood (TEC) was made. The child continued to have slight anemia with intermittent macrocytosis and reticulocytopenia throughout childhood. Growth and development was normal, and there were no signs of congenital abnormalities in the heart or kidneys nor any craniofacial or phalangeal defects. Repeated bone marrow examinations showed no significant abnormal findings. As a teenager the patient was diagnosed with Diamond-Blackfan anemia through an exome-based gene panel which revealed a mutation in the RPL11 gene. Interpretation: Congenital bone marrow failure syndromes do not always present in the classical way, leading to a delayed diagnosis. The increasing availability of different gene panels for patients with persistent abnormal hematological laboratory parameters offers the possibility of a more accurate diagnostic pathway, which is important for adequate follow-up and genetic counselling.


Asunto(s)
Anemia de Diamond-Blackfan , Anemia Hemolítica Congénita , Anemia , Adolescente , Humanos , Anemia/diagnóstico , Anemia/etiología , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , Mutación
10.
Blood Cells Mol Dis ; 106: 102838, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38413287

RESUMEN

Diamond-Blackfan anemia (DBA) was the first ribosomopathy described in humans. DBA is a congenital hypoplastic anemia, characterized by macrocytic aregenerative anemia, manifesting by differentiation blockage between the BFU-e/CFU-e developmental erythroid progenitor stages. In 50 % of the DBA cases, various malformations are noted. Strikingly, for a hematological disease with a relative erythroid tropism, DBA is due to ribosomal haploinsufficiency in 24 different ribosomal protein (RP) genes. A few other genes have been described in DBA-like disorders, but they do not fit into the classical DBA phenotype (Sankaran et al., 2012; van Dooijeweert et al., 2022; Toki et al., 2018; Kim et al., 2017 [1-4]). Haploinsufficiency in a RP gene leads to defective ribosomal RNA (rRNA) maturation, which is a hallmark of DBA. However, the mechanistic understandings of the erythroid tropism defect in DBA are still to be fully defined. Erythroid defect in DBA has been recently been linked in a non-exclusive manner to a number of mechanisms that include: 1) a defect in translation, in particular for the GATA1 erythroid gene; 2) a deficit of HSP70, the GATA1 chaperone, and 3) free heme toxicity. In addition, p53 activation in response to ribosomal stress is involved in DBA pathophysiology. The DBA phenotype may thus result from the combined contributions of various actors, which may explain the heterogenous phenotypes observed in DBA patients, even within the same family.


Asunto(s)
Anemia de Diamond-Blackfan , Anemia Diseritropoyética Congénita , Anemia Macrocítica , Humanos , Anemia de Diamond-Blackfan/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Células Precursoras Eritroides/metabolismo , Mutación
11.
J Pediatr Hematol Oncol ; 46(2): e195-e198, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38277626

RESUMEN

Diamond-Blackfan anemia (DBA) is a rare, inherited bone marrow failure syndrome that is both genetically and clinically heterogeneous. The diagnosis of DBA has changed over time, with advancements in our understanding of the varied genetic etiologies and phenotypic manifestations of the disease. We present a rare case of a patient who never developed erythroid precursor hypoplasia, adding to the understanding of atypical manifestations of DBA. Our patient had spontaneous remission followed by subsequent relapse, both atypical and poorly understood processes in DBA. We highlight important considerations in diagnostically challenging cases and review major outstanding questions surrounding DBA.


Asunto(s)
Anemia de Diamond-Blackfan , Humanos , Anemia de Diamond-Blackfan/complicaciones , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/diagnóstico , Trastornos de Fallo de la Médula Ósea , Proteínas Ribosómicas/genética
12.
Am J Med Genet A ; 194(3): e63454, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37897121

RESUMEN

A 26-year-old female proband with a clinical diagnosis and consistent phenotype of Diamond-Blackfan anemia (DBA, OMIM 105650) without an identified genotype was referred to the Undiagnosed Diseases Network. DBA is classically associated with monoallelic variants that have an autosomal-dominant or -recessive mode of inheritance. Intriguingly, her case was solved by a detection of a digenic interaction between non-allelic RPS19 and RPL27 variants. This was confirmed with a machine learning structural model, co-segregation analysis, and RNA sequencing. This is the first report of DBA caused by a digenic effect of two non-allelic variants demonstrated by machine learning structural model. This case suggests that atypical phenotypic presentations of DBA may be caused by digenic inheritance in some individuals. We also conclude that a machine learning structural model can be useful in detecting digenic models of possible interactions between products encoded by alleles of different genes inherited from non-affected carrier parents that can result in DBA with an unrealized 25% recurrence risk.


Asunto(s)
Anemia de Diamond-Blackfan , Humanos , Femenino , Adulto , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , Proteínas Ribosómicas/genética , Genotipo , Alelos , Fenotipo , Secuencia de Bases , Mutación
13.
Leukemia ; 38(1): 1-9, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37973818

RESUMEN

ABSTACT: Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure disorder characterized by erythroid hypoplasia. It primarily affects infants and is often caused by heterozygous allelic variations in ribosomal protein (RP) genes. Recent studies also indicated that non-RP genes like GATA1, TSR2, are associated with DBA. P53 activation, translational dysfunction, inflammation, imbalanced globin/heme synthesis, and autophagy dysregulation were shown to contribute to disrupted erythropoiesis and impaired red blood cell production. The main therapeutic option for DBA patients is corticosteroids. However, half of these patients become non-responsive to corticosteroid therapy over prolonged treatment and have to be given blood transfusions. Hematopoietic stem cell transplantation is currently the sole curative option, however, the treatment is limited by the availability of suitable donors and the potential for serious immunological complications. Recent advances in gene therapy using lentiviral vectors have shown promise in treating RPS19-deficient DBA by promoting normal hematopoiesis. With deepening insights into the molecular framework of DBA, emerging therapies like gene therapy hold promise for providing curative solutions and advancing comprehension of the underlying disease mechanisms.


Asunto(s)
Anemia de Diamond-Blackfan , Trasplante de Células Madre Hematopoyéticas , Lactante , Humanos , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/terapia , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Terapia Genética , Eritropoyesis/genética , Trastornos de Fallo de la Médula Ósea
16.
Pediatr Blood Cancer ; 71(3): e30834, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38149846

RESUMEN

Diamond-Blackfan anemia (DBA) is a congenital anemia with erythroid cell aplasia. Most of the causative genes are ribosomal proteins. GATA1, a hematopoietic master transcription factor required for erythropoiesis, also causes DBA. GATA1 is located on Xp11.23; therefore, DBA develops only in males in an X-linked inheritance pattern. Here, we report a case of transient erythroblastopenia and moderate anemia in a female newborn infant with a de novo GATA1 variant. In this patient, increased methylation of the GATA1 wild-type allele was observed in erythroid cells. Skewed lyonization of GATA1 may cause mild transient erythroblastopenia in a female patient.


Asunto(s)
Anemia Aplásica , Anemia de Diamond-Blackfan , Anemia Hemolítica Congénita , Masculino , Lactante , Recién Nacido , Humanos , Femenino , Proteínas Ribosómicas/genética , Anemia de Diamond-Blackfan/genética , Eritropoyesis , Factor de Transcripción GATA1/genética
17.
Medicina (Kaunas) ; 59(11)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38004002

RESUMEN

Diamond-Blackfan anemia (DBA) is a congenital bone marrow failure syndrome associated with malformations. DBA is related to defective ribosome biogenesis, which impairs erythropoiesis, causing hyporegenerative macrocytic anemia. The disease has an autosomal dominant inheritance and is commonly diagnosed in the first year of life, requiring continuous treatment. We present the case of a young woman who, at the age of 21, developed severe symptomatic anemia. Although, due to malformations, a congenital syndrome had been suspected since birth, a confirmation diagnosis was not made until the patient was referred to our center for an evaluation of her anemia. In her neonatal medical history, she presented with anemia that required red blood cell transfusions, but afterwards remained with a stable, mild, asymptomatic anemia throughout her childhood and adolescence. Her family history was otherwise unremarkable. To explain the symptomatic anemia, vitamin deficiencies, autoimmune diseases, bleeding causes, and myeloid and lymphoid neoplasms were investigated and ruled out. A molecular investigation showed the RPL5 gene variant c.392dup, p.(Asn131Lysfs*6), confirming the diagnosis of DBA. All family members have normal blood values and none harbored the mutation. Here, we will discuss the unusual evolution of this case and revisit the literature.


Asunto(s)
Anemia de Diamond-Blackfan , Mutación del Sistema de Lectura , Humanos , Adulto Joven , Recién Nacido , Femenino , Adolescente , Niño , Mutación del Sistema de Lectura/genética , Proteínas Ribosómicas/genética , Mutación , Anemia de Diamond-Blackfan/complicaciones , Anemia de Diamond-Blackfan/diagnóstico , Anemia de Diamond-Blackfan/genética , Fenotipo
18.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37834388

RESUMEN

Mice with a constitutive increase in p53 activity exhibited features of dyskeratosis congenita (DC), a bone marrow failure syndrome (BMFS) caused by defective telomere maintenance. Further studies confirmed, in humans and mice, that germline mutations affecting TP53 or its regulator MDM4 may cause short telomeres and alter hematopoiesis, but also revealed features of Diamond-Blackfan anemia (DBA) or Fanconi anemia (FA), two BMFSs, respectively, caused by defects in ribosomal function or DNA repair. p53 downregulates several genes mutated in DC, either by binding to promoter sequences (DKC1) or indirectly via the DREAM repressor complex (RTEL1, DCLRE1B), and the p53-DREAM pathway represses 22 additional telomere-related genes. Interestingly, mutations in any DC-causal gene will cause telomere dysfunction and subsequent p53 activation to further promote the repression of p53-DREAM targets. Similarly, ribosomal dysfunction and DNA lesions cause p53 activation, and p53-DREAM targets include the DBA-causal gene TSR2, at least 9 FA-causal genes, and 38 other genes affecting ribosomes or the FA pathway. Furthermore, patients with BMFSs may exhibit brain abnormalities, and p53-DREAM represses 16 genes mutated in microcephaly or cerebellar hypoplasia. In sum, positive feedback loops and the repertoire of p53-DREAM targets likely contribute to partial phenotypic overlaps between BMFSs of distinct molecular origins.


Asunto(s)
Anemia de Diamond-Blackfan , Disqueratosis Congénita , Anemia de Fanconi , Humanos , Animales , Ratones , Proteína p53 Supresora de Tumor/genética , Trastornos de Fallo de la Médula Ósea , Anemia de Fanconi/genética , Anemia de Diamond-Blackfan/genética , Disqueratosis Congénita/genética , Telómero/genética , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/genética , Proteínas Proto-Oncogénicas/genética , Exodesoxirribonucleasas/genética
20.
Elife ; 122023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37272618

RESUMEN

Ribosomal protein (Rp) gene haploinsufficiency can result in Diamond-Blackfan Anemia (DBA), characterized by defective erythropoiesis and skeletal defects. Some mouse Rp mutations recapitulate DBA phenotypes, although others lack erythropoietic or skeletal defects. We generated a conditional knockout mouse to partially delete Rps12. Homozygous Rps12 deletion resulted in embryonic lethality. Mice inheriting the Rps12KO/+ genotype had growth and morphological defects, pancytopenia, and impaired erythropoiesis. A striking reduction in hematopoietic stem cells (HSCs) and progenitors in the bone marrow (BM) was associated with decreased ability to repopulate the blood system after competitive and non-competitive BM transplantation. Rps12KO/+ lost HSC quiescence, experienced ERK and MTOR activation, and increased global translation in HSC and progenitors. Post-natal heterozygous deletion of Rps12 in hematopoietic cells using Tal1-Cre-ERT also resulted in pancytopenia with decreased HSC numbers. However, post-natal Cre-ERT induction led to reduced translation in HSCs and progenitors, suggesting that this is the most direct consequence of Rps12 haploinsufficiency in hematopoietic cells. Thus, RpS12 has a strong requirement in HSC function, in addition to erythropoiesis.


Asunto(s)
Anemia de Diamond-Blackfan , Pancitopenia , Animales , Ratones , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Eritropoyesis/genética , Genes Esenciales , Haploinsuficiencia , Células Madre Hematopoyéticas/metabolismo , Ratones Noqueados , Pancitopenia/genética , Pancitopenia/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA