Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.971
Filtrar
1.
J Vis Exp ; (207)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38829117

RESUMEN

Through various studies on thermoelectric (TE) materials, thin film configuration gives superior advantages over conventional bulk TEs, including adaptability to curved and flexible substrates. Several different thin film deposition methods have been explored, yet magnetron sputtering is still favorable due to its high deposition efficiency and scalability. Therefore, this study aims to fabricate a bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thin film via the radio frequency (RF) magnetron sputtering method. The thin films were deposited on soda lime glass substrates at ambient temperature. The substrates were first washed using water and soap, ultrasonically cleaned with methanol, acetone, ethanol, and deionized water for 10 min, dried with nitrogen gas and hot plate, and finally treated under UV ozone for 10 min to remove residues before the coating process. A sputter target of Bi2Te3 and Sb2Te3 with Argon gas was used, and pre-sputtering was done to clean the target's surface. Then, a few clean substrates were loaded into the sputtering chamber, and the chamber was vacuumed until the pressure reached 2 x 10-5 Torr. The thin films were deposited for 60 min with Argon flow of 4 sccm and RF power at 75 W and 30 W for Bi2Te3 and Sb2Te3, respectively. This method resulted in highly uniform n-type Bi2Te3 and p-type Sb2Te3 thin films.


Asunto(s)
Antimonio , Bismuto , Telurio , Bismuto/química , Antimonio/química , Telurio/química , Ondas de Radio
2.
Sci Total Environ ; 933: 172990, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38710395

RESUMEN

Antimony (Sb) is a toxic heavy metal that severely inhibits plant growth and development and threatens human health. Tall fescue, one of the most widely used grasses, has been reported to tolerate heavy metal stress. However, the adaptive mechanisms of Sb stress in tall fescue remain largely unknown. In this study, transcriptomic and metabolomic techniques were applied to elucidate the molecular mechanism of the Sb stress response in tall fescue. These results showed that the defense process in tall fescue was rapidly triggered during the early stages of Sb stress. Sb stress had toxic effects on tall fescue, and the cell wall and voltage-gated channels are crucial for regulating Sb permeation into the cells. In addition, the pathway of glycine, serine and threonine metabolism may play key roles in the Sb stress response of tall fescue. Genes such as ALDH7A1 and AGXT2 and metabolites such as aspartic acid, pyruvic acid, and biuret, which are related to biological processes and pathways, were key genes and compounds in the Sb stress response of tall fescue. Therefore, the regulatory mechanisms of specific genes and pathways should be investigated further to improve Sb stress tolerance.


Asunto(s)
Antimonio , Festuca , Estrés Fisiológico , Transcriptoma , Festuca/metabolismo , Festuca/efectos de los fármacos , Festuca/genética , Antimonio/toxicidad , Transcriptoma/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Metabolómica , Metaboloma/efectos de los fármacos
3.
Drug Dev Res ; 85(3): e22194, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38704828

RESUMEN

The aim the present study was to investigate the impact of novel pentavalent organobismuth and organoantimony complexes on membrane integrity and their interaction with DNA, activity against Sb(III)-sensitive and -resistant Leishmania strains and toxicity in mammalian peritoneal macrophages. Ph3M(L)2 type complexes were synthesized, where M = Sb(V) or Bi(V) and L = deprotonated 3-(dimethylamino)benzoic acid or 2-acetylbenzoic acid. Both organobismuth(V) and organoantimony(V) complexes exhibited efficacy at micromolar concentrations against Leishmania amazonensis and L. infantum but only the later ones demonstrated biocompatibility. Ph3Sb(L1)2 and Ph3Bi(L1)2 demonstrated distinct susceptibility profiles compared to inorganic Sb(III)-resistant strains of MRPA-overexpressing L. amazonensis and AQP1-mutated L. guyanensis. These complexes were able to permeate the cell membrane and interact with the Leishmania DNA, suggesting that this effect may contribute to the parasite growth inhibition via apoptosis. Taken altogether, our data substantiate the notion of a distinct mechanism of uptake pathway and action in Leishmania for these organometallic complexes, distinguishing them from the conventional inorganic antimonial drugs.


Asunto(s)
Antimonio , Antiprotozoarios , Membrana Celular , Resistencia a Medicamentos , Compuestos Organometálicos , Antimonio/farmacología , Antimonio/química , Animales , Compuestos Organometálicos/farmacología , Ratones , Membrana Celular/efectos de los fármacos , Antiprotozoarios/farmacología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/parasitología , Leishmania/efectos de los fármacos , ADN Protozoario , Leishmania infantum/efectos de los fármacos , Leishmania infantum/genética , Ratones Endogámicos BALB C
4.
BMC Plant Biol ; 24(1): 364, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702592

RESUMEN

BACKGROUND: This study aimed to investigate the alterations in biochemical and physiological responses of oat plants exposed to antimony (Sb) contamination in soil. Specifically, we evaluated the effectiveness of an arbuscular mycorrhizal fungus (AMF) and olive mill waste (OMW) in mitigating the effects of Sb contamination. The soil was treated with a commercial strain of AMF (Rhizophagus irregularis) and OMW (4% w/w) under two different levels of Sb (0 and 1500 mg kg-1 soil). RESULTS: The combined treatment (OMW + AMF) enhanced the photosynthetic rate (+ 40%) and chlorophyll a (+ 91%) and chlorophyll b (+ 50%) content under Sb condition, which in turn induced more biomass production (+ 67-78%) compared to the contaminated control plants. More photosynthesis in OMW + AMF-treated plants gives a route for phenylalanine amino acid synthesis (+ 69%), which is used as a precursor for the biosynthesis of secondary metabolites, including flavonoids (+ 110%), polyphenols (+ 26%), and anthocyanins (+ 63%) compared to control plants. More activation of phenylalanine ammonia-lyase (+ 38%) and chalcone synthase (+ 26%) enzymes in OMW + AMF-treated plants under Sb stress indicated the activation of phenylpropanoid pathways in antioxidant metabolites biosynthesis. There was also improved shifting of antioxidant enzyme activities in the ASC/GSH and catalytic pathways in plants in response to OMW + AMF and Sb contamination, remarkably reducing oxidative damage markers. CONCLUSIONS: While individual applications of OMW and AMF also demonstrated some degree of plant tolerance induction, the combined presence of AMF with OMW supplementation significantly enhanced plant biomass production and adaptability to oxidative stress induced by soil Sb contamination.


Asunto(s)
Antimonio , Micorrizas , Olea , Contaminantes del Suelo , Micorrizas/fisiología , Olea/microbiología , Contaminantes del Suelo/metabolismo , Antimonio/metabolismo , Adaptación Fisiológica , Residuos Industriales , Fotosíntesis/efectos de los fármacos , Biodegradación Ambiental , Biomasa
5.
J Hazard Mater ; 470: 134263, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613951

RESUMEN

Nanotechnology offers a promising and innovative approach to mitigate biotic and abiotic stress in crop production. In this study, the beneficial role and potential detoxification mechanism of biogenic selenium nanoparticles (Bio-SeNPs) prepared from Psidium guajava extracts in alleviating antimony (Sb) toxicity in rice seedlings (Oryza sativa L.) were investigated. The results revealed that exogenous addition of Bio-SeNPs (0.05 g/L) into the hydroponic-cultured system led to a substantial enhancement in rice shoot height (73.3%), shoot fresh weight (38.7%) and dry weight (28.8%) under 50 µM Sb(III) stress conditions. Compared to Sb exposure alone, hydroponic application of Bio-SeNPs also greatly promoted rice photosynthesis, improved cell viability and membrane integrity, reduced reactive oxygen species (ROS) levels, and increased antioxidant activities. Meanwhile, exogenous Bio-SeNPs application significantly lowered the Sb accumulation in rice roots (77.1%) and shoots (35.1%), and reduced its root to shoot translocation (55.3%). Additionally, Bio-SeNPs addition were found to modulate the subcellular distribution of Sb and the expression of genes associated with Sb detoxification in rice, such as OsCuZnSOD2, OsCATA, OsGSH1, OsABCC1, and OsWAK11. Overall, our findings highlight the great potential of Bio-SeNPs as a promising alternative for reducing Sb accumulation in crop plants and boosting crop production under Sb stress conditions.


Asunto(s)
Antimonio , Antioxidantes , Regulación de la Expresión Génica de las Plantas , Nanopartículas , Oryza , Selenio , Oryza/efectos de los fármacos , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Oryza/genética , Antimonio/toxicidad , Antioxidantes/metabolismo , Selenio/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Nanopartículas/toxicidad , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/metabolismo , Plantones/crecimiento & desarrollo
6.
Sci Total Environ ; 927: 172149, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569970

RESUMEN

Metalloid co-contamination such as arsenic (As) and antimony (Sb) in soils has posed a significant threat to ecological balance and human well-being. In this study, a novel magnetic graphene-loaded biochar gel (FeBG) was developed, and its remediation potential for the reclamation of AsSb spoiled soil was assessed through a six-month soil incubation experiment. Results showed that the incorporation of iron substances and graphene imparted FeBG with enhanced surface characteristics, such as the formation of a new FeO bond and an enlarged surface area compared to the pristine biochar (BC) (80.5 m2 g-1 vs 57.4 m2 g-1). Application of FeBG significantly decreased Na2HPO4-extractable concentration of As in soils by 9.9 %, whilst BC addition had a non-significant influence on As availability, compared to the control. Additionally, both BC (8.2 %) and FeBG (16.4 %) treatments decreased the Na2HPO4-extractable concentration of Sb in soils. The enhanced immobilization efficiency of FeBG for As/Sb could be attributed to FeBG-induced electrostatic attraction, complexation (Fe-O(H)-As/Sb), and π-π electron donor-acceptor coordination mechanisms. Additionally, the FeBG application boosted the activities of sucrase (9.6 %) and leucine aminopeptidase (7.7 %), compared to the control. PLS-PM analysis revealed a significant negative impact of soil physicochemical properties on the availability of As (ß = -0.611, P < 0.01) and Sb (ß = -0.848, P < 0.001) in soils, in which Sb availability subsequently led to a suppression in soil enzyme activities (ß = -0.514, P < 0.01). Overall, the novel FeBG could be a potential amendment for the simultaneous stabilization of As/Sb and the improvement of soil quality in contaminated soils.


Asunto(s)
Antimonio , Arsénico , Carbón Orgánico , Restauración y Remediación Ambiental , Grafito , Minería , Contaminantes del Suelo , Antimonio/química , Antimonio/análisis , Grafito/química , Carbón Orgánico/química , Contaminantes del Suelo/análisis , Arsénico/análisis , Restauración y Remediación Ambiental/métodos , Suelo/química
7.
J Hazard Mater ; 470: 134135, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574656

RESUMEN

Sb(III) and As(III) share similar chemical features and coexist in the environment. However, their oxidase enzymes have completely different sequences and structures. This raises an intriguing question: Could Sb(III)-oxidizing prokaryotes (SOPs) also oxidize As(III), and vice versa? Regarding this issue, previous investigations have yielded unclear, incorrect and even conflicting data. This work aims to address this matter. First, we prepared an enriched population of SOPs that comprises 55 different AnoA genes, lacking AioAB and ArxAB genes. We found that these SOPs can oxidize both Sb(III) and As(III) with comparable capabilities. To further confirm this finding, we isolated three cultivable SOP strains that have AnoA gene, but lack AioAB and ArxAB genes. We observed that they also oxidize both Sb(III) and As(III) under both anaerobic and aerobic conditions. Secondly, we obtained an enriched population of As(III)-oxidizing prokaryotes (AOPs) from As-contaminated soils, which comprises 69 different AioA genes, lacking AnoA gene. We observed that the AOP population has significant As(III)-oxidizing activities, but lack detectable Sb(III)-oxidizing activities under both aerobic and anaerobic conditions. Therefore, we convincingly show that SOPs can oxidize As(III), but AOPs cannot oxidize Sb(III). These findings clarify the previous ambiguities, confusion, errors or contradictions regarding how SOPs and AOPs oxidize each other's substrate.


Asunto(s)
Antimonio , Oxidación-Reducción , Anaerobiosis , Aerobiosis , Antimonio/metabolismo , Células Procariotas/metabolismo , Microbiología del Suelo , Bacterias/metabolismo , Bacterias/genética , Contaminantes del Suelo/metabolismo
8.
Wei Sheng Yan Jiu ; 53(2): 294-299, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38604967

RESUMEN

OBJECTIVE: To establish an analytical method for determining the migration of 24 elements in Yixing clay pottery in 4% acetic acid simulated solution by inductively coupled plasma mass spectrometry. METHODS: Four types of Yixing clay pottery, including Yixing clay teapot, Yixing clay kettle, Yixing clay pot, and Yixing clay electric stew pot, were immersed in 4% acetic acid as a food simulant for testing. The migration amount of 24 elements in the migration solution was determined using inductively coupled plasma mass spectrometry. RESULTS: Lithium, magnesium, aluminum, iron, and barium elements with a mass concentration of 1000 µg/L; Lead, cadmium, total arsenic, chromium, nickel, copper, vanadium, manganese, antimony, tin, zinc, cobalt, molybdenum, silver, beryllium, thallium, titanium, and strontium elements within 100 µg/L there was a linear relationship within, the r value was between 0.998 739 and 0.999 989. Total mercury at 5.0 µg/L, there was a linear relationship within, the r value of 0.995 056. The detection limit of the elements measured by this method was between 0.5 and 45.0 µg/L, the recovery rate was 80.6%-108.9%, and the relative standard deviation was 1.0%-4.8%(n=6). A total of 32 samples of four types of Yixing clay pottery sold on the market, including teapots, boiling kettles, casseroles, and electric stewing pots, were tested. It was found that the migration of 16 elements, including beryllium, titanium, chromium, nickel, cobalt, zinc, silver, cadmium, antimony, total mercury, thallium, tin, copper, total arsenic, molybdenum, and lead, were lower than the quantitative limit. The element with the highest migration volume teapot was aluminum, magnesium, and barium; The kettle was aluminum and magnesium; Casserole was aluminum, magnesium, and lithium; The electric stew pot was aluminum. CONCLUSION: This method is easy to operate and has high accuracy, providing an effective and feasible detection method for the determination and evaluation of element migration in Yixing clay pottery.


Asunto(s)
Arsénico , Mercurio , Oligoelementos , Acetatos , Aluminio/análisis , Antimonio/análisis , Arsénico/análisis , Bario/análisis , Berilio/análisis , Cadmio/análisis , Cromo , Arcilla , Cobalto/análisis , Cobre , Litio/análisis , Magnesio , Espectrometría de Masas , Mercurio/análisis , Molibdeno/análisis , Níquel , Plata/análisis , Talio/análisis , Estaño/análisis , Titanio/análisis , Oligoelementos/análisis , Zinc , China
9.
J Hazard Mater ; 471: 134302, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640664

RESUMEN

Antimony (Sb) and arsenic (As) lead to soil pollution and structural degradation at Sb smelting sites. However, most sites focus solely on Sb/As immobilization, neglecting the restoration of soil functionality. Here, we investigated the effectiveness of Fe/H2O2 modified biochar (Fe@H2O2-BC) and Sb-oxidizing bacteria (Bacillus sp. S3) in immobilizing Sb/As and enhancing soil functional resilience at an Sb smelting site. Over a twelve-month period, the leaching toxicity of As and Sb was reduced to 0.05 and 0.005 mg L-1 (GB3838-2002) respectively, with 1% (w/w) Fe@H2O2-BC and 2% (v/v) Bacillus sp. S3 solution. Compared to CK, the combination of Fe@H2O2-BC and Bacillus sp. S3 significantly reduced the bioavailable As/Sb by 98.00%/93.52%, whilst increasing residual As and reducible Sb fractions by 210.31% and 96.51%, respectively. The combined application generally improved soil aggregate structure, pore characteristics, and water-holding capacity. Fe@H2O2-BC served as a pH buffer and long-term reservoir of organic carbon, changing the availability of carbon substrates to bacteria. The inoculation of Bacillus sp. S3 facilitated the transformation of Sb(III)/As(III) to Sb(V)/As(V) and differentiated the composition and functional roles of bacterial communities in soils. The combination increased the abundance of soil saprotrophs by 164.20%, whilst improving the relative abundance of N- and S-cycling bacteria according to FUNGuild and FAPROTAX analysis. These results revealed that the integrated application was instrumental in As/Sb detoxification/immobilization and soil function restoration, which demonstrating a promising microbially-driven ecological restoration strategy at Sb smelting sites.


Asunto(s)
Antimonio , Arsénico , Bacillus , Carbón Orgánico , Peróxido de Hidrógeno , Microbiología del Suelo , Contaminantes del Suelo , Antimonio/química , Carbón Orgánico/química , Arsénico/metabolismo , Arsénico/química , Contaminantes del Suelo/metabolismo , Bacillus/metabolismo , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Restauración y Remediación Ambiental/métodos , Oxidación-Reducción , Suelo/química , Hierro/química , Hierro/metabolismo , Biodegradación Ambiental
10.
Chemosphere ; 356: 141853, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582161

RESUMEN

Ceftazidime (CAZ) is an emerging organic pollutant with a long-lasting presence in the environment. Although some PbO2 materials exhibit degradation capabilities, inefficient electron transport in the substrate layer and the problem of electrode stability still limit their use. Here, an interfacial design in which TiO2 nanotube arrays generate Ti3+ self-doping oxide substrate layers and highly active 3D Sb-SnO2 nanoflowers-like interlayers was used to prepare PbO2 anodes for efficient degradation of CAZ. Interestingly, after implementing Ti3+ self-doping in the PbO2 anode base layer and introducing 3D nanoflowers-like structures, the capacity for •OH generation increased significantly. The modified electrode exhibited 5-fold greater •OH generation capacity compared to the unmodified electrode, and a 2.7-fold longer accelerated electrode lifetime. The results indicate that interfacial engineering of the base and intermediate layers of the electrodes can improve the electron transfer efficiency, promote the formation of •OH, and extend the anode lifetime of the activated CAZ system.


Asunto(s)
Electrodos , Plomo , Nanotubos , Compuestos de Estaño , Titanio , Titanio/química , Nanotubos/química , Compuestos de Estaño/química , Plomo/química , Óxidos/química , Antimonio/química , Técnicas Electroquímicas/métodos , Contaminantes Químicos del Agua/química
11.
Environ Monit Assess ; 196(5): 448, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607467

RESUMEN

Soil in mining wastelands is seriously polluted with heavy metals. Zero-valent iron (ZVI) is widely used for remediation of heavy metal-polluted soil because of its excellent adsorption properties; however, the remediation process is affected by complex environmental conditions, such as acid rain and freeze-thaw cycles. In this study, the effects of different pH values and freeze-thaw cycles on remediation of antimony (Sb)- and arsenic (As)-contaminated soil by ZVI were investigated in laboratory simulation experiments. The stability and potential human health risks associated with the remediated soil were evaluated. The results showed that ZVI has a significant stabilizing effect on Sb and As in both acidic and alkaline soils contaminated with dual levels of Sb and As, and the freeze-thaw process in different pH value solution systems further enhances the ability of ZVI to stabilize Sb and As, especially in acidic soils. However, it should be noted that apart from the pH=1.0 solution environment, ZVI's ability to stabilize As is attenuated under other circumstances, potentially leading to leaching of its unstable form and thereby increasing contamination risks. This indicates that the F1 (2% ZVI+pH=1 solution+freeze-thaw cycle) processing exhibits superior effectiveness. After F1 treatment, the bioavailability of Sb and As in both soils also significantly decreased during the gastric and intestinal stages (about 60.00%), the non-carcinogenic and carcinogenic risks of Sb and As in alkaline soils are eliminated for children and adults, with a decrease ranging from 60.00% to 70.00%, while in acidic soil, the non-carcinogenic and carcinogenic risks of As to adults and children is acceptable, but Sb still poses non-carcinogenic risks to children, despite reductions of about 65.00%. These findings demonstrate that soil pH is a crucial factor influencing the efficacy of ZVI in stabilizing Sb and As contaminants during freeze-thaw cycles. This provides a solid theoretical foundation for utilizing ZVI in the remediation of Sb- and As-contaminated soils, emphasizing the significance of considering both pH levels and freeze-thaw conditions to ensure effective and safe treatment.


Asunto(s)
Antimonio , Arsénico , Humanos , Adulto , Niño , Hierro , Monitoreo del Ambiente , Medición de Riesgo , Suelo , Concentración de Iones de Hidrógeno
12.
Nanoscale ; 16(20): 9754-9769, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625086

RESUMEN

Pnictogen nanomaterials have recently attracted researchers' attention owing to their promising properties in the field of electronic, energy storage, and nanomedicine applications. Moreover, especially in the case of heavy pnictogens, their chemistry allows for nanomaterial synthesis using both top-down and bottom-up approaches, yielding materials with remarkable differences in terms of morphology, size, yield, and properties. In this study, we carried out a comprehensive structural and spectroscopic characterization of antimony-based nanomaterials (Sb-nanomaterials) obtained by applying different production methodologies (bottom-up and top-down routes) and investigating the influence of the synthesis on their oxidation state and stability in a biological environment. Indeed, in situ XANES/EXAFS studies of Sb-nanomaterials incubated in cell culture media were carried out, unveiling a different oxidation behavior. Furthermore, we investigated the cytotoxic effects of Sb-nanomaterials on six different cell lines: two non-cancerous (FSK and HEK293) and four cancerous (HeLa, SKBR3, THP-1, and A549). The results reveal that hexagonal antimonene (Sb-H) synthesized using a colloidal approach oxidizes the most and faster in cell culture media compared to liquid phase exfoliated (LPE) antimonene, suffering acute degradation and anticipating well-differentiated toxicity from its peers. In addition, the study highlights the importance of the synthetic route for the Sb-nanomaterials as it was observed to influence the chemical evolution of Sb-H into toxic Sb oxide species, playing a critical role in its ability to rapidly eliminate tumor cells. These findings provide insights into the mechanisms underlying the dark cytotoxicity of Sb-H and other related Sb-nanomaterials, underlining the importance of developing therapies based on controlled and on-demand nanomaterial oxidation.


Asunto(s)
Antimonio , Nanoestructuras , Oxidación-Reducción , Humanos , Antimonio/química , Nanoestructuras/química , Supervivencia Celular/efectos de los fármacos , Línea Celular Tumoral , Células HEK293 , Células HeLa , Células A549
13.
Sci Total Environ ; 927: 172113, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580110

RESUMEN

Antimony (Sb) and sulfate are two common pollutants in Sb mine drainage and Sb-containing textile wastewater. In this paper, it was found that iron­carbon (Fe/C) enhanced Sb(V) removal from sulfate-rich wastewater by anaerobic granular sludge (AnGS). Sulfate inhibited Sb(V) removal (S + Sb, k = 0.101), while Fe/C alleviated the inhibition and increased Sb(V) removal rate by 2.3 times (Fe/C + S + Sb, k = 0.236). Fe/C could promote the removal of Sb(III), and Sb(III) content decreased significantly after 8 h. Meanwhile, Fe/C enhanced the removal of sulfate. The 3D-EEM spectrum of supernatant in Fe/C + S + Sb group (at 24 h) showed that Fe/C stimulated the production of soluble microbial products (SMP) in wastewater. SMP alleviated the inhibition of sulfate, promoting AnGS to reduce Sb(V). Sb(V) could be reduced to Sb(III) both by AnGS and sulfides produced from sulfate reduction. Further analysis of extracellular polymeric substances (EPS) and AnGS showed that Fe/C increased the adsorbed Sb(V) in EPS and the c-type cytochrome content in AnGS, which may be beneficial for Sb(V) removal. Sb(V) reduction in Fe/C + S + Sb group may be related to the genus Acinetobacter, while in Sb group, several bacteria may be involved in Sb(V) reduction, such as Acinetobacter, Pseudomonas and Corynebacterium. This study provided insights into Fe/C-enhanced Sb(V) removal from sulfate-rich wastewater.


Asunto(s)
Antimonio , Hierro , Aguas del Alcantarillado , Sulfatos , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Antimonio/análisis , Anaerobiosis , Carbono
14.
J Environ Manage ; 358: 120883, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631167

RESUMEN

Applying organic fertilizer is the main way to enhance soil fertility through the interfacial reaction between mineral and dissolved organic matter (DOM). However, the interfacial reaction between minerals and DOM may influence antimony(V) (Sb(V)) mobility in agricultural soils around antimony mines. In our study the ferrihydrite (Fh) was chosen as a representative mineral, to reveal the effect of its interaction with chicken manure organic fertilizer (CM-DOM) with Fh on Sb(V) migration. In this study, we investigated different organic matter molecular weights and C/Fe molar ratios. Our findings indicated that the addition of CM-DOM decreased the adsorption of Sb(V) by Fh and promoted the re-release of Sb(V) adsorbed on Fh. This effect was enhanced by increasing the C/Fe molar ratio. Fh mainly affects its interaction with Sb(V) through electrostatic gravitational interaction and ligand exchange, but the presence of CM-DOM weakens the electrostatic interaction between Fh and Sb(V) as well as competes with Sb(V) for the hydroxyl reactive site on Fh surface. In addition, the smaller molecular weight fraction (<10 kDa) of CM-DOM has higher aromaticity and hydrophobicity, which potentially leads to more intense competition with Sb(V) for the reaction sites on Fh. Therefore, the application of organic fertilizer may promote Sb(V) migration, posing significant risks to soil ecosystems and human health, which should be a concern in field soil cultivation.


Asunto(s)
Antimonio , Pollos , Estiércol , Antimonio/química , Adsorción , Animales , Compuestos Férricos/química , Peso Molecular , Suelo/química , Contaminantes del Suelo/química , Fertilizantes
15.
Sci Total Environ ; 928: 172253, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599400

RESUMEN

Antimony (Sb) pollution poses a noteworthy risk to human health and ecosystem sustainability, therefore effective, eco-friendly, and widely accepted restoration methods are urgently needed. This study introduces a new approach of using La(III) foliar application on Solanum nigrum L. (S. nigrum), a cadmium hyperaccumulator, to improve its photosynthetic and root systems under Sb stress, resulting in a higher biomass. Notably, La(III) also enhances endocytosis in root cells, facilitating efficient and non-selective remediation of both Sb(III) and Sb(V) forms. The absorption of Sb by root cell endocytosis was observed visually with a confocal laser scanning microscope. The subcellular distribution of Sb in the cell wall of S. nigrum is reduced. And the antioxidant enzyme activity system is improved, resulting in an enhanced Sb tolerance in S. nigrum. Based on the existing bibliometric analysis, this paper identified optimal conditions for S. nigrum to achieve maximum translocation and bioconcentration factor values for Sb. The foliar application of La(III) on plants treated with Sb(III), Sb(V), and a combination of both resulted in translocation factor values of 0.89, 1.2, 1.13 and bioconcentration factor values of 11.3, 12.81, 14.54, respectively. Our work suggests that La(III)-enhanced endocytosis of S. nigrum root cells is a promising remediation strategy for Sb-contaminated environments.


Asunto(s)
Antimonio , Biodegradación Ambiental , Endocitosis , Contaminantes del Suelo , Solanum nigrum , Solanum nigrum/metabolismo , Contaminantes del Suelo/metabolismo , Antimonio/metabolismo , Endocitosis/fisiología , Raíces de Plantas/metabolismo , Metales de Tierras Raras/metabolismo
16.
Environ Pollut ; 351: 124008, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38641038

RESUMEN

Dissimilatory iron-reducing bacteria (DIRB) affect the geochemical cycling of redox-sensitive pollutants in anaerobic environments by controlling the transformation of Fe morphology. The anaerobic oxidation of antimonite (Sb(III)) driven by DIRB and Fe(III) oxyhydroxides interactions has been previously reported. However, the oxidative species and mechanisms involved remain unclear. In this study, both biotic phenomenon and abiotic verification experiments were conducted to explore the formed oxidative intermediates and related processes that lead to anaerobic Sb(III) oxidation accompanied during dissimilatory iron reduction. Sb(V) up to 2.59 µmol L-1 combined with total Fe(II) increased to 188.79 µmol L-1 when both Shewanella oneidensis MR-1 and goethite were present. In contrast, no Sb(III) oxidation or Fe(III) reduction occurred in the presence of MR-1 or goethite alone. Negative open circuit potential (OCP) shifts further demonstrated the generation of interfacial electron transfer (ET) between biogenic Fe(II) and goethite. Based on spectrophotometry, electron spin resonance (ESR) test and quenching experiments, the active ET production labile Fe(III) was confirmed to oxidize 94.12% of the Sb(III), while the contribution of other radicals was elucidated. Accordingly, we proposed that labile Fe(III) was the main oxidative species during anaerobic Sb(III) oxidation in the presence of DIRB and that the toxicity of antimony (Sb) in the environment was reduced. Considering the prevalence of DIRB and Fe(III) oxyhydroxides in natural environments, our findings provide a new perspective on the transformation of redox sensitive substances and build an eco-friendly bioremediation strategy for treating toxic metalloid pollution.


Asunto(s)
Antimonio , Compuestos Férricos , Compuestos de Hierro , Minerales , Oxidación-Reducción , Shewanella , Shewanella/metabolismo , Antimonio/metabolismo , Compuestos de Hierro/metabolismo , Compuestos de Hierro/química , Minerales/metabolismo , Minerales/química , Compuestos Férricos/metabolismo , Anaerobiosis , Biodegradación Ambiental , Hierro/metabolismo
17.
Environ Pollut ; 351: 124016, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38648966

RESUMEN

The accumulation of antimony (Sb) in plants and its potential effects on human health are of increasing concern. Nevertheless, only a few countries or regions have established soil Sb thresholds for agricultural purposes, and soil properties have not been taken into account. This study investigated the accumulation of Sb in the edible parts of pakchoi and wheat grain by adding exogenous Sb to 21 soils with varying properties. The results revealed a positive correlation between bioavailable Sb (Sbava, extracted by 0.1 M K2HPO4) in soil and Sb in the edible parts of pakchoi (R2 = 0.77, p < 0.05) and wheat grain (R2 = 0.54, p < 0.05). Both machine learning and traditional multiple regression analysis indicated Sbava was the most critical feature and the main soil properties that contributed to Sb uptake by pakchoi and wheat were CaCO3 and clay, respectively. The advisory food limits for Sb in pakchoi and wheat were estimated based on health risk assessment, and used to derive soil thresholds for safe pakchoi and wheat production based on Sbtot and Sbava, respectively. These findings hold potential for predicting Sb uptake by crops with different soil properties and informing safe production management strategies.


Asunto(s)
Antimonio , Contaminantes del Suelo , Suelo , Triticum , Antimonio/análisis , Antimonio/metabolismo , Triticum/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Suelo/química , Agricultura , Productos Agrícolas/metabolismo , Monitoreo del Ambiente/métodos , Ecosistema
18.
Chemosphere ; 357: 141920, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636914

RESUMEN

Antimony contamination from textile industries has been a global environmental concern and the existing treatment technologies could not reduce Sb(V) to meet the discharge standards. To overcome this shortcoming, ferric flocs were introduced to expedite the biological process for enhanced Sb(V) removal in wastewater treatment plant (WWTP). For this purpose, a series of laboratorial-scale sequential batch reactor activated sludge processes (SBRs) were applied for Sb(V) removal with varied reactor conditions and the transformation of Fe and Sb in SBR system was investigated. Results showed a significant improvement in Sb(V) removal and the 20 mg L-1 d-1 iron ions dosage and iron loss rate was found to be only 15.2%. The influent Sb(V) concentration ranging 153-612 µg L-1 was reduced to below 50 µg L-1, and the maximum Sb(V) removal rate of the enhanced system reached about 94.3%. Furthermore, it exhibited high stability of Sb(V) removal in the face of antimonate load, Fe strike and matrix change of wastewater. Sludge total Sb determination and capacity calculation revealed decreasing in Sb adsorption capacity and desorption without fresh Fe dosage. While sludge morphology analysis demonstrated the aging and crystallization of iron hydroxides. These results verify the distinct effects of fresh iron addition and iron aging on Sb(V) removal. High-throughput gene pyrosequencing results showed that the iron addition changed microbial mechanisms and effect Fe oxidized bacterial quantity, indicating Sb(V) immobilization achieved by microbial synergistic iron oxidation. The present study successfully established a simple and efficient method for Sb(V) removal during biological treatment, and the modification of biological process by iron supplement could provide insights for real textile wastewater treatment.


Asunto(s)
Antimonio , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología , Antimonio/química , Hierro/química , Adsorción , Industria Textil , Compuestos Férricos/química , Reactores Biológicos/microbiología , Textiles , Biodegradación Ambiental , Aerobiosis
19.
Ecotoxicol Environ Saf ; 277: 116326, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640800

RESUMEN

The available information regarding the impact of antimony (Sb), a novel environmental pollutant, on the intestinal microbiota and host health is limited. In this study, we conducted physiological characterizations to investigate the response of adult zebrafish to different environmental concentrations (0, 30, 300, and 3000 µg/L) of Sb over a period of 14 days. Biochemical and pathological changes demonstrated that Sb effectively compromised the integrity of the intestinal physical barrier and induced inflammatory responses as well as oxidative stress. Analysis of both intestinal microbial community and metabolome revealed that exposure to 0 and 30 µg/L of Sb resulted in similar microbiota structures; however, exposure to 300 µg/L altered microbial communities' composition (e.g., a decline in genus Cetobacterium and an increase in Vibrio). Furthermore, exposure to 300 µg/L significantly decreased levels of bile acids and glycerophospholipids while triggering intestinal inflammation but activating self-protective mechanisms such as antibiotic presence. Notably, even exposure to 30 µg/L of Sb can trigger dysbiosis of intestinal microbiota and metabolites, potentially impacting fish health through the "microbiota-intestine-brain axis" and contributing to disease initiation. This study provides valuable insights into toxicity-related information concerning environmental impacts of Sb on aquatic organisms with significant implications for developing management strategies.


Asunto(s)
Antimonio , Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Pez Cebra , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Antimonio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Metaboloma/efectos de los fármacos , Metabolómica
20.
Ecotoxicol Environ Saf ; 277: 116351, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653027

RESUMEN

The increasing concentration of Antimony (Sb) in ecological environments has raised serious concerns about its potential biotoxicological impact. This study investigated the toxicokinetics, Global DNA Methylation (GDM), biomarker expression, and Integrated Biological Response (IBR) of Sb at different concentrations in zebrafish. The toxic mechanism of Sb exposure was simulated using molecular dynamics (MD). The results showed that significant differences effect existed (BCFk: liver > ovary > gut > brain) and uptake saturation phenomenon of Sb among zebrafish tissues. Over a 54-day exposure period, the liver emerged as the main target site for Sb-induced GDM, and the restoration was slower than in other tissues during the 54-day recovery period. Moreover, the concentration of Sb had a significant impact on the normally expression of biomarkers, with GSTM1 inhibited and MTF2, MT1, TET3, and p53 showing varying degrees of activation at different Sb concentrations. This could be attributed to Sb3+ potentially occupying the active site or tightly binding to the deep cavity of these genes. The IBR and MD results highlighted DNMT1 as the most sensitive biomarker among those assessed. This heightened sensitivity can be attributed to the stable binding of Sb3+ to DNMT1, resulting in alterations in the conformation of DNMT1's catalytic domain and inhibition of its activity. Consequently, this disruption leads to damage to the integrity of GDM. The study suggests that DNA methylation could serve as a valuable biomarker for assessing the ecotoxicological impact of Sb exposure. It contributes to a better understanding of the toxicity mechanisms in aquatic environments caused potential pollutants.


Asunto(s)
Antimonio , Bioacumulación , Metilación de ADN , Contaminantes Químicos del Agua , Pez Cebra , Animales , Antimonio/toxicidad , Metilación de ADN/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Biomarcadores/metabolismo , Femenino , Toxicocinética , Simulación de Dinámica Molecular , Hígado/efectos de los fármacos , Hígado/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA