Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 710
Filtrar
1.
Sci Rep ; 14(1): 18420, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117724

RESUMEN

A zinc metallopeptidase neurolysin (Nln) processes diverse bioactive peptides to regulate signaling in the mammalian nervous system. To understand how Nln interacts with various peptides with dissimilar sequences, we determined crystal structures of Nln in complex with diverse peptides including dynorphins, angiotensin, neurotensin, and bradykinin. The structures show that Nln binds these peptides in a large dumbbell-shaped interior cavity constricted at the active site, making minimal structural changes to accommodate different peptide sequences. The structures also show that Nln readily binds similar peptides with distinct registers, which can determine whether the peptide serves as a substrate or a competitive inhibitor. We analyzed the activities and binding of Nln toward various forms of dynorphin A peptides, which highlights the promiscuous nature of peptide binding and shows how dynorphin A (1-13) potently inhibits the Nln activity while dynorphin A (1-8) is efficiently cleaved. Our work provides insights into the broad substrate specificity of Nln and may aid in the future design of small molecule modulators for Nln.


Asunto(s)
Dinorfinas , Neurotensina , Humanos , Especificidad por Sustrato , Dinorfinas/química , Dinorfinas/metabolismo , Neurotensina/química , Neurotensina/metabolismo , Metaloendopeptidasas/metabolismo , Metaloendopeptidasas/química , Metaloendopeptidasas/antagonistas & inhibidores , Unión Proteica , Cristalografía por Rayos X , Modelos Moleculares , Dominio Catalítico , Bradiquinina/química , Bradiquinina/metabolismo , Angiotensinas/metabolismo , Angiotensinas/química , Secuencia de Aminoácidos
2.
Inorg Chem ; 63(26): 12268-12280, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38877980

RESUMEN

His-Leu is a hydrolytic byproduct of angiotensin metabolism, whose concentration in the bloodstream could be at least micromolar. This encouraged us to investigate its Cu(II) binding properties and the concomitant redox reactivity. The Cu(II) binding constants were derived from isothermal titration calorimetry and potentiometry, while identities and structures of complexes were obtained from ultraviolet-visible, circular dichroism, and room-temperature electronic paramagnetic resonance spectroscopies. Four types of Cu(II)/His-Leu complexes were detected. The histamine-like complexes prevail at low pH. At neutral and mildly alkaline pH and low Cu(II):His-Leu ratios, they are superseded by diglycine-like complexes involving the deprotonated peptide nitrogen. At His-Leu:Cu(II) ratios of ≥2, bis-complexes are formed instead. Above pH 10.5, a diglycine-like complex containing the equatorially coordinated hydroxyl group predominates at all ratios tested. Cu(II)/His-Leu complexes are also strongly redox active, as demonstrated by voltammetric studies and the ascorbate oxidation assay. Finally, numeric competition simulations with human serum albumin, glycyl-histydyl-lysine, and histidine revealed that His-Leu might be a part of the low-molecular weight Cu(II) pool in blood if its abundance is >10 µM. These results yield further questions, such as the biological relevance of ternary complexes containing His-Leu.


Asunto(s)
Quelantes , Complejos de Coordinación , Cobre , Oxidación-Reducción , Cobre/química , Humanos , Quelantes/química , Quelantes/síntesis química , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Oligopéptidos/química , Angiotensinas/química , Angiotensinas/metabolismo , Concentración de Iones de Hidrógeno , Histidina/química , Estructura Molecular
3.
Microbes Infect ; 26(4): 105333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38570086

RESUMEN

Cerebral malaria (CM) induced by Plasmodium falciparum is a devastating neurological complication that may lead the patient to coma and death. This study aimed to protect Plasmodium-infected C57BL6 mice from CM by targeting the angiotensin II type 1 (AT1) receptor, which is considered the common connecting link between hypertension and CM. In CM, AT-1 mediates blood-brain barrier (BBB) damage through the overexpression of ß-catenin. The AT-1-inhibiting drugs, such as irbesartan and losartan, were evaluated for the prevention of CM. The effectiveness of these drugs was determined by the down regulation of ß-catenin, TCF, LEF, ICAM-1, and VCAM-1 in the drug-treated groups. The expression levels of VE-cadherin and vinculin, essential for the maintenance of BBB integrity, were found to be restored in the drug-treated groups. The pro-inflammatory cytokine levels were decreased, and the anti-inflammatory cytokine levels increased with the treatment. As a major highlight, the mean survival time of treated mice was found to be increased even in the absence of treatment with an anti-malarial agent. The combination of irbesartan or losartan with the anti-malarial agent α/ß-arteether has contributed to an 80% cure rate, which is higher than the 60% cure rate observed with α/ß-arteether alone treatment.


Asunto(s)
Modelos Animales de Enfermedad , Irbesartán , Malaria Cerebral , Ratones Endogámicos C57BL , Animales , Ratones , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/parasitología , Barrera Hematoencefálica/efectos de los fármacos , Citocinas/metabolismo , Irbesartán/farmacología , Irbesartán/uso terapéutico , Losartán/farmacología , Losartán/uso terapéutico , Malaria Cerebral/tratamiento farmacológico , Malaria Cerebral/parasitología , Receptor de Angiotensina Tipo 1/metabolismo , Angiotensinas/metabolismo
4.
Transl Neurodegener ; 13(1): 22, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622720

RESUMEN

The renin-angiotensin system (RAS) was classically considered a circulating hormonal system that regulates blood pressure. However, different tissues and organs, including the brain, have a local paracrine RAS. Mutual regulation between the dopaminergic system and RAS has been observed in several tissues. Dysregulation of these interactions leads to renal and cardiovascular diseases, as well as progression of dopaminergic neuron degeneration in a major brain center of dopamine/angiotensin interaction such as the nigrostriatal system. A decrease in the dopaminergic function induces upregulation of the angiotensin type-1 (AT1) receptor activity, leading to recovery of dopamine levels. However, AT1 receptor overactivity in dopaminergic neurons and microglial cells upregulates the cellular NADPH-oxidase-superoxide axis and Ca2+ release, which mediate several key events in oxidative stress, neuroinflammation, and α-synuclein aggregation, involved in Parkinson's disease (PD) pathogenesis. An intraneuronal antioxidative/anti-inflammatory RAS counteracts the effects of the pro-oxidative AT1 receptor overactivity. Consistent with this, an imbalance in RAS activity towards the pro-oxidative/pro-inflammatory AT1 receptor axis has been observed in the substantia nigra and striatum of several animal models of high vulnerability to dopaminergic degeneration. Interestingly, autoantibodies against angiotensin-converting enzyme 2 and AT1 receptors are increased in PD models and PD patients and contribute to blood-brain barrier (BBB) dysregulation and nigrostriatal pro-inflammatory RAS upregulation. Therapeutic strategies addressed to the modulation of brain RAS, by AT1 receptor blockers (ARBs) and/or activation of the antioxidative axis (AT2, Mas receptors), may be neuroprotective for individuals with a high risk of developing PD or in prodromal stages of PD to reduce progression of the disease.


Asunto(s)
Enfermedad de Parkinson , Sistema Renina-Angiotensina , Animales , Humanos , Antagonistas de Receptores de Angiotensina/farmacología , Angiotensinas/metabolismo , Presión Sanguínea , Encéfalo/metabolismo , Dopamina , Enfermedad de Parkinson/patología , Receptor de Angiotensina Tipo 1/metabolismo , Sistema Renina-Angiotensina/fisiología
5.
Int Immunopharmacol ; 130: 111669, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38387189

RESUMEN

OBJECTIVE: To investigate the impact of renin-angiotensin-aldosterone-system (RAAS) inhibitors on complement component 4 (C4) serum levels in patients with immunoglobulin A nephropathy (IgAN). METHODS: A total of 423 patients diagnosed with IgAN at Shanxi Provincial People's Hospital, China, between 1 January 2017 and 31 December 2021 were divided into two groups, a RAAS inhibitor group and a non-RAAS inhibitor group, for comparative analysis. RESULTS: The RAAS inhibitor group exhibited significantly increased C4 and eGFR levels and had a higher proportion of patients with hypertension compared with the non-RAAS inhibitor group. Serum C4 levels were positively correlated with 24-hour urine protein, serum C3 levels and blood uric acid levels but negatively correlated with eGFR levels. In addition, serum C4 levels were positively correlated with the severity of mesangial hypercellularity and interstitial/tubular injury. Through prognostic analysis, serum C4 was identified as an independent risk factor for the progression of IgAN. CONCLUSION: Renin-angiotensin-aldosterone-system inhibitors can increase serum C4 levels in patients with IgAN and may represent an independent risk factor for disease progression.


Asunto(s)
Glomerulonefritis por IGA , Sistema Renina-Angiotensina , Humanos , Glomerulonefritis por IGA/diagnóstico , Renina/metabolismo , Aldosterona , Complemento C4 , Angiotensinas/metabolismo
6.
Biochem Pharmacol ; 222: 116062, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369211

RESUMEN

The angiotensin AT2 receptor (AT2R), an important member of the "protective arm" of the renin-angiotensin system (RAS), has been recently defined as a therapeutic target in different pathological conditions. The AT2R activates complex signalling pathways linked to cellular proliferation, differentiation, anti-inflammation, antifibrosis, and induction or inhibition of apoptosis. The anti-inflammatory effect of AT2R activation is commonly associated with reduced fibrosis in different models. Current discoveries demonstrated a direct impact of AT2Rs on the regulation of cytokines, transforming growth factor beta1 (TGF-beta1), matrix metalloproteases (MMPs), and synthesis of the extracellular matrix components. This review article summarizes current knowledge on the AT2R in regard to immunity, inflammation and fibrosis in the heart and blood vessels. In particular, the differential influence of the AT2R on cardiovascular remodeling in preclinical models of myocardial infarction, heart failure and aneurysm formation are discussed. Overall, these studies demonstrate that AT2R stimulation represents a promising therapeutic approach to counteract myocardial and aortic damage in cardiovascular diseases.


Asunto(s)
Infarto del Miocardio , Sistema Renina-Angiotensina , Humanos , Infarto del Miocardio/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Miocardio/metabolismo , Angiotensinas/metabolismo , Fibrosis , Receptor de Angiotensina Tipo 1/metabolismo
7.
High Alt Med Biol ; 25(1): 77-88, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38241485

RESUMEN

Guo, Xinqi, Hongyu Ma, Ziye Cui, Qiyue Zhao, Ying Zhang, Lu Jia, Liping Zhang, Hui Guo, Xiangjian Zhang, Yi Zhang, Yue Guan, and Huijie Ma. Chronic intermittent hypobaric hypoxia reduces hypothalamic N-Methyl-d-Aspartate Receptor activity and sympathetic outflow in spontaneously hypertensive rats. High Alt Med Biol. 25:77-88, 2024. Objective: This study aims to determine the role of hypothalamic renin-angiotensin system (RAS) in the antihypertensive effect of chronic intermittent hypobaric hypoxia (CIHH). Methods: Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) received 35 days of hypobaric hypoxia simulating an altitude of 4,000 m, 5 h/day. The levels of RAS, blood pressure, and N-methyl-d-aspartate receptor (NMDAR) activities of hypothalamic paraventricular nucleus (PVN) presympathetic neurons from each group of rats were determined. Results: The systolic blood pressure, diastolic blood pressure, and mean arterial blood pressure (MAP) of SHRs significantly decreased from the third week of CIHH treatment. This blood pressure reduction effect could be maintained for at least 2 weeks after stopping the CIHH treatment. CIHH treatment also attenuated the decrease in MAP and renal sympathetic nerve activity induced by hexamethonium administration in SHRs, but not in WKY rats. Furthermore, CIHH reversed the increase in serum angiotensin (Ang)II concentration and the expression of PVN angiotensin-converting enzyme (ACE) and AngII type 1 (AT1) receptors, as well as the decrease in serum Ang1-7 concentration and the expression of PVN ACE2 and Mas receptors in SHRs. In addition, the administration of CIHH resulted in a reduction in the frequency of miniature excitatory postsynaptic currents and amplitude of NMDAR current in PVN presympathetic neurons of SHRs, which means that CIHH decreased the pre- and postsynaptic NMDAR activity of PVN presympathetic neurons in SHRs. However, pretreatment with A779 (a Mas receptor blocker) or AngII abrogated the above effects. Meanwhile, Ang1-7 pretreatment mimicked the CIHH effect on pre- and postsynaptic NMDAR activity of presympathetic neurons in SHRs. Conclusions: Our data indicate that CIHH reduces pre- and postsynaptic NMDAR activity of PVN presympathetic neurons, sympathetic outflow, and blood pressure by decreasing the activity of the ACE/AngII/AT1 axis and increasing the activity of ACE2/Ang1-7/Mas axis in the hypothalamus in hypertension.


Asunto(s)
Hipertensión , Receptores de N-Metil-D-Aspartato , Ratas , Animales , Ratas Endogámicas SHR , Receptores de N-Metil-D-Aspartato/metabolismo , Ratas Endogámicas WKY , Enzima Convertidora de Angiotensina 2/metabolismo , Hipotálamo , Hipertensión/etiología , Hipertensión/terapia , Presión Sanguínea/fisiología , Sistema Nervioso Simpático/metabolismo , Angiotensinas/metabolismo , Angiotensinas/farmacología
8.
Nutrition ; 120: 112333, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38271759

RESUMEN

OBJECTIVE: The aim was to investigate the intergenerational inheritance induced by a high-fat diet on sensitivity to insulin and leptin in the hypothalamic control of satiety in second-generation offspring, which were fed a control diet. METHODS: Progenitor rats were fed a high-fat or a control diet for 59 d until weaning. The first-generation and second-generation offspring were fed the control diet until 90 d of age. Body mass and adiposity index of the progenitors fed the high-fat diet and the second-generation offspring from progenitors fed the high-fat diet were evaluated as were the gene expression of DNA methyltransferase 3a, angiotensin-converting enzyme type 2, angiotensin II type 2 receptor, insulin and leptin signaling pathway (insulin receptor, leptin receptor, insulin receptor substrate 2, protein kinase B, signal transducer and transcriptional activator 3, pro-opiomelanocortin, and neuropeptide Agouti-related protein), superoxide dismutase activity, and the concentration of carbonyl protein and satiety-regulating neuropeptides, pro-opiomelanocortin and neuropeptide Agouti-related protein, in the hypothalamus. RESULTS: The progenitor group fed a high-fat diet showed increased insulin resistance and reduced insulin-secreting beta-cell function and reduced food intake, without changes in caloric intake. The second-generation offspring from progenitors fed a high-fat diet, compared with second-generation offspring from progenitors fed a control diet group, had decreased insulin-secreting beta-cell function and increased food and caloric intake, insulin resistance, body mass, and adiposity index. Furthermore, second-generation offspring from progenitors fed a high-fat diet had increased DNA methyltransferase 3a, neuropeptide Agouti-related protein, angiotensin II type 1 receptor, and nicotinamide adenine dinucleotide phosphate oxidase p47phox gene expression, superoxide dismutase activity, and neuropeptide Agouti-related protein concentration in the hypothalamus. In addition, there were reduced in gene expression of the insulin receptor, leptin receptor, insulin receptor substrate 2, pro-opiomelanocortin, angiotensin II type 2 receptor, angiotensin-converting enzyme type 2, and angiotensin-(1-7) receptor and pro-opiomelanocortin concentration in the second-generation offspring from progenitors fed the high-fat diet. CONCLUSIONS: Overall, progenitors fed a high-fat diet induced changes in the hypothalamic control of satiety of the second-generation offspring from progenitors fed the high-fat diet through intergenerational inheritance. These changes led to hyperphagia, alterations in the hypothalamic pathways of insulin, and leptin and adiposity index increase, favoring the occurrence of different cardiometabolic disorders in the second-generation offspring from progenitors fed the high-fat diet fed only with the control diet.


Asunto(s)
Resistencia a la Insulina , Neuropéptidos , Ratas , Animales , Leptina/metabolismo , Insulina/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Dieta Alta en Grasa/efectos adversos , Proteína Relacionada con Agouti/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo , Receptores de Leptina/genética , ADN Metiltransferasa 3A , Ratas Sprague-Dawley , Obesidad/genética , Obesidad/metabolismo , Hiperfagia/complicaciones , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Superóxido Dismutasa/metabolismo , Angiotensinas/metabolismo
9.
Biochimie ; 216: 90-98, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37839625

RESUMEN

Snake venoms are primarily composed of proteins and peptides, which selectively interact with specific molecular targets, disrupting prey homeostasis. Identifying toxins and the mechanisms involved in envenoming can lead to the discovery of new drugs based on natural peptide scaffolds. In this study, we used mass spectrometry-based peptidomics to sequence 197 peptides in the venom of Bothrops cotiara, including a novel 7-residue peptide derived from a snake venom metalloproteinase. This peptide, named Bc-7a, features a pyroglutamic acid at the N-terminal and a PFR motif at the C-terminal, homologous to bradykinin. Using FRET (fluorescence resonance energy transfer) substrate assays, we demonstrated that Bc-7a strongly inhibits the two domains of angiotensin converting enzyme (Ki < 1 µM). Our findings contribute to the repertoire of biologically active peptides from snake venoms capable of inhibiting angiotensin-converting enzyme (ACE), beyond current known structural motifs and precursors. In summary, we report a novel snake venom peptide with ACE inhibitory activity, suggesting its potential contribution to the hypotensive effect observed in envenomation.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Venenos de Crotálidos/química , Péptidos/química , Venenos de Serpiente/química , Bothrops/metabolismo , Metaloproteasas , Angiotensinas/metabolismo
10.
Hypertension ; 81(1): 6-16, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37449411

RESUMEN

ß-arrestins are a family of intracellular signaling proteins that play a key role in regulating the activity of G protein-coupled receptors. The angiotensin-II type 1 receptor is an important G protein-coupled receptor involved in the regulation of cardiovascular function and has been implicated in the progression of cardiovascular diseases. In addition to canonical G protein signaling, G protein-coupled receptors including the angiotensin-II type 1 receptor can signal via ß-arrestin. Dysregulation of ß-arrestin signaling has been linked to several cardiovascular diseases including hypertension, atherosclerosis, and heart failure. Understanding the role of ß-arrestins in these conditions is critical to provide new therapeutic targets for the treatment of cardiovascular disease. In this review, we will discuss the beneficial and maladaptive physiological outcomes of angiotensin-II type 1 receptor-dependent ß-arrestin activation in different cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , beta-Arrestinas , Arrestinas/metabolismo , Transducción de Señal , Receptor de Angiotensina Tipo 1/metabolismo , Angiotensinas/metabolismo , Arrestina beta 2/genética , Arrestina beta 2/metabolismo , beta-Arrestina 1/metabolismo , Angiotensina II/metabolismo
11.
Shock ; 60(5): 713-723, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37752084

RESUMEN

ABSTRACT: Hypertension seems to inevitably cause cardiac remodeling, increasing the mortality of patients. This study aimed to explore the molecular mechanism of CCAAT/enhancer-binding protein delta (CEBPD)-mediated oxidative stress and inflammation in hypertensive cardiac remodeling. The hypertensive murine model was established through angiotensin-II injection, and hypertensive mice underwent overexpressed CEBPD vector injection, cardiac function evaluation, and observation of histological changes. The cell model was established by angiotensin-II treatment and transfected with overexpressed CEBPD vector. Cell viability and surface area and oxidative stress (reactive oxygen species/superoxide dismutase/lactate dehydrogenase/malondialdehyde) were assessed, and inflammatory factors (TNF-α/IL-1ß/IL-6/IL-10) were determined both in vivo and in vitro . The levels of CEBPD, miR-96-5p, inositol 1,4,5-trisphosphate receptor 1 (IP3R), natriuretic peptide B, and natriuretic peptide A, collagen I, and collagen III in tissues and cells were determined. The binding relationships of CEBPD/miR-96-5p/IP3R 3' untranslated region were validated. CEBPD was reduced in cardiac tissue of hypertensive mice, and CEBPD upregulation improved cardiac function and attenuated fibrosis and hypertrophy, along with reductions of reactive oxygen species/lactate dehydrogenase/malondialdehyde/TNF-α/IL-1ß/IL-6 and increases in superoxide dismutase/IL-10. CEBPD enriched on the miR-96-5p promoter to promote miR-96-5p expression, whereas CEBPD and miR-96-5p negatively regulated IP3R. miR-96-5p silencing/IP3R overexpression reversed the alleviative role of CEBPD overexpression in hypertensive mice. In summary, CEBPD promoted miR-96-5p to negatively regulate IP3R expression to inhibit oxidative stress and inflammation, thereby alleviating hypertensive cardiac remodeling.


Asunto(s)
Hipertensión , MicroARNs , Humanos , Ratones , Animales , MicroARNs/genética , MicroARNs/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Interleucina-10/metabolismo , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Remodelación Ventricular/genética , Interleucina-6/metabolismo , Estrés Oxidativo , Inflamación/metabolismo , Hipertensión/genética , Péptidos Natriuréticos/metabolismo , Colágeno/metabolismo , Superóxido Dismutasa/metabolismo , Malondialdehído , Lactato Deshidrogenasas/metabolismo , Angiotensinas/metabolismo , Apoptosis
12.
Biotechnol Bioeng ; 120(12): 3602-3611, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37691178

RESUMEN

Currently, there is a great need for the development of three-dimensional (3D) in vitro lung models. Particularly, the production of a suitable 3D model of pulmonary epithelium for understanding the pathophysiology of diseases such as the COVID-19 must consider the tissue architecture and presence, for example, of the angiotensin-converting enzyme-2 (ACE-2) in the cells. Different polymeric membranes are being used to support cell culturing, especially of lung cells, however, there is still no information about the culture of these cells onto bacterial nanocellulose (BNC) matrices. We have used the BNC matrix CellFate® as a support for the assembly of a 3D in vitro model of lung epithelium, composed of human lung fibroblasts (HLF) and lung adenocarcinoma cells (CALU-3). CellFate® matrices were made from bacterial fermentation resulting in a natural and biocompatible biopolymer. Cells were cultured onto CellFate® and maintained in a 5% CO2 humidified atmosphere at 37°C. Cell viability was assessed by the resazurin method The samples were, then, exposed to the air-liquid interface (ALI), and histologically analyzed. ACE-2 activity was verified on the hydrolyze of the fluorogenic substrate Mca-APK(Dnp)-OH, and its presence was evaluated by flow cytometry. The expression of the anionic transporter SLCO3A1 was evaluated by qPCR. Cell viability analysis indicates that CellFate® was not toxic to these cells. By flow cytometry, the presence of the ACE-2 was identified in the CALU-3 cells surface corroborating the results obtained from enzymatic activity analysis. The SLCO3A1 transporter expression was identified in cells cultured onto CellFate®, but not in cells cultured onto the transwell (control). CALU-3 cells cultivated onto CellFate® resulted in a pseudostratified organization, a typical morphology of the human respiratory tract epithelium. The current model opens perspectives for studies involving physiological characterization, improving its relevance for the understanding of the pathophysiology of diseases as well as the response to drugs.


Asunto(s)
Células Epiteliales , Pulmón , Humanos , Células Epiteliales/metabolismo , Células Cultivadas , Supervivencia Celular , Angiotensinas/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 325(4): H837-H855, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37565265

RESUMEN

The lymphatic system is an integral part of the circulatory system and plays an important role in the fluid homeostasis of the human body. Accumulating evidence has recently suggested the involvement of lymphatic dysfunction in the pathogenesis of cardio-reno-vascular (CRV) disease. However, how the sophisticated contractile machinery of lymphatic vessels is modulated and, possibly impaired in CRV disease, remains largely unknown. In particular, little attention has been paid to the effect of the renin-angiotensin-system (RAS) on lymphatics, despite the high concentration of RAS mediators that these tissue-draining vessels are exposed to and the established role of the RAS in the development of classic microvascular dysfunction and overt CRV disease. We herein review recent studies linking RAS to lymphatic function and/or plasticity and further highlight RAS-specific signaling pathways, previously shown to drive adverse arterial remodeling and CRV organ damage that have potential for direct modulation of the lymphatic system.


Asunto(s)
Vasos Linfáticos , Renina , Humanos , Renina/metabolismo , Sistema Renina-Angiotensina , Riñón/metabolismo , Angiotensinas/metabolismo , Vasos Linfáticos/metabolismo
14.
Hypertension ; 80(11): 2333-2344, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37646167

RESUMEN

BACKGROUND: Cushing syndrome (CS) is a rare disease caused by excess cortisol levels with high cardiovascular morbidity and mortality. Hypertension in CS promotes hypercortisolism-associated cardiovascular events. Adipose tissue is a highly plastic tissue with most cell types strongly affected by the excess cortisol exposure. We hypothesized that the molecular and cellular changes of periadrenal adipose tissue in response to cortisol excess impact systemic blood pressure levels in patients with CS. METHODS: We investigated gene expression signatures in periadrenal adipose tissue from patients with adrenal CS collected during adrenal surgery. RESULTS: During active CS we observed a downregulation of gene programs associated with inflammation in periadrenal adipose tissue. In addition, we observed a clustering of the patients based on tissue gene expression profiles into 2 groups that differed in blood pressure levels (CS low blood pressure and CS high blood pressure). The 2 clusters showed significant differences in gene expression pattens of the renin-angiotensin-aldosterone-system. Renin was the strongest regulated gene compared with control patients and its expression correlated with increased blood pressure observed in our patients with CS. In the CS high blood pressure group, systemic renin plasma levels were suppressed indicative of an abnormal blood pressure associated with periadrenal adipose tissue renin-angiotensin-aldosterone-system activation. CONCLUSIONS: Here, we show for the first time a relevant association of the local renin-angiotensin-aldosterone-system and systemic blood pressure levels in patients with CS. Patients from the CS high blood pressure group still had increased blood pressure levels after 6 months in remission, highlighting the importance of local tissue effects on long-term systemic effects observed in CS.


Asunto(s)
Síndrome de Cushing , Hipertensión , Humanos , Renina , Síndrome de Cushing/complicaciones , Síndrome de Cushing/genética , Transcriptoma , Aldosterona , Hidrocortisona , Sistema Renina-Angiotensina/fisiología , Hipertensión/metabolismo , Presión Sanguínea/genética , Tejido Adiposo , Angiotensinas/metabolismo
15.
Am J Physiol Cell Physiol ; 325(4): C940-C950, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37642238

RESUMEN

Abdominal aortic aneurysms (AAAs) are asymptomatic vascular diseases that have life-threatening outcomes. Smooth muscle cell (SMC) dysfunction plays an important role in AAA development. The contribution of non-coding genome, specifically the role of long non-coding RNAs (lncRNAs) in SMC dysfunction, is relatively unexplored. We investigated the role of lncRNA TUG1 in SMC dysfunction. To identify potential lncRNAs relevant to SMC functionality, lncRNA profiling was performed in angiotensin-II-treated SMCs. AAA was induced by angiotensin-II treatment in mice. Transcriptional regulation of TUG1 was studied using promoter luciferase and chromatin-immuno-precipitation experiments. Gain-or-loss-of-function experiments were performed in vitro to investigate TUG1-mediated regulation of SMC function. Immunoprecipitation experiments were conducted to elucidate the mechanism underlying TUG1-mediated SMC dysfunction. TUG1 was upregulated in SMCs following angiotensin-II treatment. Similarly, TUG1 levels were elevated in abdominal aorta in a mouse model of angiotensin-II-induced AAA. Further investigations showed that angiotensin-II-induced TUG1 expression could be suppressed by inhibiting Notch-signaling pathway, both in vitro and in mouse AAA model and that TUG1 is a direct transcriptional target of the Notch pathway. In aneurysmal tissues, TUG1 expression was inversely correlated with the expression of SMC contractile genes. Overexpression of TUG1 repressed SMC differentiation in vitro, whereas siRNA/shRNA-mediated TUG1 knockdown showed an opposite effect. Mechanistically, TUG1 interacts with transcriptional repressor KLF4 and facilitates its recruitment to myocardin promoter ultimately leading to the repression of SMC differentiation. In summary, our study uncovers a novel role for the lncRNA TUG1 wherein it modulates SMC differentiation via the KLF4-myocardin axis, which may have potential implications in AAA development.NEW & NOTEWORTHY TUG1 is an angiotensin-II-induced long noncoding RNA that mediates smooth muscle cell (SMC) dysfunction through interaction with transcriptional repressor KLF4.


Asunto(s)
Miocitos del Músculo Liso , ARN Largo no Codificante , Animales , Ratones , Angiotensinas/metabolismo , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Músculo Liso/metabolismo , Miocitos del Músculo Liso/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo
16.
Adv Pharmacol ; 98: 111-144, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37524485

RESUMEN

Renin-angiotensin system (RAS) plays an indispensable role in regulating blood pressure through its effects on fluid and electrolyte balance. As an aside, cumulative evidence from experimental to clinical studies supports the notion that dysregulation of RAS contributes to the pro-inflammatory, pro-oxidative, and pro-fibrotic processes that occur in pulmonary diseases like asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute lung injury (ALI). Pharmacological intervention of the various RAS components can be a novel therapeutic strategy for the treatment of these respiratory diseases. In this chapter, we first give a recent update on the RAS, and then compile, review, and analyse recent reports on targeting RAS components as treatments for respiratory diseases. Inhibition of the pro-inflammatory renin, angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and Ang II type 1 receptor (AT1R) axis, and activation of the protective ACE2, AT2R, Ang (1-7), and Mas receptor axis have demonstrated varying degrees of efficacies in experimental respiratory disease models or in human trials. The newly identified alamandine/Mas-related G-protein-coupled receptor member D pathway has shown some therapeutic promise as well. However, our understanding of the RAS ligand-and-receptor interactions is still inconclusive, and the modes of action and signaling cascade mediating the newly identified RAS receptors remain to be better characterized. Clinical data are obviously lacking behind the promising pre-clinical findings of certain well-established molecules targeting at different pathways of the RAS in respiratory diseases. Translational human studies should be the focus for RAS drug development in lung diseases in the next decade.


Asunto(s)
Sistema Renina-Angiotensina , Enfermedades Respiratorias , Humanos , Sistema Renina-Angiotensina/fisiología , Transducción de Señal , Fibrosis , Angiotensinas/metabolismo , Angiotensinas/farmacología , Angiotensina II/metabolismo , Angiotensina II/farmacología , Angiotensina I/metabolismo , Angiotensina I/farmacología , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Receptor de Angiotensina Tipo 1/metabolismo
17.
J Dairy Sci ; 106(7): 4502-4515, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37164857

RESUMEN

Consumers' growing interest in fermented dairy foods necessitates research on a wide array of lactic acid bacterial strains to be explored and used. This study aimed to investigate the differences in the proteolytic capacity of Lactobacillus helveticus strains B1929 and ATCC 15009 on the fermentation of commercial ultra-pasteurized (UHT) skim milk and reconstituted nonfat dried milk powder (at a comparable protein concentration, 4%). The antihypertensive properties of the fermented milk, measured by angiotensin-I-converting enzyme inhibitory (ACE-I) activity, were compared. The B1929 strain lowered the pH of the milk to 4.13 ± 0.09 at 37°C after 24 h, whereas ATCC 15009 needed 48 h to drop the pH to 4.70 ± 0.18 at 37°C. Two soluble protein fractions, one (CFS1) obtained after fermentation (acidic conditions) and the other (CFS2) after the neutralization (pH 6.70) of the pellet from CFS1 separation, were analyzed for d-/l-lactic acid production, protein concentration, the degree of protein hydrolysis, and ACE-I activity. The CFS1 fractions, dominated by whey proteins, demonstrated a greater degree of protein hydrolysis (7.9%) than CFS2. On the other hand, CFS2, mainly casein proteins, showed a higher level of ACE-I activity (33.8%) than CFS1. Significant differences were also found in the d- and l-lactic acid produced by the UHT milk between the 2 strains. These results attest that milk casein proteins possessed more detectable ACE-I activity than whey fractions, even without a measurable degree of hydrolysis. Findings from this study suggest that careful consideration must be given when selecting the bacterial strain and milk substrate for fermentation.


Asunto(s)
Lactobacillus helveticus , Leche , Animales , Leche/química , Lactobacillus helveticus/química , Hidrólisis , Polvos/análisis , Caseínas/análisis , Temperatura , Inhibidores de la Enzima Convertidora de Angiotensina/análisis , Proteínas de la Leche/análisis , Fermentación , Proteína de Suero de Leche/análisis , Angiotensinas/análisis , Angiotensinas/metabolismo
18.
Cardiovasc Res ; 119(9): 1825-1841, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37225143

RESUMEN

AIMS: The metabolic failure of macrophages to adequately process lipid is central to the aetiology of atherosclerosis. Here, we examine the role of macrophage angiotensin-converting enzyme (ACE) in a mouse model of PCSK9-induced atherosclerosis. METHODS AND RESULTS: Atherosclerosis in mice was induced with AAV-PCSK9 and a high-fat diet. Animals with increased macrophage ACE (ACE 10/10 mice) have a marked reduction in atherosclerosis vs. WT mice. Macrophages from both the aorta and peritoneum of ACE 10/10 express increased PPARα and have a profoundly altered phenotype to process lipids characterized by higher levels of the surface scavenger receptor CD36, increased uptake of lipid, increased capacity to transport long chain fatty acids into mitochondria, higher oxidative metabolism and lipid ß-oxidation as determined using 13C isotope tracing, increased cell ATP, increased capacity for efferocytosis, increased concentrations of the lipid transporters ABCA1 and ABCG1, and increased cholesterol efflux. These effects are mostly independent of angiotensin II. Human THP-1 cells, when modified to express more ACE, increase expression of PPARα, increase cell ATP and acetyl-CoA, and increase cell efferocytosis. CONCLUSION: Increased macrophage ACE expression enhances macrophage lipid metabolism, cholesterol efflux, efferocytosis, and it reduces atherosclerosis. This has implications for the treatment of cardiovascular disease with angiotensin II receptor antagonists vs. ACE inhibitors.


Asunto(s)
Aterosclerosis , Proproteína Convertasa 9 , Humanos , Animales , Ratones , Proproteína Convertasa 9/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Metabolismo de los Lípidos , Colesterol/metabolismo , Macrófagos/metabolismo , Aterosclerosis/genética , Aterosclerosis/prevención & control , Angiotensinas/metabolismo , Adenosina Trifosfato/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo
19.
Diabetes Metab J ; 47(4): 487-499, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37096378

RESUMEN

BACKGRUOUND: Diabetes mellitus is one of the most common chronic diseases worldwide, and cardiovascular disease is the leading cause of morbidity and mortality in diabetic patients. Diabetic cardiomyopathy (DCM) is a phenomenon characterized by a deterioration in cardiac function and structure, independent of vascular complications. Among many possible causes, the renin-angiotensin-aldosterone system and angiotensin II have been proposed as major drivers of DCM development. In the current study, we aimed to investigate the effects of pharmacological activation of angiotensin-converting enzyme 2 (ACE2) on DCM. METHODS: The ACE2 activator diminazene aceturate (DIZE) was administered intraperitoneally to male db/db mice (8 weeks old) for 8 weeks. Transthoracic echocardiography was used to assess cardiac mass and function in mice. Cardiac structure and fibrotic changes were examined using histology and immunohistochemistry. Gene and protein expression levels were examined using quantitative reverse transcription polymerase chain reaction and Western blotting, respectively. Additionally, RNA sequencing was performed to investigate the underlying mechanisms of the effects of DIZE and identify novel potential therapeutic targets for DCM. RESULTS: Echocardiography revealed that in DCM, the administration of DIZE significantly improved cardiac function as well as reduced cardiac hypertrophy and fibrosis. Transcriptome analysis revealed that DIZE treatment suppresses oxidative stress and several pathways related to cardiac hypertrophy. CONCLUSION: DIZE prevented the diabetes mellitus-mediated structural and functional deterioration of mouse hearts. Our findings suggest that the pharmacological activation of ACE2 could be a novel treatment strategy for DCM.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Ratones , Masculino , Animales , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Cardiomiopatías Diabéticas/tratamiento farmacológico , Estrés Oxidativo , Cardiomegalia , Angiotensinas/metabolismo
20.
Chem Biol Interact ; 380: 110507, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37120126

RESUMEN

Oxidative stress and inflammation play a pivotal role in the pathogenesis of diabetic nephropathy (DN). Local renin-angiotensin systems (RAS) contribute to the pathogenesis and progression of DN by exacerbating oxidative stress and inflammation.Gentisic acid (GA), a phenolic compound and also a metabolite of aspirin, is reported to possess antioxidant and anti-inflammatory properties. However, the protective effects of GA against DN remain to be elucidated. Nicotinamide (120 mg/kg) and streptozotocin (65 mg/kg) were used to induce diabetes in male mice. Oral administration of GA once daily for 2 weeks (100 mg/kg) ameliorated diabetes-induced renal injury by reducing plasma creatinine, urea, blood urea nitrogen, and urinary albuminuria levels. Diabetic mice showed a significant increase in total oxidant status and malondialdehyde, along with decreased catalase, superoxide dismutase, and glutathione peroxidase in the kidney tissue, which was ameliorated in the GA-treated mice. Histopathological analysis showed that GA treatment reduced diabetes-induced renal injury. Furthermore, GA treatment was associated with the downregulation of miR-125b, nuclear factor kappa beta (NF-кB), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1ß), and upregulation of interleukin-10 (IL-10), miR-200a, and nuclear factor erythroid 2-related factor 2 (Nrf2) in the renal tissue. GA treatment also downregulated angiotensin-converting enzyme 1 (ACE1), angiotensin II receptor 1 (AT1R), and NADPH oxidase 2 (NOX 2) and upregulated angiotensin-converting enzyme 2 (ACE2). In conclusion, the ameliorative effects of GA against DN may be attributed to its powerful antioxidant and anti-inflammatory properties through the downregulation of NF-кB, upregulation of Nrf2, and modulation of RAS in renal tissue.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , MicroARNs , Ratones , Masculino , Animales , Nefropatías Diabéticas/patología , FN-kappa B/metabolismo , Estreptozocina/toxicidad , Sistema Renina-Angiotensina , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/metabolismo , Niacinamida/farmacología , Niacinamida/uso terapéutico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Riñón , Estrés Oxidativo , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo , MicroARNs/metabolismo , Angiotensinas/metabolismo , Angiotensinas/farmacología , Angiotensinas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA