Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.939
Filtrar
1.
Harefuah ; 163(5): 291-294, 2024 May.
Artículo en Hebreo | MEDLINE | ID: mdl-38734941

RESUMEN

INTRODUCTION: Although COVID-19 is mainly a respiratory disease, recent evidence has emerged of vascular and procoagulant pathologies even in young and otherwise healthy individuals. Ophthalmic manifestations include, among others, visual impairment due to arteritic and venous retinal obstructions, which at times precedes other aspects of the disease. We present two atypical cases of internal carotid dissection (ICAD) and review the different ocular symptoms of ICAD and its association with the COVID-19 pandemic. BACKGROUND: A 43-year-old otherwise healthy man was referred to the Emergency Department with a headache and monocular blurring of vision. A recent fever (2 weeks prior) was noted on anamnesis, in light of absence of available positive PCR test during the illness period, clinical suspicion of COVID-19 was assumed. An initial ophthalmic evaluation found a mild optic nerve function impairment with preserved visual acuity. Computed tomography (CT) showed sinusitis, and an initial diagnosis was made of mild optic neuropathy secondary to sphenoid sinusitis. A few hours after admission, the patient reported deterioration of symptoms and examination revealed no light perception in his right eye and pale edematous optic nerve. Urgent magnetic resonance angiography (MRA) demonstrated right ICAD with no additional findings. The second patient, a 43-year-old man developed an acute event of strabismus, left limb paralysis, and speech difficulties while on a hospital visit for his son. The patient underwent CT of the brain which demonstrated extensive infarction following the distribution of his right cerebral artery. Continued investigation using computed tomography angiography (CTA) demonstrated a dissection of the right internal carotid artery. The patient was positive for COVID-19. DISCUSSION: In this review, we discuss 2 cases of carotid artery dissection presenting with an acute ocular complaint in two otherwise healthy young individuals. Events were suspected to have been provoked by COVID-19 infection. The pathogenesis and mechanisms behind COVID-19 induced coagulopathy are not clear, and several mechanisms have been proposed including endothelial damage and dysfunction. The virus is thought to enter endothelial cells and lead to a pathological procoagulant state. Awareness should be drawn to uncommon signs especially in young adults. Clotting issues can arise and should be treated quickly as they might be life and vision threatening.


Asunto(s)
COVID-19 , Disección de la Arteria Carótida Interna , Humanos , COVID-19/complicaciones , COVID-19/diagnóstico , Masculino , Adulto , Disección de la Arteria Carótida Interna/diagnóstico , Angiografía por Resonancia Magnética/métodos , Trastornos de la Visión/etiología , Tomografía Computarizada por Rayos X/métodos
2.
Sci Rep ; 14(1): 10765, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729973

RESUMEN

The Shiga Epidemiological Study of Subclinical Atherosclerosis was conducted in Kusatsu City, Shiga, Japan, from 2006 to 2008. Participants were measured for LDL-p through nuclear magnetic resonance technology. 740 men participated in follow-up and underwent 1.5 T brain magnetic resonance angiography from 2012 to 2015. Participants were categorized as no-ICAS, and ICAS consisted of mild-ICAS (1 to < 50%) and severe-ICAS (≥ 50%) in any of the arteries examined. After exclusion criteria, 711 men left for analysis, we used multiple logistic regression to examine the association between lipid profiles and ICAS prevalence. Among the study participants, 205 individuals (28.8%) had ICAS, while 144 individuals (20.3%) demonstrated discordance between LDL-c and LDL-p levels. The discordance "low LDL-c-high LDL-p" group had the highest ICAS risk with an adjusted OR (95% CI) of 2.78 (1.55-5.00) in the reference of the concordance "low LDL-c-low LDL-p" group. This was followed by the concordance "high LDL-c-high LDL-p" group of 2.56 (1.69-3.85) and the discordance "high LDL-c-low LDL-p" group of 2.40 (1.29-4.46). These findings suggest that evaluating LDL-p levels alongside LDL-c may aid in identifying adults at a higher risk for ICAS.


Asunto(s)
Lipoproteínas LDL , Humanos , Masculino , Persona de Mediana Edad , Lipoproteínas LDL/sangre , Anciano , Japón/epidemiología , Angiografía por Resonancia Magnética/métodos , Constricción Patológica/sangre , LDL-Colesterol/sangre , Lípidos/sangre , Factores de Riesgo , Adulto , Femenino
3.
Acta Neurochir (Wien) ; 166(1): 203, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713241

RESUMEN

PURPOSE: Stroke, the second leading cause of death globally, often involves ischemia in the vertebrobasilar territory. This condition is underexplored, despite significant morbidity and mortality risks. The purpose of this study is to present a case of occipital artery to V3 segment vertebral artery bypass, emphasizing the role of quantitative magnetic resonance angiography (qMRA) in assessing flow and guiding surgical intervention. METHODS: A 66-year-old man with bilateral vertebral artery occlusion presented acute symptoms. qMRA was employed to evaluate flow dynamics and determine the feasibility of a flow augmentation bypass surgery. The occipital artery to left vertebral artery bypass (OA-to-VA) was performed, utilizing an inverted hockey-stick incision and an antegrade inside-out technique. The patency of the bypass was confirmed using both Doppler probe and Indocyanine green. RESULTS: Postoperative assessments, including computed tomography angiography (CTA) and qMRA, demonstrated the patency of the bypass with improved flow in the basilar artery and left vertebral artery. The patient's condition remained stable postoperatively, with residual peripheral palsy of the left facial nerve. CONCLUSION: In conclusion, the presented case illustrates the efficacy of the OA-to-VA bypass in addressing symptomatic bilateral vertebral artery occlusion. The study underscores the pivotal role of qMRA in pre- and postoperative assessments, providing noninvasive flow quantification for diagnostic considerations and long-term follow-up in patients with vertebrobasilar insufficiency.


Asunto(s)
Revascularización Cerebral , Angiografía por Resonancia Magnética , Arteria Vertebral , Insuficiencia Vertebrobasilar , Humanos , Masculino , Anciano , Insuficiencia Vertebrobasilar/cirugía , Insuficiencia Vertebrobasilar/diagnóstico por imagen , Arteria Vertebral/cirugía , Arteria Vertebral/diagnóstico por imagen , Revascularización Cerebral/métodos , Angiografía por Resonancia Magnética/métodos , Resultado del Tratamiento
4.
Neuroimaging Clin N Am ; 34(2): 251-260, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604709

RESUMEN

Conventional imaging modalities, such as computed tomography angiography, MR angiography, transcranial Doppler ultrasonography, and digital subtraction angiography, are utilized in evaluating intraluminal or intravascular pathology of the intracranial vessels. Limitations of luminal imaging techniques can lead to inaccurate diagnosis, evaluation, and risk stratification, as many cerebrovascular pathologies contain an extrinsic vessel wall component. Furthermore, vessel wall imaging can provide information regarding extent, treatment response, and biopsy targets for vasculitis cases. Overall, while vessel wall imaging can provide robust data regarding intracranial pathologies, further prospective, multicenter studies are required to improve diagnostic application and accuracy.


Asunto(s)
Aterosclerosis , Vasculitis , Humanos , Vasculitis/diagnóstico por imagen , Angiografía por Resonancia Magnética/métodos , Tomografía Computarizada por Rayos X , Angiografía de Substracción Digital , Imagen por Resonancia Magnética/métodos
5.
Magn Reson Imaging ; 110: 43-50, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604346

RESUMEN

PURPOSE: Lower extremity magnetic resonance angiography (MRA) without electrocardiography (ECG) or peripheral pulse unit (PPU) triggering and contrast enhancement is beneficial for diagnosing peripheral arterial disease (PAD) while avoiding synchronization failure and nephrogenic systemic fibrosis. This study aimed to compare the diagnostic performance of turbo spin-echo-based enhanced acceleration-selective arterial spin labeling (eAccASL) (TSE-Acc) of the lower extremities with that of turbo field-echo-based eAccASL (TFE-Acc) and triggered angiography non-contrast enhanced (TRANCE). METHODS: Nine healthy volunteers and a patient with PAD were examined on a 3.0 Tesla magnetic resonance imaging (MRI) system. The artery-to-muscle signal intensity ratio (SIR) and contrast-to-noise ratio (CNR) were calculated. The arterial visibility (1: poor, 4: excellent) and artifact contamination (1: severe, 4: no) were independently assessed by two radiologists. Phase-contrast MRI and digital subtraction angiography were referenced in a patient with PAD. Friedman's test and a post-hoc test according to the Bonferroni-adjusted Wilcoxon signed-rank test were used for the SIR, CNR, and visual assessment. p < 0.05 was considered statistically significant. RESULTS: No significant differences in nearly all the SIRs were observed among the three MRA methods. Higher CNRs were observed with TSE-Acc than those with TFE-Acc (anterior tibial artery, p = 0.014; peroneal artery, p = 0.029; and posterior tibial artery, p = 0.014) in distal arterial segments; however, no significant differences were observed upon comparison with TRANCE (all p > 0.05). The arterial visibility scores exhibited similar trends as the CNRs. The artifact contamination scores with TSE-Acc were significantly lower (but within an acceptable level) compared to those with TFE-Acc. In the patient with PAD, the sluggish peripheral arteries were better visualized using TSE-Acc than those using TFE-Acc, and the collateral and stenosis arteries were better visualized using TSE-Acc than those using TRANCE. CONCLUSION: Peripheral arterial visualization was better with TSE-Acc than that with TFE-Acc in lower extremity MRA without ECG or PPU triggering and contrast enhancement, which was comparable with TRANCE as the reference standard. Furthermore, TSE-Acc may propose satisfactory diagnostic performance for diagnosing PAD in patients with arrhythmia and chronic kidney disease.


Asunto(s)
Medios de Contraste , Extremidad Inferior , Angiografía por Resonancia Magnética , Enfermedad Arterial Periférica , Marcadores de Spin , Humanos , Angiografía por Resonancia Magnética/métodos , Enfermedad Arterial Periférica/diagnóstico por imagen , Masculino , Femenino , Extremidad Inferior/diagnóstico por imagen , Extremidad Inferior/irrigación sanguínea , Adulto , Persona de Mediana Edad , Electrocardiografía , Anciano , Artefactos , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados
6.
Magn Reson Imaging ; 110: 86-95, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38631533

RESUMEN

Segmentation of cerebral vasculature on MR vascular images is of great significance for clinical application and research. However, the existing cerebrovascular segmentation approaches are limited due to insufficient image contrast and complicated algorithms. This study aims to explore the potential of the emerging four-dimensional arterial spin labeling magnetic resonance angiography (4D ASL-MRA) technique for fast and accurate cerebrovascular segmentation with a simple machine-learning approach. Nine temporal features were extracted from the intensity-time signal of each voxel, and eight spatial features from the neighboring voxels. Then, the unsupervised outlier detection algorithm, i.e. Isolation Forest, is used for segmentation of the vascular voxels based on the extracted features. The total length of the centerlines of the intracranial arterial vasculature, the dice similarity coefficient (DSC), and the average Hausdorff Distance (AVGHD) on the cross-sections of small- to large-sized vessels were calculated to evaluate the performance of the segmentation approach on 4D ASL-MRA of 18 subjects. Experiments show that the temporal information on 4D ASL-MRA can largely improve the segmentation performance. In addition, the proposed segmentation approach outperforms the traditional methods that were performed on the 3D image (i.e. the temporal average intensity projection of 4D ASL-MRA) and the previously proposed frame-wise approach. In conclusion, this study demonstrates that accurate and robust segmentation of cerebral vasculature is achievable on 4D ASL-MRA by using a simple machine-learning approach with appropriate features.


Asunto(s)
Algoritmos , Imagenología Tridimensional , Aprendizaje Automático , Angiografía por Resonancia Magnética , Marcadores de Spin , Humanos , Angiografía por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Masculino , Femenino , Adulto , Arterias Cerebrales/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Circulación Cerebrovascular , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea
7.
Magn Reson Imaging ; 110: 78-85, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636674

RESUMEN

OBJECTIVES: Isolated vertigo induced by posterior circulation ischemia (PCIV) can further progress into posterior circulation infarction. This study aimed to explore the diagnostic values of three-dimensional pseudo-continuous arterial spin labeling (3D-PCASL) combined with territorial arterial spin labeling (t-ASL) and magnetic resonance angiography (MRA) in visualizing and evaluating PCIV, seeking improved diagnostic tools for clinical guidance. METHODS: 28 PCIVs (11 males, 17 females, aged from 55 to 83 years, mean age: 69.68 ± 9.01 years) and 28 healthy controls (HCs, 12 male, 16 female, aged from 56 to 87 years, mean age: 66.75 ± 9.86 years) underwent conventional magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), MRA, 3D-PCASL, and t-ASL. We compared the incidence of anatomic variants of the posterior circle of Willis in MRA, cerebral blood flow (CBF) and anterior collateral blood flow on postprocessing maps obtained from 3D-PCASL and t-ASL sequence between PCIVs and HCs. Chi-square test and paired t-test were analyzed statistically with SPSS 24.0 software. RESULTS: 7 PCIVs (7/28, 25%) and 6 HCs (6/28, 21%) showed fetal posterior cerebral artery (FPCA) on MRA, including 1 HC, and 6 PCIVs with FPCA appeared hypoperfusion. 18 PCIVs (64%) and 2 HCs (7%) showed hypoperfusion in the posterior circulation (PC), including 1 HC and 7 PCIVs displayed anterior circulation collateral flow. Chi-square analyses demonstrated a difference in PC hypoperfusion between PCIVs and HCs, whether in the whole or FPCA-positive group assessment (P < 0.05). Paired t-test showed that the CBF values were significant difference for the bilateral PC asymmetrical perfusion in the PCIVs (P < 0.01). When compared to the bilateral PC symmetrical non-hypoperfusion area in the PCIVs and HCs, the CBF values were not significant (P > 0.05). The CBF values of the PC in PCIVs were lower than in HCs (P < 0.05). The reduction rate in the hypoperfusion side of the bilateral PC asymmetrical perfusion of the PCIVs ranged from 4% to 37%, while the HCs reduction rate was 7.7%. The average PC symmetrical perfusion average reduction rate of the PCIVs was 52.25%, while the HCs reduction rate was 42.75%. CONCLUSION: 3D-PCASL is a non-invasive and susceptible method for detecting hypoperfusion in PC, serving as a potential biomarker of PCIV. The suspected hypoperfusion in PC may be attributed to the emergence of FPCA and the manifestation of anterior collateral flow when combining t-ASL and MRA sequences. These findings demonstrated that 3D-PCASL combined with t-ASL and MRA sequences are the potential method to identify PCIV, leading to early diagnosis of PCIV and reducing the risk of progressing into infarction.


Asunto(s)
Isquemia Encefálica , Circulación Cerebrovascular , Imagenología Tridimensional , Angiografía por Resonancia Magnética , Marcadores de Spin , Vértigo , Humanos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Angiografía por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Anciano de 80 o más Años , Vértigo/diagnóstico por imagen , Isquemia Encefálica/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/métodos
8.
Sci Rep ; 14(1): 9245, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649692

RESUMEN

Radiological imaging to examine intracranial blood vessels is critical for preoperative planning and postoperative follow-up. Automated segmentation of cerebrovascular anatomy from Time-Of-Flight Magnetic Resonance Angiography (TOF-MRA) can provide radiologists with a more detailed and precise view of these vessels. This paper introduces a domain generalized artificial intelligence (AI) solution for volumetric monitoring of cerebrovascular structures from multi-center MRAs. Our approach utilizes a multi-task deep convolutional neural network (CNN) with a topology-aware loss function to learn voxel-wise segmentation of the cerebrovascular tree. We use Decorrelation Loss to achieve domain regularization for the encoder network and auxiliary tasks to provide additional regularization and enable the encoder to learn higher-level intermediate representations for improved performance. We compare our method to six state-of-the-art 3D vessel segmentation methods using retrospective TOF-MRA datasets from multiple private and public data sources scanned at six hospitals, with and without vascular pathologies. The proposed model achieved the best scores in all the qualitative performance measures. Furthermore, we have developed an AI-assisted Graphical User Interface (GUI) based on our research to assist radiologists in their daily work and establish a more efficient work process that saves time.


Asunto(s)
Angiografía por Resonancia Magnética , Redes Neurales de la Computación , Flujo de Trabajo , Humanos , Angiografía por Resonancia Magnética/métodos , Inteligencia Artificial , Estudios Retrospectivos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos
9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 228-236, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38686402

RESUMEN

Conventional maximum intensity projection (MIP) images tend to ignore some morphological features in the detection of intracranial aneurysms, resulting in missed detection and misdetection. To solve this problem, a new method for intracranial aneurysm detection based on omni-directional MIP image is proposed in this paper. Firstly, the three-dimensional magnetic resonance angiography (MRA) images were projected with the maximum density in all directions to obtain the MIP images. Then, the region of intracranial aneurysm was prepositioned by matching filter. Finally, the Squeeze and Excitation (SE) module was used to improve the CaraNet model. Excitation and the improved model were used to detect the predetermined location in the omni-directional MIP image to determine whether there was intracranial aneurysm. In this paper, 245 cases of images were collected to test the proposed method. The results showed that the accuracy and specificity of the proposed method could reach 93.75% and 93.86%, respectively, significantly improved the detection performance of intracranial aneurysms in MIP images.


Asunto(s)
Algoritmos , Imagenología Tridimensional , Aneurisma Intracraneal , Angiografía por Resonancia Magnética , Aneurisma Intracraneal/diagnóstico por imagen , Humanos , Angiografía por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos , Sensibilidad y Especificidad , Procesamiento de Imagen Asistido por Computador/métodos
10.
AJNR Am J Neuroradiol ; 45(5): 554-561, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38514091

RESUMEN

BACKGROUND AND PURPOSE: The slow adoption of new advanced imaging techniques into clinical practice has been a long-standing challenge. Principles of implementation science and the reach, effectiveness, adoption, implementation, maintenance (RE-AIM) framework were used to build a clinical vessel wall imaging program at an academic medical center. MATERIALS AND METHODS: Six phases for implementing a clinical vessel wall MR imaging program were contextualized to the RE-AIM framework. Surveys were designed and distributed to MR imaging technologists and clinicians. Effectiveness was measured by surveying the perceived diagnostic value of vessel wall imaging among MR imaging technologists and clinicians, trends in case volumes in the clinical vessel wall imaging examination, and the number of coauthored vessel wall imaging-focused publications and abstracts. Adoption and implementation were measured by surveying stakeholders about workflow. Maintenance was measured by surveying MR imaging technologists on the value of teaching materials and online tip sheets. The Integration dimension was measured by the number of submitted research grants incorporating vessel wall imaging protocols. Feedback during the implementation phases and solicited through the survey is qualitatively summarized. Quantitative results are reported using descriptive statistics. RESULTS: Six phases of the RE-AIM framework focused on the following: 1) determining patient and disease representation, 2) matching resource availability and patient access, 3) establishing vessel MR wall imaging (VWI) expertise, 4) forming interdisciplinary teams, 5) iteratively refining workflow, and 6) integrating for maintenance and scale. Survey response rates were 48.3% (MR imaging technologists) and 71.4% (clinicians). Survey results showed that 90% of the MR imaging technologists agreed that they understood how vessel wall MR imaging adds diagnostic value to patient care. Most clinicians (91.3%) reported that vessel wall MR imaging results changed their diagnostic confidence or patient management. Case volumes of clinical vessel wall MR imaging performed from 2019 to 2022 rose from 22 to 205 examinations. Workflow challenges reported by MR imaging technologists included protocoling examinations and scan length. Feedback from ordering clinicians included the need for education about VWI indications, limitations, and availability. During the 3-year implementation period of the program, the interdisciplinary teams coauthored 27 publications and abstracts and submitted 13 research grants. CONCLUSIONS: Implementation of a clinical imaging program can be successful using the principles of the RE-AIM framework. Through iterative processes and the support of interdisciplinary teams, a vessel wall MR imaging program can be integrated through a dedicated clinical pipeline, add diagnostic value, support educational and research missions at an academic medical center, and become a center for excellence.


Asunto(s)
Centros Médicos Académicos , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Ciencia de la Implementación , Angiografía por Resonancia Magnética/métodos
11.
Magn Reson Imaging ; 110: 51-56, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38458551

RESUMEN

OBJECTIVE: We investigated the feasibility of using compressed sensitivity encoding (CS-SENSE) to accelerate high-resolution black-blood T1-weighted imaging with variable flip angles (T1WI-VFA) for efficient visualization and characterization of lenticulostriate arteries (LSAs) on a 3.0 T MR scanner. MATERIALS AND METHODS: Twenty-five healthy volunteers and 18 patients with the cerebrovascular disease were prospectively enrolled. Healthy volunteers underwent T1WI-VFA sequences with different acceleration factors (AFs), including conventional sensitivity encoding (SENSE) AF = 3 and CS-SENSE AF = 3, 4, 5, and 6 (SENSE3, CS3, CS4, CS5, CS6, respectively) at 3 Tesla MRI scanner. Objective evaluation (contrast ratio and number, length, and branches of LSAs) and subjective evaluation (overall image quality and LSA visualization scores) were used to assess image quality and LSA visualization. Comparisons were performed among the 5 sequences to select the best AF. All patients underwent both T1WI-VFA with the optimal AF and digital subtraction angiography (DSA) examination, and the number of LSAs observed by T1WI-VFA was compared with that by DSA. RESULTS: Pair-wise comparisons among CS3, CS4, and SENSE3 revealed no significant differences in both objective measurements and subjective evaluation (all P > 0.05). In patients, there was no significant difference in LSA counts on the same side between T1WI-VFA with CS4 and DSA (3, 3-4 and 3, 3-3, P = 0.243). CONCLUSIONS: CS3 provided better LSA visualization but a longer scan duration compared to CS4. And, CS4 strikes a good balance between LSA visualization and acquisition time, which is recommended for routine clinical use.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Angiografía por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Angiografía de Substracción Digital , Interpretación de Imagen Asistida por Computador/métodos , Trastornos Cerebrovasculares/diagnóstico por imagen , Arterias Cerebrales/diagnóstico por imagen
12.
Surg Radiol Anat ; 46(5): 679-683, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38530384

RESUMEN

PURPOSE: To describe a case of posterior cerebral artery (PCA)-accessory PCA (hyperplastic anterior choroidal artery) anastomosis detected on magnetic resonance angiography. METHODS: A 76-year-old man with a history of cerebral infarction underwent cranial magnetic resonance (MR) imaging and MR angiography of the intracranial region for the evaluation of brain and vascular lesions. The MR machine was a 3-Tesla scanner. MR angiography was performed using a standard three-dimensional time-of-flight technique. RESULTS: There were two right PCAs. The parieto-occipital and calcarine arteries of the right PCA arose from the right ICA, indicative of accessory PCA, and there were three stenotic lesions at the proximal segment of this artery. The temporal artery of the right PCA originated from the basilar artery. A small anastomotic channel between these two arteries was identified on partial maximum intensity projection (MIP) images. Computed tomography angiography was additionally performed and the findings were confirmed. CONCLUSION: We speculated that the pressure gradient between the PCA and the accessory PCA enlarged the anastomotic channel. Partial MIP images are useful for diagnosing small arterial variations using MR angiography.


Asunto(s)
Angiografía por Resonancia Magnética , Arteria Cerebral Posterior , Humanos , Masculino , Anciano , Arteria Cerebral Posterior/diagnóstico por imagen , Arteria Cerebral Posterior/anomalías , Angiografía por Resonancia Magnética/métodos , Variación Anatómica , Angiografía por Tomografía Computarizada , Imagenología Tridimensional
13.
Neurosurg Focus ; 56(3): E10, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38428010

RESUMEN

OBJECTIVE: Spinal dural arteriovenous fistulas (SDAVFs) often go undiagnosed, leading to irreversible spinal cord dysfunction. Although digital subtraction angiography (DSA) is the gold standard for diagnosing SDAVF, DSA is invasive and operator dependent, with associated risks. MR angiography (MRA) is a promising alternative. This study aimed to evaluate the performance of MRA as an equal alternative to DSA in investigating, diagnosing, and localizing SDAVF. METHODS: Prospectively collected data from a single neurosurgeon at a large tertiary academic center were searched for SDAVFs. Eligibility criteria included any patient with a surgically proven SDAVF in whom preoperative DSA, MRA, or both had been obtained. The eligible patients formed a consecutive series, in which they were divided into DSA and MRA groups. DSA and MRA were the index tests that were compared to the surgical SDAVF outcome, which was the reference standard. Accurate diagnosis was considered to have occurred when the imaging report matched the operative diagnosis to the correct spinal level. Comparisons used a two-sample t-test for continuous variables and Fisher-Freeman-Halton's exact test for categorical variables, with p < 0.05 specifying significance. Univariate, bivariate, and multivariate analyses were conducted to investigate group associations with DSA and MRA accuracy. Positive predictive value, sensitivity, and accuracy were calculated. RESULTS: A total of 27 patients with a mean age of 63 years underwent surgery for SDAVF. There were 19 male (70.4%) and 8 female (29.6%) patients, and the mean duration of symptoms at the time of surgery was 14 months (range 2-48 months). Seventeen patients (63%) presented with bowel or bladder incontinence. Bivariate analysis of the DSA and MRA groups further revealed no significant relationships between the characteristics and accuracy of SDAVF diagnosis. MRA was found to be more sensitive and accurate (100% and 73.3%) than DSA (85.7% and 69.2%), with a subanalysis of the patients with both preoperative MRA and DSA showing that MRA had a greater positive predictive value (78.6 vs 72.7), sensitivity (100 vs 72.7), and accuracy (78.6 vs 57.1) than DSA. CONCLUSIONS: In surgically proven cases of SDAVFs, the authors determined that MRA was more accurate than DSA for SDAVF diagnosis and localization to the corresponding vertebral level. Incomplete catheterization at each vertebral level may result in the failure of DSA to detect SDAVF.


Asunto(s)
Malformaciones Vasculares del Sistema Nervioso Central , Angiografía por Resonancia Magnética , Humanos , Masculino , Femenino , Persona de Mediana Edad , Angiografía por Resonancia Magnética/métodos , Angiografía de Substracción Digital/métodos , Malformaciones Vasculares del Sistema Nervioso Central/diagnóstico por imagen , Malformaciones Vasculares del Sistema Nervioso Central/cirugía , Médula Espinal/diagnóstico por imagen , Médula Espinal/cirugía , Valor Predictivo de las Pruebas
14.
Eur Radiol Exp ; 8(1): 30, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472603

RESUMEN

BACKGROUND: This study evaluated a deep learning (DL) algorithm for detecting vessel steno-occlusions in patients with peripheral arterial disease (PAD). It utilised a private dataset, which was acquired and annotated by the authors through their institution and subsequently validated by two blinded readers. METHODS: A single-centre retrospective study analysed 105 magnetic resonance angiography (MRA) images using an EfficientNet B0 DL model. Initially, inter-reader variability was assessed using the complete dataset. For a subset of these images (29 from the left side and 35 from the right side) where digital subtraction angiography (DSA) data was available as the ground truth, the model's accuracy and the area under the curve at receiver operating characteristics analysis (ROC-AUC) were evaluated. RESULTS: A total of 105 patient examinations (mean age, 75 years ±12 [mean ± standard deviation], 61 men) were evaluated. Radiologist-DL model agreement had a quadratic weighted Cohen κ ≥ 0.72 (left side) and ≥ 0.66 (right side). Radiologist inter-reader agreement was ≥ 0.90 (left side) and ≥ 0.87 (right side). The DL model achieved a 0.897 accuracy and a 0.913 ROC-AUC (left side) and 0.743 and 0.830 (right side). Radiologists achieved 0.931 and 0.862 accuracies, with 0.930 and 0.861 ROC-AUCs (left side), and 0.800 and 0.799 accuracies, with 0.771 ROC-AUCs (right side). CONCLUSION: The DL model provided valid results in identifying arterial steno-occlusion in the superficial femoral and popliteal arteries on MRA among PAD patients. However, it did not reach the inter-reader agreement of two radiologists. RELEVANCE STATEMENT: The tested DL model is a promising tool for assisting in the detection of arterial steno-occlusion in patients with PAD, but further optimisation is necessary to provide radiologists with useful support in their daily routine diagnostics. KEY POINTS: • This study focused on the application of DL for arterial steno-occlusion detection in lower extremities on MRA. • A previously developed DL model was tested for accuracy and inter-reader agreement. • While the model showed promising results, it does not yet replace human expertise in detecting arterial steno-occlusion on MRA.


Asunto(s)
Arteriopatías Oclusivas , Enfermedad Arterial Periférica , Masculino , Humanos , Anciano , Medios de Contraste , Angiografía por Resonancia Magnética/métodos , Sensibilidad y Especificidad , Inteligencia Artificial , Estudios Retrospectivos , Arteriopatías Oclusivas/diagnóstico
15.
Surg Radiol Anat ; 46(4): 523-534, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38376526

RESUMEN

PURPOSE: We aimed to examine the superior mesenteric artery in detail by magnetic resonance angiography to provide an alternative to other imaging methods, to reduce the exposure time of patients and physicians to X-rays and the time spent in catheter angiography, to determine the variations, positions, and locations of the celiac trunk, and to provide detailed information for surgeons and interventional radiologists using this method. METHODS: The procedures were approved by the Kocaeli University Medical School Non-Interventional Clinical Research Ethics Committee (10.04.2023, approval number: 2021/51). MR angiography images of 185 patients with abdominal imaging in PACS (Picture Archiving Communication Systems) were retrospectively registered. The level of origin of the superior mesenteric artery according to the vertebral column, angle of origin, distance between the superior mesenteric artery and branches of the abdominal aorta, and branching pattern of the superior mesenteric artery were evaluated. Parameters were evaluated according to gender and age using SPSS version 25. RESULTS: The distance between superior mesenteric artery-inferior mesenteric artery and superior mesenteric artery-aortic bifurcation in males was higher than in females, and the difference was statistically significant. In females and the whole study group, a low, positive and significant relationship was found between age and superior mesenteric artery-sagittal angle. The most common origin site for the superior mesenteric artery, according to the vertebral column was found to be at L1 middle for males and L1 upper for females. The most common superior mesenteric artery branching pattern was classical type in both genders. CONCLUSION: Individual evaluation of the superior mesenteric artery could reduce the risks during surgical interventions, considering the relationship of the superior mesenteric artery, especially with distally located vessels, and the gender differences for the angle of origin. Furthermore, considering that interventional radiologists choose the catheter according to the angle of origin of the artery during catheter angiography procedures, individual evaluation of patients taking into account gender and age is of utmost importance.


Asunto(s)
Angiografía por Resonancia Magnética , Arteria Mesentérica Superior , Humanos , Masculino , Femenino , Arteria Mesentérica Superior/diagnóstico por imagen , Angiografía por Resonancia Magnética/métodos , Aorta Abdominal , Arteria Celíaca , Radiografía
16.
NMR Biomed ; 37(6): e5115, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38355219

RESUMEN

Arterial spin labeling (ASL) has been widely used to evaluate arterial blood and perfusion dynamics, particularly in the brain, but its application to the spinal cord has been limited. The purpose of this study was to optimize vessel-selective pseudocontinuous arterial spin labeling (pCASL) for angiographic and perfusion imaging of the rat cervical spinal cord. A pCASL preparation module was combined with a train of gradient echoes for dynamic angiography. The effects of the echo train flip angle, label duration, and a Cartesian or radial readout were compared to examine their effects on visualizing the segmental arteries and anterior spinal artery (ASA) that supply the spinal cord. Lastly, vessel-selective encoding with either vessel-encoded pCASL (VE-pCASL) or super-selective pCASL (SS-pCASL) were compared. Vascular territory maps were obtained with VE-pCASL perfusion imaging of the spinal cord, and the interanimal variability was evaluated. The results demonstrated that longer label durations (200 ms) resulted in greater signal-to-noise ratio in the vertebral arteries, improved the conspicuity of the ASA, and produced better quality maps of blood arrival times. Cartesian and radial readouts demonstrated similar image quality. Both VE-pCASL and SS-pCASL adequately labeled the right or left vertebral arteries, which revealed the interanimal variability in the segmental artery with variations in their location, number, and laterality. VE-pCASL also demonstrated unique interanimal variations in spinal cord perfusion with a right-sided dominance across the six animals. Vessel-selective pCASL successfully achieved visualization of the arterial inflow dynamics and corresponding perfusion territories of the spinal cord. These methodological developments provide unique insights into the interanimal variations in the arterial anatomy and dynamics of spinal cord perfusion.


Asunto(s)
Angiografía por Resonancia Magnética , Ratas Sprague-Dawley , Animales , Masculino , Angiografía por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Marcadores de Spin , Ratas , Médula Cervical/diagnóstico por imagen , Médula Cervical/irrigación sanguínea , Médula Espinal/irrigación sanguínea , Médula Espinal/diagnóstico por imagen
17.
Magn Reson Imaging ; 109: 1-9, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38417470

RESUMEN

PURPOSE: Two major drawbacks of 4D-MR angiography based on superselective pseudo-continuous arterial spin labeling combined with CENTRA-keyhole and view-sharing (4D-S-PACK) are the low temporal resolution and long scanning time. We investigated the feasibility of increasing the temporal resolution and accelerating the scanning time on 4D-S-PACK by using CS-SENSE and PhyZiodynamics, a novel image-processing program that interpolates images between phases to generate new phases and reduces image noise. METHODS: Seven healthy volunteers were scanned with a 3.0 T MR scanner to visualize the internal carotid artery (ICA) system. PhyZiodynamics is a novel image-processing that interpolates images between phases to generate new phases and reduces image noise, and by increasing temporal resolution using PhyZiodynamics, inflow dynamic data (reference) were acquired by changing the labeling durations (100-2000 msec, 31 phases) in 4D-S-PACK. From this set of data, we selected seven time intervals to calculate interpolated time points with up to 61 intervals using ×10 for the generation of interpolated phases with PhyZiodynamics. In the denoising process of PhyZiodynamics, we processed the none, low, medium, high noise reduction dataset images. The time intensity curve (TIC), the contrast-to-noise ratio (CNR) were evaluated. In accelerating with CS-SENSE for 4D-S-PACK, 4D-S-PACK were scanned different SENSE or CS-SENSE acceleration factors: SENSE3, CS3-6. Signal intensity (SI), CNR, were evaluated for accelerating the 4D-S-PACK. With regard to arterial vascular visualization, we evaluated the middle cerebral artery (MCA: M1-4 segments). RESULTS: In increasing temporal resolution, the TIC showed a similar trend between the reference dataset and the interpolated dataset. As the noise reduction weight increased, the CNR of the interpolated dataset were increased compared to that of the reference dataset. In accelerating 4D-S-PACK, the SI values of the SENSE3 dataset and CS dataset with CS3-6 were no significant differences. The image noise increased with the increase of acceleration factor, and the CNR decreased with the increase of acceleration factor. Significant differences in CNR were observed between acceleration factor of SENSE3 and CS6 for the M1-4 (P < 0.05). Visualization of small arteries (M4) became less reliable in CS5 or CS6 images. Significant differences were found for the scores of M2, M3 and M4 segments between SENSE3 and CS6. CONCLUSION: With PhyZiodynamics and CS-SENSE in 4D-S-PACK, we were able to shorten the scan time while improving the temporal resolution.


Asunto(s)
Algoritmos , Angiografía por Resonancia Magnética , Humanos , Marcadores de Spin , Angiografía por Resonancia Magnética/métodos , Arteria Cerebral Media , Aceleración , Imagenología Tridimensional/métodos
18.
Ann Biomed Eng ; 52(5): 1335-1346, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38341399

RESUMEN

Blood pressure gradient ( Δ P ) across an aortic coarctation (CoA) is an important measurement to diagnose CoA severity and gauge treatment efficacy. Invasive cardiac catheterization is currently the gold-standard method for measuring blood pressure. The objective of this study was to evaluate the accuracy of Δ P estimates derived non-invasively using patient-specific 0D and 3D deformable wall simulations. Medical imaging and routine clinical measurements were used to create patient-specific models of patients with CoA (N = 17). 0D simulations were performed first and used to tune boundary conditions and initialize 3D simulations. Δ P across the CoA estimated using both 0D and 3D simulations were compared to invasive catheter-based pressure measurements for validation. The 0D simulations were extremely efficient ( ∼ 15 s computation time) compared to 3D simulations ( ∼ 30 h computation time on a cluster). However, the 0D Δ P estimates, unsurprisingly, had larger mean errors when compared to catheterization than 3D estimates (12.1 ± 9.9 mmHg vs 5.3 ± 5.4 mmHg). In particular, the 0D model performance degraded in cases where the CoA was adjacent to a bifurcation. The 0D model classified patients with severe CoA requiring intervention (defined as Δ P ≥ 20 mmHg) with 76% accuracy and 3D simulations improved this to 88%. Overall, a combined approach, using 0D models to efficiently tune and launch 3D models, offers the best combination of speed and accuracy for non-invasive classification of CoA severity.


Asunto(s)
Coartación Aórtica , Humanos , Coartación Aórtica/diagnóstico por imagen , Presión Sanguínea , Angiografía por Resonancia Magnética/métodos , Velocidad del Flujo Sanguíneo , Simulación por Computador
19.
ACS Appl Mater Interfaces ; 16(8): 9702-9712, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38363797

RESUMEN

Magnetic resonance angiography (MRA) contrast agents are extensively utilized in clinical practice due to their capability of improving the image resolution and sensitivity. However, the clinically approved MRA contrast agents have the disadvantages of a limited acquisition time window and high dose administration for effective imaging. Herein, albumin-coated gadolinium-based nanoparticles (BSA-Gd) were meticulously developed for in vivo ultrahigh-resolution MRA. Compared to Gd-DTPA, BSA-Gd exhibits a significantly higher longitudinal relaxivity (r1 = 76.7 mM-1 s-1), nearly 16-fold greater than that of Gd-DTPA, and an extended blood circulation time (t1/2 = 40 min), enabling a dramatically enhanced high-resolution imaging of microvessels (sub-200 µm) and low dose imaging (about 1/16 that of Gd-DTPA). Furthermore, the clinically significant fine vessels were successfully mapped in large mammals, including a circle of Willis, kidney and liver vascular branches, tumor vessels, and differentiated arteries from veins using dynamic contrast-enhanced MRA BSA-Gd, and have superior imaging capability and biocompatibility, and their clinical applications hold substantial promise.


Asunto(s)
Angiografía por Resonancia Magnética , Nanopartículas , Animales , Angiografía por Resonancia Magnética/métodos , Gadolinio DTPA , Medios de Contraste , Gadolinio , Imagen por Resonancia Magnética/métodos , Mamíferos
20.
PLoS One ; 19(2): e0297314, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38330070

RESUMEN

Cardiac MRI is a crucial tool for assessing congenital heart disease (CHD). However, its application remains challenging in young children when performed at 3T. The aim of this retrospective single center study was to compare a non-contrast free-breathing 2D CINE T1-weighted TFE-sequence with compressed sensing (FB 2D CINE CS T1-TFE) with 3D imaging for diagnostic accuracy of CHD, image quality, and vessel diameter measurements in sedated young children. FB 2D CINE CS T1-TFE was compared with a 3D non-contrast whole-heart sequence (3D WH) and 3D contrast-enhanced MR angiography (3D CE-MRA) at 3T in 37 CHD patients (20♂, 1.5±1.4 years). Two radiologists independently assessed image quality, type of CHD, and diagnostic confidence. Diameters and measures of contrast and sharpness of the aorta and pulmonary vessels were determined. A non-parametric multi-factorial approach was used to estimate diagnostic accuracy for the diagnosis of CHD. Linear mixed models were calculated to compare contrast and vessel sharpness. Krippendorff's alpha was determined to quantify vessel diameter agreement. FB 2D CINE CS T1-TFE was rated superior regarding image quality, diagnostic confidence, and diagnostic sensitivity for both intra- and extracardiac pathologies compared to 3D WH and 3D CE-MRA (all p<0.05). FB 2D CINE CS T1-TFE showed superior contrast and vessel sharpness (p<0.001) resulting in the highest proportion of measurable vessels (740/740; 100%), compared to 3D WH (530/620; 85.5%) and 3D CE-MRA (540/560; 96.4%). Regarding vessel diameter measurements, FB 2D CINE CS T1-TFE revealed the closest inter-reader agreement (Krippendorff's alpha: 0.94-0.96; 3D WH: 0.78-0.94; 3D CE-MRA: 0.76-0.93). FB 2D CINE CS T1-TFE demonstrates robustness at 3T and delivers high-quality diagnostic results to assess CHD in sedated young children. Its ability to function without contrast injection and respiratory compensation enhances ease of use and could encourage widespread adoption in clinical practice.


Asunto(s)
Medios de Contraste , Cardiopatías Congénitas , Niño , Humanos , Preescolar , Estudios Retrospectivos , Imagenología Tridimensional/métodos , Cardiopatías Congénitas/diagnóstico por imagen , Imagen por Resonancia Magnética , Angiografía por Resonancia Magnética/métodos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA