Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Dev Comp Immunol ; 118: 103992, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33387559

RESUMEN

Amphioxus, one of the most closely related invertebrates to vertebrates, is an important animal model for studying the origin and evolution of vertebrate immunity, especially the transition from innate immunity to adaptive immunity. The current research progresses of amphioxus in the field of immune organs, immune cells, complement system, cytokines, nuclear factor kappa B, immune-related lectins and enzymes are summarized, and some issues that remain to be understood or are in need of further clarification are highlighted. We hope to provide references for more in-depth study of the amphioxus immune system and lay a solid foundation for the construction of three-dimensional immune network in amphioxus from ontogeny to phylogeny.


Asunto(s)
Evolución Biológica , Anfioxos/inmunología , Animales , Anfioxos/anatomía & histología , Anfioxos/genética , Filogenia
2.
Dokl Biol Sci ; 494(1): 232-235, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33083879

RESUMEN

The gill skeleton of the enteropneust Saccoglossus mereschkowskii consists of a series of tridents. The central prong of each trident bifurcates in its ventral end. The most anterior gill skeletal element has a simple horseshoe shape. Homologues of the elements of the enteropneust gill apparatus were found in the structure of the gill apparatus of Cephalochordata. The organization of the gill skeleton of Enteropneusta and Cephalochordata can be derived from the metameric horseshoe-shaped elements. The similarity of the structure of the gill skeleton of Enteropneusta and Cephalochordata contradicts a common "upside-down theory" of the origin of Chordata.


Asunto(s)
Cefalocordados/anatomía & histología , Branquias/anatomía & histología , Anfioxos/anatomía & histología , Esqueleto/anatomía & histología , Animales , Evolución Biológica , Cordados no Vertebrados/anatomía & histología , Filogenia
3.
Semin Cell Dev Biol ; 91: 2-12, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-29248472

RESUMEN

Chrondrocranium, the cartilaginous skull, is one of the major innovations that underlie evolution of the vertebrate head. Control of the induction and shaping of the cartilage is a key for the formation of the facial bones and largely defines facial shape. The appearance of cartilage in the head enabled many new functions such as protection of central nervous system and sensory structures, support of the feeding apparatus and formation of muscle attachment points ensuring faster and coordinated jaw movements. Here we review the evolution of cartilage in the cranial region and discuss shaping of the chondrocranium in different groups of vertebrates.


Asunto(s)
Evolución Biológica , Cartílago/embriología , Huesos Faciales/embriología , Anfioxos/embriología , Cráneo/embriología , Vertebrados/embriología , Animales , Cartílago/anatomía & histología , Cartílago/crecimiento & desarrollo , Huesos Faciales/anatomía & histología , Huesos Faciales/crecimiento & desarrollo , Humanos , Anfioxos/anatomía & histología , Anfioxos/crecimiento & desarrollo , Modelos Biológicos , Cráneo/anatomía & histología , Cráneo/crecimiento & desarrollo , Vertebrados/anatomía & histología , Vertebrados/crecimiento & desarrollo
4.
Bioessays ; 40(12): e1800130, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30328120

RESUMEN

Amphioxus represents the most basally divergent group in chordates and probably the best extant proxy to the ancestor of all chordates including vertebrates. The amphioxus, or lancelets, are benthic filter feeding marine animals and their interest as a model in research is due to their phylogenetic position and their anatomical and genetic stasis throughout their evolutionary history. From the first works in the 19th century to the present day, enormous progress is made mainly favored by technical development at different levels, from spawning induction and husbandry techniques, through techniques for studies of gene function or of the role of different signalling pathways through embryonic development, to functional genomics techniques. Together, these advances foretell a plethora of interesting developments in the world of research with the amphioxus model. Here, the discovery and development of amphioxus as a superb model organism in evolutionary and evolutionary-developmental biology are reviewed.


Asunto(s)
Biología Evolutiva/métodos , Anfioxos/anatomía & histología , Anfioxos/fisiología , Animales , Evolución Biológica , Genómica/métodos , Respuesta al Choque Térmico , Vertebrados/fisiología
5.
Conscious Cogn ; 62: 127-134, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29598920

RESUMEN

Gene expression studies have recently identified the amphioxus homolog of a domain comprising the combined caudal diencephalon plus midbrain, regions implicated in locomotory control and some forms of primary consciousness in vertebrates. The results of EM-level reconstructions of the larval brain of amphioxus, reviewed here, highlight the importance of inputs to this region for light and physical contact, both of which impinge on the same synaptic zone. The neural circuitry provides a starting point for understanding the organization and evolution of locomotory control and arousal in vertebrates, and implies that one of the tasks of midbrain-based consciousness, as it first emerged in vertebrates, would have been to distinguish between light and physical contact, probably sharp pain in the latter case, by assigning different qualia to each. If so, investigating midbrain circuitry more fully could lead to a better understanding of the neural basis of some forms of sensory experience.


Asunto(s)
Nivel de Alerta , Evolución Biológica , Estado de Conciencia , Anfioxos/fisiología , Vías Nerviosas , Animales , Nivel de Alerta/fisiología , Encéfalo/anatomía & histología , Encéfalo/fisiología , Estado de Conciencia/fisiología , Anfioxos/anatomía & histología , Vías Nerviosas/fisiología , Vertebrados/fisiología
6.
Int J Dev Biol ; 61(10-11-12): 683-688, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29319116

RESUMEN

The history of studies on amphioxus kidney morphology is reviewed with special attention to four zoologists who made important early contributions. In 1884, Hatschek described a single anterior nephridial tubule in larval and adult amphioxus. Subsequently, in 1890, Weiss and Boveri independently found multiple branchial nephridia (morphologically similar to Hatschek's nephridium) associated with the pharyngeal gill slits. These initial discoveries set the stage for Goodrich to criticize Boveri repeatedly for the latter's contention that amphioxus nephridia develop from mesoderm and are connected to neighboring coeloms throughout the life history. In the end, Boveri was almost certainly correct about amphioxus nephridia developing from mesoderm and at least partly right about the lumen of the nephridial tubules being connected to nearby coeloms-the openings are present during larval stages but are closed off later in development. The more detailed structure of amphioxus nephridial tubules was ultimately revealed by electron microscopy. The tubule epithelium includes specialized excretory cells (cyrtopodocytes), each characterized by a basal region similar to that of a vertebrate renal podocyte and an apical region bearing a flagellar/microvillar process reminiscent of an invertebrate protonephridium. At present, in spite of considerable progress toward understanding the development and structure of amphioxus nephridia, virtually nothing is yet known about how they function, and no consensus has been reached about their phylogenetic significance.


Asunto(s)
Epitelio/anatomía & histología , Riñón/anatomía & histología , Anfioxos/anatomía & histología , Mesodermo/anatomía & histología , Animales , Epitelio/embriología , Epitelio/crecimiento & desarrollo , Riñón/embriología , Riñón/crecimiento & desarrollo , Anfioxos/embriología , Anfioxos/crecimiento & desarrollo , Mesodermo/embriología , Mesodermo/crecimiento & desarrollo , Modelos Anatómicos , Vertebrados/anatomía & histología , Vertebrados/embriología , Vertebrados/crecimiento & desarrollo
7.
Sci Rep ; 6: 30700, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27476717

RESUMEN

A recent analysis of the genomes of Chinese and Florida lancelets has concluded that the rate of creation of novel protein domain combinations is orders of magnitude greater in lancelets than in other metazoa and it was suggested that continuous activity of transposable elements in lancelets is responsible for this increased rate of protein innovation. Since morphologically Chinese and Florida lancelets are highly conserved, this finding would contradict the observation that high rates of protein innovation are usually associated with major evolutionary innovations. Here we show that the conclusion that the rate of proteome innovation is exceptionally high in lancelets may be unjustified: the differences observed in domain architectures of orthologous proteins of different amphioxus species probably reflect high rates of gene prediction errors rather than true innovation.


Asunto(s)
Genómica/métodos , Anfioxos/genética , Anotación de Secuencia Molecular/métodos , Proteoma/genética , Animales , China , Evolución Molecular , Florida , Anfioxos/anatomía & histología
8.
Curr Biol ; 26(9): R367-8, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27166696

RESUMEN

Deuterostomes - a key subdivision of animals - are characterized by the mouth developing anteriorly as a rupture between the outer epithelium and the foregut wall. A new study of amphioxus challenges this view and proposes separate evolutionary origins of deuterostome oral openings.


Asunto(s)
Anfioxos/anatomía & histología , Anfioxos/crecimiento & desarrollo , Boca/anatomía & histología , Boca/crecimiento & desarrollo , Animales , Evolución Biológica , Anfioxos/genética
9.
J Exp Zool B Mol Dev Evol ; 324(7): 629-35, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26299898

RESUMEN

Amphioxus is an emerging model organism for evolutionary developmental (Evo-Dev) studies owing to its key phylogenetic position in chordates. However, the rare supply of living embryonic materials is a major drawback for using amphioxus as a laboratorial model animal. Although the problem has been partially resolved in several recent reports, the spawning of amphioxus still remains unpredictable to some extent. In the present study, we reported an accurate method to distinguish spawning-ready and non-spawning-ready individuals of amphioxus Branchiostoma belcheri. In comparison with non-spawning-ready amphioxus, all spawning-ready individuals display following features several hours before their spawning: 1) for both males and females, the interstices between two adjacent gonads are obvious and relatively wide; and 2) the connections among eggs are loose and the crannies appear in each individual ovary of females. These morphological features were also observed in B. japonicum, indicating their conservation among different lancelet species. Based on this observable criterion, we made predictions on the spawning of about 600 ripe B. belcheri individuals and acquired an accuracy of 86.7% for females and 80.4% for males. In addition, we found that advancing or delaying onset of darkness has no detectable effect on the timing of spawning of B. belcheri. Our study makes amphioxus spawning more amenable for our experiments and will greatly facilitate its utilization as a laboratorial model animal.


Asunto(s)
Animales de Laboratorio , Anfioxos/fisiología , Animales , Oscuridad , Femenino , Gónadas/anatomía & histología , Anfioxos/anatomía & histología , Masculino , Reproducción
10.
Biol Bull ; 228(1): 13-24, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25745097

RESUMEN

The cephalochordate genera Branchiostoma and Asymmetron diverged during the Mesozoic Era. In spite of the long separation of the parental clades, eggs of the Florida amphioxus, B. floridae, when fertilized with sperm of the Bahamas lancelet, A. lucayanum (and vice versa), develop through embryonic and larval stages. The larvae reach the chordate phylotypic stage (i.e., the pharyngula), characterized by a dorsal nerve cord, notochord, perforate pharynx, and segmented trunk musculature. After about 2 weeks of larval development, the hybrids die, as do the A. lucayanum purebreds, although all were eating the same algal diet that sustains B. floridae purebreds through adulthood in the laboratory; it is thus unclear whether death of the hybrids results from incompatible parental genomes or an inadequate diet. The diploid chromosome count in A. lucayanum and B. floridae purebreds is, respectively, 34 and 38, whereas it is 36 in hybrids in either direction. The hybrid larvae exhibit several morphological characters intermediate between those of the parents, including the size of the preoral ciliated pit and the angles of deflection of the gill slits and anus from the ventral midline. Based on the time since the two parent clades diverged (120 or 160 million years, respectively, by nuclear and mitochondrial gene analysis), the cross between Branchiostoma and Asymmetron is the most extreme example of hybridization that has ever been unequivocally demonstrated among multicellular animals.


Asunto(s)
Anfioxos/anatomía & histología , Anfioxos/genética , Animales , Bahamas , Cromosomas/genética , Florida , Hibridación Genética , Anfioxos/embriología , Anfioxos/crecimiento & desarrollo , Larva
11.
J Comp Neurol ; 523(2): 251-61, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25233869

RESUMEN

Vertebrates are equipped with so-called camera eyes, which provide them with image-forming vision. Vertebrate image-forming vision evolved independently from that of other animals and is regarded as a key innovation for enhancing predatory ability and ecological success. Evolutionary changes in the neural circuits, particularly the visual center, were central for the acquisition of image-forming vision. However, the evolutionary steps, from protochordates to jaw-less primitive vertebrates and then to jawed vertebrates, remain largely unknown. To bridge this gap, we present the detailed development of retinofugal projections in the lamprey, the neuroarchitecture in amphioxus, and the brain patterning in both animals. Both the lateral eye in larval lamprey and the frontal eye in amphioxus project to a light-detecting visual center in the caudal prosencephalic region marked by Pax6, which possibly represents the ancestral state of the chordate visual system. Our results indicate that the visual system of the larval lamprey represents an evolutionarily primitive state, forming a link from protochordates to vertebrates and providing a new perspective of brain evolution based on developmental mechanisms and neural functions.


Asunto(s)
Evolución Biológica , Lampreas/anatomía & histología , Anfioxos/anatomía & histología , Animales , Tipificación del Cuerpo , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proteínas del Ojo/metabolismo , Proteínas de Peces/metabolismo , Proteínas de Homeodominio/metabolismo , Immunoblotting , Hibridación in Situ , Lampreas/crecimiento & desarrollo , Lampreas/metabolismo , Anfioxos/crecimiento & desarrollo , Anfioxos/metabolismo , Nervio Óptico/anatomía & histología , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Retina/anatomía & histología , Retina/crecimiento & desarrollo , Especificidad de la Especie , Vías Visuales/anatomía & histología , Vías Visuales/crecimiento & desarrollo , Vías Visuales/metabolismo
12.
Nature ; 518(7540): 534-7, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25487155

RESUMEN

A defining feature of vertebrates (craniates) is a pronounced head that is supported and protected by a robust cellular endoskeleton. In the first vertebrates, this skeleton probably consisted of collagenous cellular cartilage, which forms the embryonic skeleton of all vertebrates and the adult skeleton of modern jawless and cartilaginous fish. In the head, most cellular cartilage is derived from a migratory cell population called the neural crest, which arises from the edges of the central nervous system. Because collagenous cellular cartilage and neural crest cells have not been described in invertebrates, the appearance of cellular cartilage derived from neural crest cells is considered a turning point in vertebrate evolution. Here we show that a tissue with many of the defining features of vertebrate cellular cartilage transiently forms in the larvae of the invertebrate chordate Branchiostoma floridae (Florida amphioxus). We also present evidence that during evolution, a key regulator of vertebrate cartilage development, SoxE, gained new cis-regulatory sequences that subsequently directed its novel expression in neural crest cells. Together, these results suggest that the origin of the vertebrate head skeleton did not depend on the evolution of a new skeletal tissue, as is commonly thought, but on the spread of this tissue throughout the head. We further propose that the evolution of cis-regulatory elements near an ancient regulator of cartilage differentiation was a major factor in the evolution of the vertebrate head skeleton.


Asunto(s)
Evolución Biológica , Cartílago , Cabeza , Anfioxos/anatomía & histología , Anfioxos/crecimiento & desarrollo , Cráneo , Vertebrados/anatomía & histología , Animales , Cartílago/citología , Cartílago/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Genes Reporteros/genética , Anfioxos/citología , Larva/anatomía & histología , Larva/citología , Modelos Biológicos , Boca/anatomía & histología , Cresta Neural/citología , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Transducción de Señal , Cráneo/citología , Cráneo/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA