Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
Arch Microbiol ; 206(9): 381, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39153128

RESUMEN

The bacterial type II toxin-antitoxin (TA) system is a rich genetic element that participates in various physiological processes. Aeromonas veronii is the main bacterial pathogen threatening the freshwater aquaculture industry. However, the distribution of type II TA system in A. veronii was seldom documented and its roles in the life activities of A. veronii were still unexplored. In this study, a novel type II TA system AvtA-AvtT was predicted in a fish pathogen Aeromonas veronii biovar sobria with multi-drug resistance using TADB 2.0. Through an Escherichia coli host killing and rescue assay, we demonstrated that AvtA and AvtT worked as a genuine TA system, and the predicted toxin AvtT actually functioned as an antitoxin while the predicted antitoxin AvtA actually functioned as a toxin. The binding ability of AvtA with AvtT proteins were confirmed by dot blotting analysis and co-immunoprecipitation assay. Furthermore, we found that the toxin and antitoxin labelled with fluorescent proteins were co-localized. In addition, it was found that the transcription of AvtAT bicistronic operon was repressed by the AvtAT protein complex. Deletion of avtA gene and avtT gene had no obvious effect on the drug susceptibility. This study provides first characterization of type II TA system AvtA-AvtT in aquatic pathogen A. veronii.


Asunto(s)
Aeromonas veronii , Proteínas Bacterianas , Sistemas Toxina-Antitoxina , Aeromonas veronii/genética , Aeromonas veronii/metabolismo , Sistemas Toxina-Antitoxina/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Operón , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Antitoxinas/genética , Antitoxinas/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Arch Microbiol ; 206(8): 360, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066828

RESUMEN

Toxin-antitoxin (TA) modules are widely found in the genomes of pathogenic bacteria. They regulate vital cellular functions like transcription, translation, and DNA replication, and are therefore essential to the survival of bacteria under stress. With a focus on the type II parDE modules, this study thoroughly examines TAome in Pseudomonas aeruginosa, a bacterium well-known for its adaptability and antibiotic resistance. We explored the TAome in three P. aeruginosa strains: ATCC 27,853, PAO1, and PA14, and found 15 type II TAs in ATCC 27,853, 12 in PAO1, and 13 in PA14, with significant variation in the associated mobile genetic elements. Five different parDE homologs were found by further TAome analysis in ATCC 27,853, and their relationships were confirmed by sequence alignments and precise genomic positions. After comparing these ParDE modules' sequences to those of other pathogenic bacteria, it was discovered that they were conserved throughout many taxa, especially Proteobacteria. Nucleic acids were predicted as potential ligands for ParD antitoxins, whereas ParE toxins interacted with a wide range of small molecules, indicating a diverse functional repertoire. The interaction interfaces between ParDE TAs were clarified by protein-protein interaction networks and docking studies, which also highlighted important residues involved in binding. This thorough examination improves our understanding of the diversity, evolutionary dynamics, and functional significance of TA systems in P. aeruginosa, providing insights into their roles in bacterial physiology and pathogenicity.


Asunto(s)
Proteínas Bacterianas , Toxinas Bacterianas , Pseudomonas aeruginosa , Sistemas Toxina-Antitoxina , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Sistemas Toxina-Antitoxina/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Genoma Bacteriano , Antitoxinas/genética , Antitoxinas/metabolismo , Mapas de Interacción de Proteínas , Biología Computacional , Alineación de Secuencia
3.
Proc Natl Acad Sci U S A ; 121(27): e2403063121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38935561

RESUMEN

Type I toxin-antitoxin systems (T1TAs) are bipartite bacterial loci encoding a growth-inhibitory toxin and an antitoxin small RNA (sRNA). In many of these systems, the transcribed toxin mRNA is translationally inactive, but becomes translation-competent upon ribonucleolytic processing. The antitoxin sRNA targets the processed mRNA to inhibit its translation. This two-level control mechanism prevents cotranscriptional translation of the toxin and allows its synthesis only when the antitoxin is absent. Contrary to this, we found that the timP mRNA of the timPR T1TA locus does not undergo enzymatic processing. Instead, the full-length timP transcript is both translationally active and can be targeted by the antitoxin TimR. Thus, tight control in this system relies on a noncanonical mechanism. Based on the results from in vitro binding assays, RNA structure probing, and cell-free translation experiments, we suggest that timP mRNA adopts mutually exclusive structural conformations. The active form uniquely possesses an RNA pseudoknot structure which is essential for translation initiation. TimR preferentially binds to the active conformation, which leads to pseudoknot destabilization and inhibited translation. Based on this, we propose a model in which "structural processing" of timP mRNA enables tight inhibition by TimR in nonpermissive conditions, and TimP synthesis only upon TimR depletion.


Asunto(s)
Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN Bacteriano , ARN Mensajero , Sistemas Toxina-Antitoxina , Sistemas Toxina-Antitoxina/genética , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Antitoxinas/metabolismo , Antitoxinas/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica
4.
Microbiol Spectr ; 12(8): e0074824, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38916327

RESUMEN

Burkholderia pseudomallei (Bpm) is a Gram-negative intracellular pathogen that causes melioidosis in humans, a neglected, underreported, and lethal disease that can reach a fatal outcome in over 50% of the cases. It can produce both acute and chronic infections, the latter being particularly challenging to eliminate because of the intracellular life cycle of the bacteria and its ability to generate a "persister" dormant state. The molecular mechanism that allows the switch between growing and persister phenotypes is not well understood but it is hypothesized to be due at least in part to the participation of toxin-antitoxin (TA) systems. We have previously studied the link between one of those systems (defined as HigBA) with specific expression patterns associated with levofloxacin antibiotic exposure. Through in silico methods, we predicted the presence of another three pairs of genes encoding for additional putative HigBA systems. Therefore, our main goal was to establish which mechanisms are conserved as well as which pathways are specific among different Bpm TA systems from the same family. We hypothesize that the high prevalence, and sometimes even redundancy of these systems in the Bpm chromosomes indicates that they can interact with each other and not function as only individual systems, as it was traditionally thought, and might be playing an undefined role in Bpm lifecycle. Here, we show that both the toxin and the antitoxin of the different systems contribute to bacterial survival and that toxins from the same family can have a cumulative effect under environmental stressful conditions. IMPORTANCE: Toxin-antitoxin (TA) systems play a significant role in bacterial persistence, a phenomenon where bacterial cells enter a dormant or slow-growing state to survive adverse conditions such as nutrient deprivation, antibiotic exposure, or host immune responses. By studying TA systems in Burkholderia pseudomallei, we can gain insights into how this pathogen survives and persists in the host environment, contributing to its virulence and ability to cause melioidosis chronic infections.


Asunto(s)
Proteínas Bacterianas , Burkholderia pseudomallei , Melioidosis , Sistemas Toxina-Antitoxina , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/patogenicidad , Sistemas Toxina-Antitoxina/genética , Melioidosis/microbiología , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Antibacterianos/farmacología , Virulencia/genética , Regulación Bacteriana de la Expresión Génica , Antitoxinas/genética , Antitoxinas/metabolismo
5.
Cell Host Microbe ; 32(7): 1059-1073.e8, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38821063

RESUMEN

Toxin-antitoxins (TAs) are prokaryotic two-gene systems composed of a toxin neutralized by an antitoxin. Toxin-antitoxin-chaperone (TAC) systems additionally include a SecB-like chaperone that stabilizes the antitoxin by recognizing its chaperone addiction (ChAD) element. TACs mediate antiphage defense, but the mechanisms of viral sensing and restriction are unexplored. We identify two Escherichia coli antiphage TAC systems containing host inhibition of growth (HigBA) and CmdTA TA modules, HigBAC and CmdTAC. HigBAC is triggered through recognition of the gpV major tail protein of phage λ. Chaperone HigC recognizes gpV and ChAD via analogous aromatic molecular patterns, with gpV outcompeting ChAD to trigger toxicity. For CmdTAC, the CmdT ADP-ribosyltransferase toxin modifies mRNA to halt protein synthesis and limit phage propagation. Finally, we establish the modularity of TACs by creating a hybrid broad-spectrum antiphage system combining the CmdTA TA warhead with a HigC chaperone phage sensor. Collectively, these findings reveal the potential of TAC systems in broad-spectrum antiphage defense.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Chaperonas Moleculares , Sistemas Toxina-Antitoxina , Sistemas Toxina-Antitoxina/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Escherichia coli/virología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Bacteriófago lambda/genética , Bacteriófago lambda/fisiología , Bacteriófago lambda/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bacteriófagos/fisiología , Antitoxinas/metabolismo , Antitoxinas/genética , Proteínas de la Cola de los Virus/metabolismo , Proteínas de la Cola de los Virus/genética
6.
Infect Disord Drug Targets ; 24(8): e140324227967, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486387

RESUMEN

BACKGROUND: The toxin-antitoxin system is a genetic element that is highly present in Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis. The toxin-antitoxin system comprises toxin protein and antitoxin protein or non-encoded RNA interacting with each other and inhibiting toxin activity. M. Tuberculosis has more classes of TA loci than non-tubercle bacilli and other microbes, including VapBC, HigBA, MazEF, ParDE, RelBE, MbcTA, PemIK, DarTG, MenTA, one tripartite type II TAC chaperone system, and hypothetical proteins. AIMS: The study aims to demonstrate the genes encoded toxin-antitoxin system in mycobacterium tuberculosis strains from clinical samples. MATERIALS AND METHODS: The pulmonary and extra-pulmonary tuberculosis clinical samples were collected, and smear microscopy (Ziehl-Neelsen staining) was performed for the detection of high bacilli (3+) count, followed by nucleic acid amplification assay. Bacterial culture and growth assay, genomic DNA extraction, and polymerase chain reaction were also carried out. RESULTS: The positive PTB and EPTB samples were determined by 3+ in microscopy smear and the total count of tubercle bacilli determined by NAAT assay was 8.0×1005 in sputum and 1.3×1004 CFU/ml in tissue abscess. Moreover, the genomic DNA was extracted from culture, and the amplification of Rv1044 and Rv1045 genes in 624 and 412 base pairs (between 600-700 and 400-500 in ladder), respectively, in the H37Rv and clinical samples was observed. CONCLUSION: It has been found that Rv1044 and Rv1045 are hypothetical proteins with 624 and 882 base pairs belonging to the AbiEi/AbiEii family of toxin-antitoxin loci. Moreover, the significant identification of TA-encoded loci genes may allow for the investigation of multidrugresistant and extensively drug-resistant tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Esputo , Sistemas Toxina-Antitoxina , Mycobacterium tuberculosis/genética , Sistemas Toxina-Antitoxina/genética , Humanos , Esputo/microbiología , Tuberculosis Pulmonar/microbiología , Proteínas Bacterianas/genética , Tuberculosis/microbiología , Antitoxinas/genética , Toxinas Bacterianas/genética , Femenino , ADN Bacteriano/genética
7.
Emerg Microbes Infect ; 13(1): 2316814, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38323903

RESUMEN

Hypervirulent Klebsiella pneumoniae isolates have been increasingly reported worldwide, especially hypervirulent drug-resistant variants owing to the acquisition of a mobilizable virulence plasmid by a carbapenem-resistant strain. This pLVPK-like mobilizable plasmid encodes various virulence factors; however, information about its genetic stability is lacking. This study aimed to investigate the type II toxin-antitoxin (TA) modules that facilitate the virulence plasmid to remain stable in K. pneumoniae. More than 3,000 TA loci in 2,000 K. pneumoniae plasmids were examined for their relationship with plasmid cargo genes. TA loci from the RES-Xre family were highly correlated with virulence plasmids of hypervirulent K. pneumoniae. Overexpression of the RES toxin KnaT, encoded by the virulence plasmid-carrying RES-Xre locus knaAT, halts the cell growth of K. pneumoniae and E. coli, whereas co-expression of the cognate Xre antitoxin KnaA neutralizes the toxicity of KnaT. knaA and knaT were co-transcribed, representing the characteristics of a type II TA module. The knaAT deletion mutation gradually lost its virulence plasmid in K. pneumoniae, whereas the stability of the plasmid in E. coli was enhanced by adding knaAT, which revealed that the knaAT operon maintained the genetic stability of the large virulence plasmid in K. pneumoniae. String tests and mouse lethality assays subsequently confirmed that a loss of the virulence plasmid resulted in reduced pathogenicity of K. pneumoniae. These findings provide important insights into the role of the RES-Xre TA pair in stabilizing virulence plasmids and disseminating virulence genes in K. pneumoniae.


Asunto(s)
Antitoxinas , Klebsiella pneumoniae , Animales , Ratones , Virulencia/genética , Antitoxinas/genética , Escherichia coli/genética , Plásmidos/genética , Antibacterianos , beta-Lactamasas/genética
8.
ACS Synth Biol ; 13(3): 816-824, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38365187

RESUMEN

Candida glycerinogenes is an industrial yeast with excellent multistress resistance. However, due to the diploid genome and the lack of meiosis and screening markers, its molecular genetic operation is limited. Here, a gene editing system using the toxin-antitoxin pair relBE from the type II toxin-antitoxin system in Escherichia coli as a screening marker was constructed. The RelBE complex can specifically and effectively regulate cell growth and arrest through a conditionally controlled toxin RelE switch, thereby achieving the selection of positive recombinants. The constructed editing system achieved precise gene deletion, replacement, insertion, and gene episomal expression in C. glycerinogenes. Compared with the traditional amino acid deficiency complementation editing system, this editing system produced higher biomass and the gene deletion efficiency was increased by 3.5 times. Using this system, the production of 2-phenylethanol by C. glycerinogenes was increased by 11.5-13.5% through metabolic engineering and tolerance engineering strategies. These results suggest that the stable gene editing system based on toxin-antitoxin pairs can be used for gene editing of C. glycerinogenes to modify metabolic pathways and promote industrial applications. Therefore, the constructed gene editing system is expected to provide a promising strategy for polyploid industrial microorganisms lacking gene manipulation methods.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Alcohol Feniletílico , Pichia , Edición Génica/métodos , Antitoxinas/genética , Toxinas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo
9.
Sci Adv ; 10(1): eadj2403, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181072

RESUMEN

The parDE family of toxin-antitoxin (TA) operons is ubiquitous in bacterial genomes and, in Vibrio cholerae, is an essential component to maintain the presence of chromosome II. Here, we show that transcription of the V. cholerae parDE2 (VcparDE) operon is regulated in a toxin:antitoxin ratio-dependent manner using a molecular mechanism distinct from other type II TA systems. The repressor of the operon is identified as an assembly with a 6:2 stoichiometry with three interacting ParD2 dimers bridged by two ParE2 monomers. This assembly docks to a three-site operator containing 5'- GGTA-3' motifs. Saturation of this TA complex with ParE2 toxin results in disruption of the interface between ParD2 dimers and the formation of a TA complex of 2:2 stoichiometry. The latter is operator binding-incompetent as it is incompatible with the required spacing of the ParD2 dimers on the operator.


Asunto(s)
Antitoxinas , Vibrio cholerae , Antitoxinas/genética , Homeostasis , Genoma Bacteriano , Operón , Polímeros , Vibrio cholerae/genética
10.
Appl Environ Microbiol ; 90(2): e0068123, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38214519

RESUMEN

Bacterial toxin-antitoxin (TA) systems are widespread in chromosomes and plasmids of free-living microorganisms, but only a few have been identified in obligate intracellular species. We found seven putative type II TA modules in Waddlia chondrophila, a Chlamydia-related species that is able to infect a very broad series of eukaryotic hosts, ranging from protists to mammalian cells. The RNA levels of Waddlia TA systems are significantly upregulated by iron starvation and novobiocin, but they are not affected by antibiotics such as ß-lactams and glycopeptides, which suggests different mechanisms underlying stress responses. Five of the identified TA modules, including HigBA1 and MazEF1, encoded on the Waddlia cryptic plasmid, proved to be functional when expressed in a heterologous host. TA systems have been associated with the maintenance of mobile genetic elements, bacterial defense against bacteriophages, and persistence upon exposure to adverse conditions. As their RNA levels are upregulated upon exposure to adverse conditions, Waddlia TA modules may be involved in survival to stress. Moreover, as Waddlia can infect a wide range of hosts including free-living amoebae, TA modules could also represent an innate immunity system to fight against bacteriophages and other microorganisms with which Waddlia has to share its replicative niche.IMPORTANCEThe response to adverse conditions, such as exposure to antibiotics, nutrient starvation and competition with other microorganisms, is essential for the survival of a bacterial population. TA systems are modules composed of two elements, a toxic protein and an antitoxin (protein or RNA) that counteracts the toxin. Although many aspects of TA biological functions still await to be elucidated, TAs have often been implicated in bacterial response to stress, including the response to nutrient starvation, antibiotic treatment and bacteriophage infection. TAs are ubiquitous in free-living bacteria but rare in obligate intracellular species such as chlamydiae. We identified functional TA systems in Waddlia chondrophila, a chlamydial species with a strikingly broad host range compared to other chlamydiae. Our work contributes to understand how obligate intracellular bacteria react to adverse conditions that might arise from competition with other viruses/bacteria for the same replicative niche and would threaten their ability to replicate.


Asunto(s)
Antitoxinas , Chlamydia , Chlamydiales , Sistemas Toxina-Antitoxina , Toxinas Biológicas , Animales , Sistemas Toxina-Antitoxina/genética , Chlamydia/genética , Chlamydia/metabolismo , Toxinas Biológicas/metabolismo , Antitoxinas/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , ARN/metabolismo , Mamíferos
11.
Microbiol Spectr ; 12(2): e0347123, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38206055

RESUMEN

Although toxin/antitoxin (TA) systems are ubiquitous, beyond phage inhibition and mobile element stabilization, their role in host metabolism is obscure. One of the best-characterized TA systems is MqsR/MqsA of Escherichia coli, which has been linked previously to protecting gastrointestinal species during the stress it encounters from the bile salt deoxycholate as it colonizes humans. However, some recent whole-population studies have challenged the role of toxins such as MqsR in bacterial physiology since the mqsRA locus is induced over a hundred-fold during stress, but a phenotype was not found upon its deletion. Here, we investigate further the role of MqsR/MqsA by utilizing single cells and demonstrate that upon oxidative stress, the TA system MqsR/MqsA has a heterogeneous effect on the transcriptome of single cells. Furthermore, we discovered that MqsR activation leads to induction of the poorly characterized yfjXY ypjJ yfjZF operon of cryptic prophage CP4-57. Moreover, deletion of yfjY makes the cells sensitive to H2O2, acid, and heat stress, and this phenotype was complemented. Hence, we recommend yfjY be renamed to lfgB (less fatality gene B). Critically, MqsA represses lfgB by binding the operon promoter, and LfgB is a protease that degrades MqsA to derepress rpoS and facilitate the stress response. Therefore, the MqsR/MqsA TA system facilitates the stress response through cryptic phage protease LfgB.IMPORTANCEThe roles of toxin/antitoxin systems in cell physiology are few and include phage inhibition and stabilization of genetic elements; yet, to date, there are no single-transcriptome studies for toxin/antitoxin systems and few insights for prokaryotes from this novel technique. Therefore, our results with this technique are important since we discover and characterize a cryptic prophage protease that is regulated by the MqsR/MqsA toxin/antitoxin system in order to regulate the host response to oxidative stress.


Asunto(s)
Antitoxinas , Proteínas de Escherichia coli , Humanos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Profagos , Péptido Hidrolasas/metabolismo , Antitoxinas/genética , Peróxido de Hidrógeno/metabolismo , Estrés Oxidativo , Endopeptidasas/metabolismo , Análisis de la Célula Individual , Proteínas de Unión al ADN/metabolismo
12.
Biochimie ; 217: 95-105, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37473832

RESUMEN

Toxin-antitoxin systems (TAs) are generally two-component genetic modules present in almost every prokaryotic genome. The production of the free and active toxin is able to disrupt key cellular processes leading to the growth inhibition or death of its host organism in absence of its cognate antitoxin. The functions attributed to TAs rely on this lethal phenotype ranging from mobile genetic elements stabilization to phage defense. Their abundance in prokaryotic genomes as well as their lethal potential make them attractive targets for new antibacterial strategies. The hijacking of TAs requires a deep understanding of their regulation to be able to design such approach. In this review, we summarize the accumulated knowledge on how bacteria cope with these toxic genes in their genome. The characterized TAs can be grouped based on the way they prevent toxicity. Some systems rely on a tight control of the expression to prevent the production of the toxin while others control the activity of the toxin at the post-translational level.


Asunto(s)
Antitoxinas , Sistemas Toxina-Antitoxina , Toxinas Biológicas , Sistemas Toxina-Antitoxina/genética , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Bacterias/genética , Bacterias/metabolismo , Antitoxinas/genética , Antitoxinas/metabolismo , Células Procariotas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
13.
Protein Expr Purif ; 215: 106403, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37977515

RESUMEN

Toxin-antitoxin (TA) systems are small operons that are omnipresent in bacteria and archaea with suggested roles in stabilization of mobile genetic elements, bacteriophage protection, stress response and possibly persister formation. A major bottleneck in the study of TA toxins is the production of sufficient amounts of well-folded, functional protein. Here we examine alternative approaches for obtaining the VcParE2 toxin from Vibrio cholerae. VcParE2 can be successfully produced via bacterial expression in presence of its cognate antitoxin VcParD2, followed by on-column unfolding and refolding. Alternatively, the toxin can be expressed in Spodoptera frugiperda (Sf9) insect cells. The latter requires disruption of the VcparE2 gene via introduction of an insect cell intron. Both methods provide protein with similar structural and functional characteristics.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Vibrio cholerae , Toxinas Bacterianas/genética , Antitoxinas/genética , Antitoxinas/metabolismo , Vibrio cholerae/genética , Operón , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
14.
mBio ; 15(1): e0302323, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38117088

RESUMEN

IMPORTANCE: Large-scale genomic studies of E. coli provide an invaluable opportunity to understand how genomic fine-tuning contributes to the transition of bacterial lifestyle from being commensals to mutualists or pathogens. Within this context, through machine learning-based studies, it appears that TA systems play an important role in the classification of high-risk clonal lineages and could be attributed to their epidemiological success. Due to these profound indications and assumptions, we attempted to provide unique insights into the ordered world of TA systems at the population level by investigating the diversity and evolutionary patterns of TA genes across 19 different STs of E. coli. Further in-depth analysis of ST-specific TA structures and associated genetic coordinates holds the potential to elucidate the functional implications of TA systems in bacterial cell survival and persistence, by and large.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Proteínas de Escherichia coli , Sistemas Toxina-Antitoxina , Humanos , Escherichia coli/genética , Sistemas Toxina-Antitoxina/genética , Toxinas Bacterianas/genética , Proteínas de Escherichia coli/genética , Bacterias , Proteínas Bacterianas/genética , Antitoxinas/genética
15.
Nucleic Acids Res ; 52(3): 1298-1312, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38117986

RESUMEN

Bacteria harbor diverse mechanisms to defend themselves against their viral predators, bacteriophages. In response, phages can evolve counter-defense systems, most of which are poorly understood. In T4-like phages, the gene tifA prevents bacterial defense by the type III toxin-antitoxin (TA) system toxIN, but the mechanism by which TifA inhibits ToxIN remains unclear. Here, we show that TifA directly binds both the endoribonuclease ToxN and RNA, leading to the formation of a high molecular weight ribonucleoprotein complex in which ToxN is inhibited. The RNA binding activity of TifA is necessary for its interaction with and inhibition of ToxN. Thus, we propose that TifA inhibits ToxN during phage infection by trapping ToxN on cellular RNA, particularly the abundant 16S rRNA, thereby preventing cleavage of phage transcripts. Taken together, our results reveal a novel mechanism underlying inhibition of a phage-defensive RNase toxin by a small, phage-encoded protein.


Asunto(s)
Bacteriófagos , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Bacteriófagos/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/química , ARN Ribosómico 16S
16.
FEMS Microbiol Rev ; 47(6)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-38052429

RESUMEN

Small proteins comprising less than 100 amino acids have been often ignored in bacterial genome annotations. About 10 years ago, focused efforts started to investigate whole peptidomes, which resulted in the discovery of a multitude of small proteins, but only a number of them have been characterized in detail. Generally, small proteins can be either membrane or cytosolic proteins. The latter interact with larger proteins, RNA or even metal ions. Here, we summarize our current knowledge on small proteins from Gram-positive bacteria with a special emphasis on the model organism Bacillus subtilis. Our examples include membrane-bound toxins of type I toxin-antitoxin systems, proteins that block the assembly of higher order structures, regulate sporulation or modulate the RNA degradosome. We do not consider antimicrobial peptides. Furthermore, we present methods for the identification and investigation of small proteins.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Genoma Bacteriano , Antitoxinas/genética , Antitoxinas/metabolismo
17.
Ann Clin Microbiol Antimicrob ; 22(1): 89, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798613

RESUMEN

BACKGROUND: Biofilm formation by Pseudomonas aeruginosa (P. aeruginosa) is known to be characteristic of this organism. This bacterium is considered one of the most life-threatening bacteria and has been identified as a priority pathogen for research by WHO. Biofilm-producing P. aeruginosa is a concern in many parts of the world due to antibiotic resistance. Alginate also plays an important role in the biofilm formation of P. aeruginosa as well as the emergence of antibiotic resistance in biofilms. In addition, the systems of toxin-antitoxin( TA) play an important role in biofilm formation. Metal nanoparticle(NP) such as zinc oxide (ZnO) also have extensive biological properties, especially anti-biofilm properties. Therefore, this study was conducted in relation to the importance of zinc oxide nanoparticles (ZnO NPs) in biofilm formation and also the correlation of gene expression of TA systems in clinical isolates of P. aeruginosa. METHODS: A total of 52 P. aeruginosa isolates were collected from burns (n = 15), UTI (n = 31), and trachea (n = 6) in hospitals in Ilam between May 2020 and October 2020. Biofilm formation was assessed using a microtiter plate assay. MIC and sub-MIC concentrations of ZnO NPs (10-30 nm with purity greater than 99.8%) in P. aeruginosa were determined. Subsequently, biofilm formation was investigated using sub-MIC concentrations of ZnO NPs. Finally, total RNA was extracted and RT- qPCR was used to determine the expression levels of genes of mazEF, mqsRA, and higBA of TA systems. RESULTS: Six isolates of P. aeruginosa were found to form strong biofilms. The results showed that ZnO NPs were able to inhibit biofilm formation. In our experiments, we found that the sub-MIC concentration of ZnO NPs increased the gene expression of antitoxins mazE and mqsA and toxin higB of TA systems treated with ZnO NPs. CONCLUSIONS: In the present study, ZnO NPs were shown to effectively inhibit biofilm formation in P. aeruginosa. Our results support the relationship between TA systems and ZnO NPs in biofilm formation in P. aeruginosa. Importantly, the expression of antitoxins mazE and mqsA was high after treatment with ZnO NPs, but not that of antitoxin higA.


Asunto(s)
Antitoxinas , Nanopartículas del Metal , Sistemas Toxina-Antitoxina , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Pseudomonas aeruginosa , Sistemas Toxina-Antitoxina/genética , Biopelículas , Antitoxinas/genética , Antitoxinas/metabolismo , Antitoxinas/farmacología , Expresión Génica , Antibacterianos/farmacología
18.
Biochemistry (Mosc) ; 88(9): 1326-1337, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37770399

RESUMEN

Genetic toxin-antitoxin element hok/sok from the natural Escherichia coli R1 plasmid ensures segregational stability of plasmids. Bacterial cells that have lost all copies of the plasmid encoding the short-lived antitoxin are killed by the stable toxin. When introduced into bacterial expression vectors, the hok/sok element can increase the productive time of recombinant protein biosynthesis by slowing down accumulation of non-producing cells lacking the expression plasmid. In this work, we studied the effects of position and orientation of the hok/sok element in the standard pET28a plasmid with the inducible T7lac promoter and kanamycin resistance gene. It was found that the hok/sok element retained its functional activity regardless of its location and orientation in the plasmid. Bacterial cells retained the hok/sok-containing plasmids after four days of cultivation without antibiotics, while the control plasmid without this element was lost. Using three target proteins - E. coli type II asparaginase (ASN), human growth hormone (HGH), and SARS-CoV-2 virus nucleoprotein (NP) - it was demonstrated that the maximum productivity of bacteria for the cytoplasmic proteins (HGH and NP) was observed only when the hok/sok element was placed upstream of the target gene promoter. In the case of periplasmic protein localization (ASN), the productivity of bacteria during cultivation with the antibiotic decreased for all variants of the hok/sok location. When the bacteria were cultivated without the antibiotic, the productivity was better preserved when the hok/sok element was located upstream of the target gene promoter. The use of the pEHU vector with the upstream location of the hok/sok element allowed to more than double the yield of HGH (produced as inclusion bodies) in the absence of antibiotic and to maintain ASN biosynthesis at the level of at least 10 mg/liter for four days during cultivation without antibiotics. The developed segregation-stabilized plasmid vectors can be used to obtain various recombinant proteins in E. coli cells without the use of antibiotics.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Proteínas de Escherichia coli , Sistemas Toxina-Antitoxina , Humanos , Antibacterianos/farmacología , Antitoxinas/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Plásmidos/genética , ARN Bacteriano/metabolismo
19.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 10): 247-256, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37728608

RESUMEN

The aTfaRel2/faRel2 operon from Coprobacillus sp. D7 encodes a bicistronic type II toxin-antitoxin (TA) module. The FaRel2 toxin is a toxic small alarmone synthetase (toxSAS) that inhibits translation through the pyrophosphorylation of uncharged tRNAs at the 3'-CCA end. The toxin is neutralized by the antitoxin ATfaRel2 through the formation of an inactive TA complex. Here, the production, biophysical analysis and crystallization of ATfaRel2 and FaRel2 as well as of the ATfaRel2-FaRel2 complex are reported. ATfaRel2 is monomeric in solution. The antitoxin crystallized in space group P21212 with unit-cell parameters a = 53.3, b = 34.2, c = 37.6 Å, and the best crystal diffracted to a resolution of 1.24 Å. Crystals of FaRel2 in complex with APCPP, a nonhydrolysable ATP analogue, belonged to space group P21, with unit-cell parameters a = 31.5, b = 60.6, c = 177.2 Å, ß = 90.6°, and diffracted to 2.6 Šresolution. The ATfaRel2-FaRel2Y128F complex forms a heterotetramer in solution composed of two toxins and two antitoxins. This complex crystallized in two space groups: F4132, with unit-cell parameters a = b = c = 227.1 Å, and P212121, with unit-cell parameters a = 51.7, b = 106.2, c = 135.1 Å. The crystals diffracted to 1.98 and 2.1 Šresolution, respectively.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Antitoxinas/genética , Antitoxinas/química , Cristalografía por Rayos X , Toxinas Bacterianas/genética , Toxinas Bacterianas/química , Rayos X , Operón , Proteínas Bacterianas/genética , Proteínas Bacterianas/química
20.
FEMS Microbiol Rev ; 47(5)2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37715317

RESUMEN

Toxin-antitoxin (TA) systems are entities found in the prokaryotic genomes, with eight reported types. Type II, the best characterized, is comprised of two genes organized as an operon. Whereas toxins impair growth, the cognate antitoxin neutralizes its activity. TAs appeared to be involved in plasmid maintenance, persistence, virulence, and defence against bacteriophages. Most Type II toxins target the bacterial translational machinery. They seem to be antecessors of Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) RNases, minimal nucleotidyltransferase domains, or CRISPR-Cas systems. A total of four TAs encoded by Streptococcus pneumoniae, RelBE, YefMYoeB, Phd-Doc, and HicAB, belong to HEPN-RNases. The fifth is represented by PezAT/Epsilon-Zeta. PezT/Zeta toxins phosphorylate the peptidoglycan precursors, thereby blocking cell wall synthesis. We explore the body of knowledge (facts) and hypotheses procured for Type II TAs and analyse the data accumulated on the PezAT family. Bioinformatics analyses showed that homologues of PezT/Zeta toxin are abundantly distributed among 14 bacterial phyla mostly in Proteobacteria (48%), Firmicutes (27%), and Actinobacteria (18%), showing the widespread distribution of this TA. The pezAT locus was found to be mainly chromosomally encoded whereas its homologue, the tripartite omega-epsilon-zeta locus, was found mostly on plasmids. We found several orphan pezT/zeta toxins, unaccompanied by a cognate antitoxin.


Asunto(s)
Antitoxinas , Toxinas Bacterianas , Antitoxinas/química , Antitoxinas/genética , Toxinas Bacterianas/genética , Bacterias/genética , Bacterias/metabolismo , Operón , Células Procariotas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA