Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.141
Filtrar
1.
Behav Pharmacol ; 35(6): 351-365, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39051902

RESUMEN

Diazepam administration has been shown to influence the release of histamine in various brain areas involved in motor behavior. Therefore, the present study explored the plausible regulatory role of the central histaminergic system in diazepam-induced deficits in motor performance in mice using the rota-rod and beam walking tests. In this study, several doses of diazepam (0.5, 1, 2, and 3 mg/kg, i.p.) were assessed in mice for changes in motor performance on the rota-rod and beam walking test. In addition, the brain histamine levels were determined after diazepam administration, and the diazepam-induced motor deficits were assessed in mice, pretreated centrally (intracerebroventricular) with histaminergic agents such as histamine (0.1, 10 µg), histamine precursor (L-histidine: 0.1, 2.5 µg), histamine neuronal releaser/H 3 receptor antagonist (thioperamide: 0.5, 10 µg), H 1 and H 2 receptor agonist [2-(3-trifluoromethylphenyl) histamine (FMPH: 0.1, 6.5 µg; amthamine: 0.1, 5 µg)/antagonist (H 1 : cetirizine 0.1 µg) and (H 2 : ranitidine: 50 µg)]. Results indicate that mice treated with diazepam at doses 1, 2 mg/kg, i.p. significantly increased the brain histamine levels. Moreover, in mice pretreated with histaminergic transmission-enhancing agents, the diazepam (2 mg/kg, i.p.)-induced motor incoordination was significantly reversed. Contrastingly, diazepam (1 mg/kg, i.p.) in its subeffective dose produced significant motor deficits in mice preintracerebroventricular injected with histamine H 1 and H 2 receptor antagonists on both the employed tests. Therefore, it is postulated that endogenous histamine operates via H 1 and H 2 receptor activation to alleviate the motor-impairing effects of diazepam.


Asunto(s)
Diazepam , Histamina , Animales , Diazepam/farmacología , Ratones , Histamina/farmacología , Histamina/metabolismo , Masculino , Relación Dosis-Respuesta a Droga , Actividad Motora/efectos de los fármacos , Caminata , Agonistas de los Receptores Histamínicos/farmacología , Prueba de Desempeño de Rotación con Aceleración Constante , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/farmacología , Histidina/farmacología
2.
mBio ; 15(8): e0108824, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38953634

RESUMEN

Numerous host factors, in addition to human angiotensin-converting enzyme 2 (hACE2), have been identified as coreceptors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), demonstrating broad viral tropism and diversified druggable potential. We and others have found that antihistamine drugs, particularly histamine receptor H1 (HRH1) antagonists, potently inhibit SARS-CoV-2 infection. In this study, we provided compelling evidence that HRH1 acts as an alternative receptor for SARS-CoV-2 by directly binding to the viral spike protein. HRH1 also synergistically enhanced hACE2-dependent viral entry by interacting with hACE2. Antihistamine drugs effectively prevent viral infection by competitively binding to HRH1, thereby disrupting the interaction between the spike protein and its receptor. Multiple inhibition assays revealed that antihistamine drugs broadly inhibited the infection of various SARS-CoV-2 mutants with an average IC50 of 2.4 µM. The prophylactic function of these drugs was further confirmed by authentic SARS-CoV-2 infection assays and humanized mouse challenge experiments, demonstrating the therapeutic potential of antihistamine drugs for combating coronavirus disease 19.IMPORTANCEIn addition to human angiotensin-converting enzyme 2, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can utilize alternative cofactors to facilitate viral entry. In this study, we discovered that histamine receptor H1 (HRH1) not only functions as an independent receptor for SARS-CoV-2 but also synergistically enhances ACE2-dependent viral entry by directly interacting with ACE2. Further studies have demonstrated that HRH1 facilitates the entry of SARS-CoV-2 by directly binding to the N-terminal domain of the spike protein. Conversely, antihistamine drugs, primarily HRH1 antagonists, can competitively bind to HRH1 and thereby prevent viral entry. These findings revealed that the administration of repurposable antihistamine drugs could be a therapeutic intervention to combat coronavirus disease 19.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Receptores Histamínicos H1 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Animales , Enzima Convertidora de Angiotensina 2/metabolismo , Ratones , Internalización del Virus/efectos de los fármacos , Receptores Histamínicos H1/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/virología , COVID-19/metabolismo , Células HEK293 , Tratamiento Farmacológico de COVID-19 , Receptores Virales/metabolismo , Unión Proteica , Antagonistas de los Receptores Histamínicos/farmacología , Antivirales/farmacología
3.
mBio ; 15(8): e0169724, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39037273

RESUMEN

Numerous coreceptors have been shown to facilitate hACE2-dependent or hACE2-independent infection by SARS-CoV-2. A recent study published in mBio by Yu et al. showed that the histamine receptor H1 (HRH1) functions as an alternative receptor for SARS-CoV-2 via direct binding to viral spike proteins (F. Yu, X. Liu, H. Ou, X. Li, et al., mBio e01088-24, 2024, https://doi.org/10.1128/mbio.01088-24). Furthermore, they present compelling evidence that antihistamine drugs targeting HRH1 potently inhibit SARS-CoV-2 entry. This study highlights the therapeutic potential of repurposable antihistamines against COVID-19.


Asunto(s)
Reposicionamiento de Medicamentos , SARS-CoV-2 , Internalización del Virus , SARS-CoV-2/efectos de los fármacos , Humanos , Internalización del Virus/efectos de los fármacos , Tratamiento Farmacológico de COVID-19 , Antagonistas de los Receptores Histamínicos/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Antivirales/farmacología , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H1/genética , COVID-19/virología , Receptores Virales/metabolismo
4.
Dalton Trans ; 53(24): 10126-10141, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38817206

RESUMEN

Bilastine (BLA), 2-(4-(2-(4-(1-(2-ethoxyethyl)-1H-benzo[d]imidazole-2-yl)-piperidin-1-yl)-ethyl)-phenyl)-2-methylpropanoic acid, is an active antihistamine drug. With the idea of repurposing drugs from the existing pool of 'active' pharmaceutical ingredients, the therapeutic potency of bilastine as an anticancer agent was investigated via the tailored synthesis of a metal-based anticancer drug formulation of the type [BLA(phen)2M(II)]+·X-, where M = Co, Cu, and Zn and X- = NO3 and ClO4. The synthesized metal-based chemotherapeutics derived from the bilastine drug that acts as a ligand were thoroughly characterized using spectroscopic techniques, namely, UV-vis, FT-IR, and EPR (in the case of 1 and 2); 1H-NMR and 13C-NMR (in the case of 3); ESI-MS and single-crystal X-ray diffraction studies. Comprehensive biological studies (DNA binding, cleavage, and cytotoxic activity) using various biophysical and gel electrophoretic methods were carried out to validate their potential as anticancer agents. The cytotoxic activity of 'therapeutically promising' copper(II)-based drug candidate 2 was evaluated against MCF-7, MBA-MD-231, HeLa, HepG2, and Mia-PaCa-2 cancer cells via an SRB assay, and the results demonstrated 2 as a potent anticancer agent at low nanomolar concentrations against all tested cancer cells, preferably with a much superior anticancer efficacy against human pancreatic cancer cells.


Asunto(s)
Antineoplásicos , Cobalto , Complejos de Coordinación , Cobre , Reposicionamiento de Medicamentos , Zinc , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Cobre/química , Cobre/farmacología , Zinc/química , Zinc/farmacología , Cristalografía por Rayos X , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Cobalto/química , Cobalto/farmacología , Modelos Moleculares , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Bencimidazoles/química , Bencimidazoles/farmacología , Bencimidazoles/síntesis química , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Piperidinas/química , Piperidinas/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Antagonistas de los Receptores Histamínicos/química , Antagonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/síntesis química
5.
Bioorg Chem ; 147: 107387, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643561

RESUMEN

Histamine 4 receptor (H4R), the most recently identified subtype of histamine receptor, primarily induces inflammatory reactions upon activation. Several H4R antagonists have been developed for the treatment of inflammatory bowel disease (IBD) and atopic dermatitis (AD), but their use has been limited by adverse side effects, such as a short half-life and toxicity. Natural products, as an important source of anti-inflammatory agents, offer minimal side effects and reduced toxicity. This work aimed to identify novel H4R antagonists from natural products. An H4R target-pathway model deconvoluted downstream Gi and MAPK signaling pathways was established utilizing cellular label-free integrative pharmacology (CLIP), on which 148 natural products were screened. Cryptotanshinone was identified as selective H4R antagonist, with an IC50 value of 11.68 ± 1.30 µM, which was verified with Fluorescence Imaging Plate Reader (FLIPR) and Cellular Thermal Shift (CTS) assays. The kinetic binding profile revealed the noncompetitive antagonistic property of cryptotanshinone. Two allosteric binding sites of H4R were predicted using SiteMap, Fpocket and CavityPlus. Subsequent molecular docking and dynamics simulation indicated that cryptotanshinone interacts with H4R at a pocket formed by the outward interfaces between TM3/4/5, potentially representing a new allosteric binding site for H4R. Overall, this study introduced cryptotanshinone as a novel H4R antagonist, offering promise as a new hit for drug design of H4R antagonist. Additionally, this study provided a novel screening model for the discovery of H4R antagonists.


Asunto(s)
Productos Biológicos , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Receptores Histamínicos H4 , Humanos , Productos Biológicos/química , Productos Biológicos/farmacología , Receptores Histamínicos H4/antagonistas & inhibidores , Receptores Histamínicos H4/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Fenantrenos/farmacología , Fenantrenos/química , Antagonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/química , Simulación del Acoplamiento Molecular , Fenotipo
6.
Anal Chem ; 96(17): 6599-6608, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38640514

RESUMEN

Antihistamines relieve allergic symptoms by inhibiting the action of histamine. Further understanding of antihistamine transmembrane mechanisms and optimizing the selectivity and real-time monitoring capabilities of drug sensors is necessary. In this study, a micrometer liquid/liquid (L/L) interfacial sensor has served as a biomimetic membrane to investigate the mechanism of interfacial transfer of five antihistamines, i.e., clemastine (CLE), cyproheptadine (CYP), epinastine (EPI), desloratadine (DSL), and cetirizine (CET), and realize the real-time determinations. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques have been used to uncover the electrochemical transfer behavior of the five antihistamines at the L/L interface. Additionally, finite element simulations (FEMs) have been employed to reveal the thermodynamics and kinetics of the process. Visualization of antihistamine partitioning in two phases at different pH values can be realized by ion partition diagrams (IPDs). The IPDs also reveal the transfer mechanism at the L/L interface and provide effective lipophilicity at different pH values. Real-time determinations of these antihistamines have been achieved through potentiostatic chronoamperometry (I-t), exhibiting good selectivity with the addition of nine common organic or inorganic compounds in living organisms and revealing the potential for in vivo pharmacokinetics. Besides providing a satisfactory surrogate for studying the transmembrane mechanism of antihistamines, this work also sheds light on micro- and nano L/L interfacial sensors for in vivo analysis of pharmacokinetics at a single-cell or single-organelle level.


Asunto(s)
Cetirizina , Clemastina , Ciproheptadina , Imidazoles , Loratadina , Loratadina/análogos & derivados , Loratadina/farmacología , Loratadina/análisis , Loratadina/química , Ciproheptadina/farmacología , Ciproheptadina/análogos & derivados , Ciproheptadina/análisis , Cetirizina/análisis , Cetirizina/farmacología , Cetirizina/química , Clemastina/análisis , Clemastina/farmacología , Clemastina/metabolismo , Antagonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/química , Antagonistas de los Receptores Histamínicos/análisis , Antagonistas de los Receptores Histamínicos/metabolismo , Técnicas Electroquímicas/métodos , Biomimética , Dibenzazepinas/farmacología , Dibenzazepinas/química
7.
Biochem Pharmacol ; 223: 116164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531422

RESUMEN

Cancer morbimortality is still a great concern despite advances in research and therapies. Histamine and its receptors' ligands can modulate different biological responses according to the cell type and the receptor subtype involved. Besides the wide variety of histamine functions in normal tissues, diverse roles in the acquisition of hallmarks of cancer such as sustained proliferative signaling, resistance to cell death, angiogenesis, metastasis, altered immunity and modified microenvironment have been described. This review summarizes the present knowledge of the various roles of histamine H2 receptor (H2R) ligands in neoplasias. A bioinformatic analysis of human tumors showed dissimilar results in the expression of the H2R gene according to tumor type when comparing malignant versus normal tissues. As well, the relationship between patients' survival parameters and H2R gene expression levels also varied, signaling important divergences in the role of H2R in neoplastic progression in different cancer types. Revised experimental evidence showed multiple effects of H2R antihistamines on several of the cited hallmarks of cancer. Interventional and retrospective clinical studies evaluated different H2R antihistamines in cancer patients with two main adjuvant uses: improving antitumor efficacy (which includes regulation of immune response) and preventing toxic adverse effects produced by chemo or radiotherapy. While there is a long path to go, research on H2R antihistamines may provide new opportunities for developing more refined combination therapeutic strategies for certain cancer types to improve patients' survival and health-related quality of life.


Asunto(s)
Histamina , Neoplasias , Humanos , Histamina/metabolismo , Estudios Retrospectivos , Calidad de Vida , Antagonistas de los Receptores H2 de la Histamina , Antagonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/uso terapéutico , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
8.
Nat Commun ; 15(1): 2493, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509098

RESUMEN

The histamine H4 receptor (H4R) plays key role in immune cell function and is a highly valued target for treating allergic and inflammatory diseases. However, structural information of H4R remains elusive. Here, we report four cryo-EM structures of H4R/Gi complexes, with either histamine or synthetic agonists clobenpropit, VUF6884 and clozapine bound. Combined with mutagenesis, ligand binding and functional assays, the structural data reveal a distinct ligand binding mode where D943.32 and a π-π network determine the orientation of the positively charged group of ligands, while E1825.46, located at the opposite end of the ligand binding pocket, plays a key role in regulating receptor activity. The structural insight into H4R ligand binding allows us to identify mutants at E1825.46 for which the agonist clobenpropit acts as an inverse agonist and to correctly predict inverse agonism of a closely related analog with nanomolar potency. Together with the findings regarding receptor activation and Gi engagement, we establish a framework for understanding H4R signaling and provide a rational basis for designing novel antihistamines targeting H4R.


Asunto(s)
Agonismo Inverso de Drogas , Histamina , Imidazoles , Tiourea/análogos & derivados , Histamina/metabolismo , Receptores Histamínicos H4 , Receptores Acoplados a Proteínas G/metabolismo , Ligandos , Receptores Histamínicos/metabolismo , Antagonistas de los Receptores Histamínicos/farmacología
9.
Nat Commun ; 15(1): 84, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167898

RESUMEN

Histamine receptors are a group of G protein-coupled receptors (GPCRs) that play important roles in various physiological and pathophysiological conditions. Antihistamines that target the histamine H1 receptor (H1R) have been widely used to relieve the symptoms of allergy and inflammation. Here, to uncover the details of the regulation of H1R by the known second-generation antihistamines, thereby providing clues for the rational design of newer antihistamines, we determine the cryo-EM structure of H1R in the apo form and bound to different antihistamines. In addition to the deep hydrophobic cavity, we identify a secondary ligand-binding site in H1R, which potentially may support the introduction of new derivative groups to generate newer antihistamines. Furthermore, these structures show that antihistamines exert inverse regulation by utilizing a shared phenyl group that inserts into the deep cavity and block the movement of the toggle switch residue W4286.48. Together, these results enrich our understanding of GPCR modulation and facilitate the structure-based design of novel antihistamines.


Asunto(s)
Antagonistas de los Receptores Histamínicos H1 , Histamina , Antagonistas de los Receptores Histamínicos H1/farmacología , Antagonistas de los Receptores Histamínicos H1/química , Antagonistas de los Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Antagonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/química , Antagonistas de los Receptores Histamínicos/metabolismo , Receptores Histamínicos
11.
Artículo en Inglés | MEDLINE | ID: mdl-38018180

RESUMEN

BACKGROUND: By comparing the histamine impact to the instant response to an injected foreign protein in previously sensitized animals, one might hypothesize that histamine may be involved in this reaction. Through all four of the recognized types of histamine receptors, histamine is also essential for the control of immunological function and acute and chronic allergic inflammation. METHODS: Recent evidence points to anti-IgE antibodies and specific antibodies to cytokines like IL-4 or IL-5 that are associated with allergic inflammation as probable causes of Allergic Rhinitis. The therapeutic advantage of antihistamines is a decrease in allergy symptoms and any other allergy-related symptoms. We research the many diseases and dose forms in which antihistamines are used. Pediatric age groups have never been thoroughly studied for firstgeneration antihistamines. Oral antihistamines are suggested as the first line of therapy for people with mild to severe intermittent Allergic Rhinitis symptoms. RESULTS: Currently, approximately 100 different antihistamine-containing medicines and around 20 different H1-receptor antagonists are available for therapeutic use. Antihistamines of the second generation are more efficient and secure than those of the first generation. We conducted a research on the sedative and non-sedative effects of antihistamines used to treat various diseases. CONCLUSION: The present investigation highlights the use of antihistamines in various diseases at different ages, their sedative and non-sedative effect, and their utility in treating insomnia based on their safety and current use among the patient population, as well as our observation.


Asunto(s)
Histamina , Rinitis Alérgica , Animales , Humanos , Niño , Antagonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/uso terapéutico , Antagonistas de los Receptores Histamínicos H1 , Rinitis Alérgica/tratamiento farmacológico , Hipnóticos y Sedantes , Inflamación/tratamiento farmacológico
12.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894952

RESUMEN

Multiple sclerosis (MS) is a degenerative condition characterized by immune-mediated attacks on the central nervous system (CNS), resulting in demyelination and recurring T-cell responses. The histamine H4 receptor (H4R) is mainly expressed in cellular populations and plays a vital role in inflammation and immunological responses. The role of H4R in neurons of the CNS has recently been revealed. However, the precise role of H4R in neuronal function remains inadequately understood. The objective of this work was to investigate the impact of JNJ 10191584 (JNJ), a highly effective and specific H4R antagonist, on the development of experimental autoimmune encephalomyelitis (EAE) and to gain insight into the underlying mechanism involved. In this study, we examined the potential impact of JNJ therapy on the course of EAE in SJL/J mice. EAE mice were administered an oral dose of JNJ at a concentration of 6 mg/kg once a day, starting from day 10 and continuing until day 42. Afterward, the mice's clinical scores were assessed. In this study, we conducted additional research to examine the impact of JNJ on several types of immune cells, specifically Th1 (IFN-γ and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A and RORγt), and regulatory T (Tregs; Foxp3 and TGF-ß1) cells in the spleen. In this study, we further investigated the impact of JNJ on the mRNA expression levels of IFN-γ, T-bet, IL-9, IRF4, IL-17A, RORγt, Foxp3, and TGF-ß1 in the brain. Daily treatment of JNJ effectively reduced the development of EAE in mice. The percentages of CD4+IFN-γ+, CD4+T-bet+, CD4+IL-9+, CD4+IRF4+, CD4+IL-17A+, and CD4+RORγt+ cells were shown to decrease, whereas the percentages of CD4+TGF-ß1+ and CD4+Foxp3+ cells were observed to increase in EAE mice treated with JNJ. Therefore, the HR4 antagonist positively affected the course of EAE by modulating the signaling of transcription factors. The identified results include possible ramifications in the context of MS treatment.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Receptores Histamínicos H4 , Factor de Crecimiento Transformador beta1 , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Interleucina-17/metabolismo , Interleucina-9 , Esclerosis Múltiple/tratamiento farmacológico , Antagonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/uso terapéutico , Factores de Transcripción Forkhead/genética , Ratones Endogámicos C57BL
13.
Biomolecules ; 13(10)2023 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-37892121

RESUMEN

Chronic infection with hepatitis B virus (HBV) is incurable, as the current therapeutics cannot eliminate its persistent genomic material, cccDNA. Screening systems for cccDNA-targeting therapeutics are unavailable, as low copies of cccDNA in vitro complicate detection. To address this, cccDNA copies were massively increased to levels detectable via automated plate readers. This was achieved via continuous infection in a contact-free co-culture of an HBV generator (clone F881), which stably produced clinically relevant amounts of HBV, and HBV acceptors selected to carry high cccDNA loads. cccDNA-targeted therapeutics were then identified via reduced cccDNA-specific fluorescence, taking differences in the cell numbers and viability into account. Amongst the drugs tested, the H1 antihistamine Bilastine, HBVCP inhibitors and, surprisingly, current HBV therapeutics downregulated the cccDNA significantly, reflecting the assay's accuracy and sensitivity in identifying drugs that induce subtle changes in cccDNA levels, which take years to manifest in vivo. Bilastine was the only therapeutic that did not reduce HBV production from F881, indicating it to be a novel direct suppressor of cccDNA levels. When further assessed, only the structurally similar antihistamines Pitolisant and Nizatidine suppressed cccDNA levels when other H1 antihistamines could not. Taken together, our rapid fluorescence cccDNA-targeted drug screen successfully identified a class of molecules with the potential to treat hepatitis B.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Humanos , Virus de la Hepatitis B/genética , Replicación Viral/genética , ADN Viral/genética , Antagonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/uso terapéutico
14.
J Med Chem ; 66(14): 9607-9621, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37409873

RESUMEN

Hydrogen sulfide (H2S) is an endogenous gasotransmitter with anti-inflammatory actions that also reduces itching. To test whether a combination of an antihistamine with a H2S donor has improved antipruritic efficacy, bifunctional molecules with antihistamine and H2S-releasing pharmacophores were synthesized and tested in vitro and in vivo. H2S release from the hybrid molecules was evaluated with the methylene blue and lead acetate methods, and H1-blocking activity was assessed by determining tissue factor expression inhibition. All new compounds released H2S in a dose-dependent manner and retained histamine blocking activity. Two compounds with the highest potency were evaluated in vivo for their antipruritic as well as sedative action; they proved to possess higher efficacy in inhibiting histamine-induced pruritus and decreased sedative effects compared to the parent compounds (hydroxyzine and cetirizine), suggesting that they exhibit superior antipruritic action and limited side effects that likely arise from the H2S-releasing moiety.


Asunto(s)
Antipruriginosos , Sulfuro de Hidrógeno , Humanos , Antipruriginosos/uso terapéutico , Hipnóticos y Sedantes/farmacología , Hipnóticos y Sedantes/uso terapéutico , Histamina , Antagonistas de los Receptores Histamínicos H1/farmacología , Antagonistas de los Receptores Histamínicos H1/uso terapéutico , Antagonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/uso terapéutico , Prurito/tratamiento farmacológico , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/uso terapéutico
15.
J Mol Graph Model ; 124: 108539, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37331258

RESUMEN

Kaposi sarcoma (KS) is one of the most common AIDS-related malignant neoplasms, which can leave lesions on the skin among HIV patients. These lesions can be treated with 9-cis-retinoic acid (9-cis-RA), an endogenous ligand of retinoic acid receptors that has been FDA-approved for treatment of KS. However, topical application of 9-cis-RA can induce several unpleasant side effects, like headache, hyperlipidemia, and nausea. Hence, alternative therapeutics with less side effects are desirable. There are case reports associating over-the-counter antihistamine usage with regression of KS. Antihistamines competitively bind to H1 receptor and block the action of histamine, best known for being released in response to allergens. Furthermore, there are already dozens of antihistamines that are FDA-approved with less side effects than 9-cis-RA. This led our team to conduct a series of in-silico assays to determine whether antihistamines can activate retinoic acid receptors. First, we utilized high-throughput virtual screening and molecular dynamics simulations to model high-affinity interactions between antihistamines and retinoic acid receptor beta (RARß). We then performed systems genetics analysis to identify a genetic association between H1 receptor itself and molecular pathways involved in KS. Together, these findings advocate for exploration of antihistamines against KS, starting with our two promising hit compounds, bepotastine and hydroxyzine, for experimental validation study in the future.


Asunto(s)
Infecciones por VIH , Simulación de Dinámica Molecular , Humanos , Receptores Histamínicos H1/genética , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Antagonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/uso terapéutico , Antagonistas de los Receptores Histamínicos H1/farmacología , Antagonistas de los Receptores Histamínicos H1/uso terapéutico , Alitretinoína , Tretinoina/metabolismo , Tretinoina/farmacología
16.
Amino Acids ; 55(6): 821-833, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37171719

RESUMEN

Histamine is a biogenic amine implicated in various biological and pathological processes. Convenient cellular models are needed to screen and develop new antihistamine agents. This report aimed to characterize the response of neurons differentiated from mouse P19 embryonal carcinoma cells to histamine treatment, and to investigate the modulation of this response by antihistamine drugs, vegetal diamine oxidase, and catalase. The exposure of P19 neurons to histamine reduced cell viability to 65% maximally. This effect involves specific histamine receptors, since it was prevented by treatment with desloratadine and cimetidine, respectively, H1 and H2 antagonists, but not by the H3 antagonist ciproxifan. RT-PCR analysis showed that P19 neurons express H1 and H2 receptors, and the H3 receptor, although it seemed not involved in the histamine effect on these cells. The H4 receptor was not expressed. H1 and H2 antagonists as well as vegetal diamine oxidase diminished the intracellular Ca2+ mobilization triggered by histamine. The treatment with vegetal diamine oxidase or catalase protected against mortality and a significant reduction of H2O2 level, generated from the cells under the histamine action, was found upon treatments with desloratadine, cimetidine, vegetal diamine oxidase, or catalase. Overall, the results indicate the expression of functional histamine receptors and open the possibility of using P19 neurons as model system to study the roles of histamine and related drugs in neuronal pathogenesis. This model is less expensive to operate and can be easily implemented by current laboratories of analysis and by Contract Research Organizations.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , Productos Biológicos , Animales , Ratones , Histamina/farmacología , Histamina/metabolismo , Cimetidina/farmacología , Catalasa , Peróxido de Hidrógeno/farmacología , Antagonistas de los Receptores Histamínicos/farmacología , Receptores Histamínicos/genética , Antagonistas de los Receptores Histamínicos H1/farmacología , Neuronas/metabolismo , Productos Biológicos/farmacología
17.
Parasites Hosts Dis ; 61(2): 172-182, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37258264

RESUMEN

At the time of host attachment, ticks are very sensitive to histamine, but during rapid blood sucking they paradoxically require histamine. Using a rabbit model, we studied the effects of histamine and antihistamine during attachment and fast-feeding in different life stages of Haemaphysalis longicorns. We examined how they responded to histamine and antihistamine by analyzing the detachment rate, histology of feeding lesions, and post-feeding behavior. A significant difference (P<0.01) was found in the detachment rate between experimental and control treatments throughout the observation period. Ticks exhibited a higher detachment rate (30.1%) at 12 h after histamine application during attachment time and on antihistamine-treated skin (25.4%) at 96 h during fast-feeding. After feeding on histamine-treated rabbits, the fully engorged body weights of larvae and nymphs were 0.7±0.36 mg and 3.5±0.65 mg, respectively. An average increase in body weight of 0.6±0.05 mg and 3.2±0.30 mg was observed for larvae and nymphs compared to the respective control weights. Nymphs and adults engorged after antihistamine treatment had an average body weight of 1.3±0.54 mg and 54±0.81 mg, respectively. An average decrease in body weight was observed in antihistamine-treated H. longicornis compared with control nymphs (3.3±0.42 mg) and adults (174±1.78 mg). Skin biopsies were collected after treatment, and differential histopathological characteristics were found between the treatment and control groups. Tick-infested skin collected from rabbits in the antihistamine-treated group lacked erythrocytes in the feeding pool, indicating that antihistamine impaired tick fast-feeding stage.


Asunto(s)
Ixodidae , Garrapatas , Animales , Conejos , Histamina , Antagonistas de los Receptores Histamínicos/farmacología , Conducta Alimentaria , Antagonistas de los Receptores Histamínicos H1/farmacología
18.
J Enzyme Inhib Med Chem ; 38(1): 2188147, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36912265

RESUMEN

Carbonic anhydrases (CAs) are important regulators of pH homeostasis and participate in many physiological and pathological processes. CA activators (CAAs) are becoming increasingly important in the biomedical field since enhancing CA activity may have beneficial effects at neurological level. Here, we investigate selected antihistamines, phenothiazine-based antipsychotics, and tricyclic antidepressants (TCAs) as potential activators of human CAs I, II, IV, and VII. Our findings indicate that these compounds are more effective at activating hCA II and VII compared to hCA I and IV. Overall, hCA VII was the most efficiently activated isoform, particularly by phenothiazines and TCAs. This is especially relevant since hCA VII is the most abundant isoform in the central nervous system (CNS) and is implicated in neuronal signalling and bicarbonate balance regulation. This study offers additional insights into the pharmacological profiles of clinically employed drugs and sets the ground for the development of novel optimised CAAs.


Asunto(s)
Antipsicóticos , Anhidrasas Carbónicas , Humanos , Antipsicóticos/farmacología , Antidepresivos Tricíclicos/farmacología , Anhidrasas Carbónicas/metabolismo , Isoformas de Proteínas/metabolismo , Fenotiazinas , Antagonistas de los Receptores Histamínicos/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Relación Estructura-Actividad , Estructura Molecular
19.
Cell Rep ; 42(2): 112137, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36807142

RESUMEN

Commonly used antihistamines and other cationic amphiphilic drugs (CADs) are emerging as putative cancer drugs. Their unique chemical structure enables CADs to accumulate rapidly inside lysosomes, where they increase lysosomal pH, alter lysosomal lipid metabolism, and eventually cause lysosomal membrane permeabilization. Here, we show that CAD-induced rapid elevation in lysosomal pH is caused by a lysosomal H+ efflux that requires P2RX4-mediated lysosomal Ca2+ release and precedes the lysosomal membrane permeabilization. The subsequent cytosolic acidification triggers the dephosphorylation, lysosomal translocation, and inactivation of the oncogenic signal transducer and activator of transcription 3 (STAT3) transcription factor. Moreover, CAD-induced lysosomal H+ efflux sensitizes cancer cells to apoptosis induced by STAT3 inhibition and acts synergistically with STAT3 inhibition in restricting the tumor growth of A549 non-small cell lung carcinoma xenografts. These findings identify lysosomal H+ efflux and STAT3 inhibition as anticancer mechanisms of CADs and reinforce the repurposing of safe and inexpensive CADs as cancer drugs with a drug combination strategy.


Asunto(s)
Neoplasias Pulmonares , Factor de Transcripción STAT3 , Humanos , Factor de Transcripción STAT3/metabolismo , Lisosomas/metabolismo , Antagonistas de los Receptores Histamínicos/análisis , Antagonistas de los Receptores Histamínicos/metabolismo , Antagonistas de los Receptores Histamínicos/farmacología , Apoptosis , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo
20.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499189

RESUMEN

Histamine is well known for mediating peripheral inflammation; however, this amine is also found in high concentrations in the brain where its roles are much less known. In vivo chemical dynamics are difficult to measure, thus fundamental aspects of histamine's neurochemistry remain undefined. In this work, we undertake the first in-depth characterization of real time in vivo histamine dynamics using fast electrochemical tools. We find that histamine release is sensitive to pharmacological manipulation at the level of synthesis, packaging, autoreceptors and metabolism. We find two breakthrough aspects of histamine modulation. First, differences in H3 receptor regulation between sexes show that histamine release in female mice is much more tightly regulated than in male mice under H3 or inflammatory drug challenge. We hypothesize that this finding may contribute to hormone-mediated neuroprotection mechanisms in female mice. Second, a high dose of a commonly available antihistamine, the H1 receptor inverse agonist diphenhydramine, rapidly decreases serotonin levels. This finding highlights the sheer significance of pharmaceuticals on neuromodulation. Our study opens the path to better understanding and treating histamine related disorders of the brain (such as neuroinflammation), emphasizing that sex and modulation (of serotonin) are critical factors to consider when studying/designing new histamine targeting therapeutics.


Asunto(s)
Histamina , Receptores Histamínicos H3 , Femenino , Animales , Masculino , Ratones , Histamina/metabolismo , Serotonina/metabolismo , Receptores Histamínicos H3/metabolismo , Agonistas de los Receptores Histamínicos/farmacología , Agonistas de los Receptores Histamínicos/metabolismo , Antagonistas de los Receptores Histamínicos/farmacología , Antagonistas de los Receptores Histamínicos/metabolismo , Encéfalo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA