Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
1.
Toxicon ; 249: 108057, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39103096

RESUMEN

Snakebites are considered a significant health issue. Current antivenoms contain polyclonal antibodies, which vary in their specificity against different venom components. Development and characterization of next generation antivenoms including nanobodies against Naja naja oxiana was the main aim of this study. Crude venom was injected into the Sephadex G50 filtration gel chromatography column and then toxic fractions were obtained. Then the corresponding fraction was injected into the HPLC column and the toxic peaks were identified. N. naja oxiana venom was injected into a camel and specific nanobodies screening was performed against the toxic peak using phage display technique. The obtained results showed that among the 12 clones obtained, N24 nanobody was capable of neutralizing P1, the most toxic peak obtained from HPLC chromatography. The molecular weight of P1 was measured with a mass spectrometer and was found to be about seven kDa. The results of the neutralization test of crude N. naja oxiana venom with N24 nanobody showed that 250 µg of recombinant nanobody could neutralize the toxic effects of 20 µg equivalent to LD50 × 10 of crude venom in mice. The findings indicate the potential of the developed nanobody to serve as a novel antivenom therapy.


Asunto(s)
Antivenenos , Venenos Elapídicos , Naja naja , Anticuerpos de Dominio Único , Mordeduras de Serpientes , Animales , Venenos Elapídicos/inmunología , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología , Ratones , Antivenenos/farmacología , Antivenenos/inmunología , Mordeduras de Serpientes/tratamiento farmacológico , Camelus , Cromatografía Líquida de Alta Presión , Pruebas de Neutralización
2.
Acta Trop ; 258: 107354, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39106916

RESUMEN

Loxoscelism is the pathological condition triggered by a brown spider bite. The venom of these spiders is rich in phospholipases D (PLDs), which can induce virtually all local and systemic manifestations. Recombinant mutated PLDs from clinically relevant Loxosceles species in South America have been investigated as potential antigens to develop novel therapeutic strategies for loxoscelism. However, certain gaps need to be addressed before a clinical approach can be implemented. In this study, we examined the potential of these recombinant mutated PLDs as antigens by testing some variations in the immunization scheme. Furthermore, we evaluated the efficacy of the produced antibodies in neutralizing the nephrotoxicity and sphingomyelinase activity of brown spider venoms. Our findings indicate that the number of immunizations has a greater impact on the effectiveness of neutralization compared to the amount of antigen. Specifically, two or three doses were equally effective in reducing dermonecrosis and edema. Additionally, three immunizations proved to be more effective in neutralizing mice lethality than one or two. Moreover, immunizations mitigated the signs of kidney injury, a crucial aspect given that acute renal failure is a serious systemic complication. In vitro inhibition of the sphingomyelinase activity of Loxosceles venoms, a key factor in vivo toxicity, was nearly complete after incubation with antibodies raised against these antigens. These findings underscore the importance of implementing an effective immunization scheme with multiple immunizations, without the need for high antigen doses, and enhances the spectrum of neutralization exhibited by antibodies generated with these antigens. In summary, these results highlight the strong potential of these antigens for the development of new therapeutic strategies against cutaneous and systemic manifestations of loxoscelism.


Asunto(s)
Fosfolipasa D , Proteínas Recombinantes , Venenos de Araña , Animales , Fosfolipasa D/inmunología , Fosfolipasa D/genética , Venenos de Araña/inmunología , Ratones , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Picaduras de Arañas/inmunología , Araña Reclusa Parda/inmunología , Femenino , Antígenos/inmunología , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/inmunología , Anticuerpos Neutralizantes , Antivenenos/inmunología , Antivenenos/administración & dosificación , Modelos Animales de Enfermedad , Inmunización , Hidrolasas Diéster Fosfóricas
3.
Toxins (Basel) ; 16(8)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39195771

RESUMEN

Snake venoms are cocktails of biologically active molecules that have evolved to immobilize prey, but can also induce a severe pathology in humans that are bitten. While animal-derived polyclonal antivenoms are the primary treatment for snakebites, they often have limitations in efficacy and can cause severe adverse side effects. Building on recent efforts to develop improved antivenoms, notably through monoclonal antibodies, requires a comprehensive understanding of venom toxins. Among these toxins, snake venom metalloproteinases (SVMPs) play a pivotal role, particularly in viper envenomation, causing tissue damage, hemorrhage and coagulation disruption. One of the current challenges in the development of neutralizing monoclonal antibodies against SVMPs is the large size of the protein and the lack of existing knowledge of neutralizing epitopes. Here, we screened a synthetic human antibody library to isolate monoclonal antibodies against an SVMP from saw-scaled viper (genus Echis) venom. Upon characterization, several antibodies were identified that effectively blocked SVMP-mediated prothrombin activation. Cryo-electron microscopy revealed the structural basis of antibody-mediated neutralization, pinpointing the non-catalytic cysteine-rich domain of SVMPs as a crucial target. These findings emphasize the importance of understanding the molecular mechanisms of SVMPs to counter their toxic effects, thus advancing the development of more effective antivenoms.


Asunto(s)
Anticuerpos Neutralizantes , Protrombina , Animales , Humanos , Anticuerpos Neutralizantes/inmunología , Protrombina/inmunología , Protrombina/química , Antivenenos/farmacología , Antivenenos/inmunología , Antivenenos/química , Venenos de Víboras/inmunología , Venenos de Víboras/química , Venenos de Víboras/toxicidad , Cisteína/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Metaloproteasas/química , Metaloproteasas/inmunología , Dominios Proteicos , Viperidae
4.
Aust Vet J ; 102(9): 485-488, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009475

RESUMEN

The eastern small eyed snake (Cryptophis nigrescens; CN) is an uncommon cause of snakebite in Australia despite the widespread distribution of the snake along the east coast of Australia. Diagnosis of envenomation relies on identification of the snake which is often not possible with animal snakebite cases. This study examined the immunoreactivity profile of CN venom towards specific rabbit IgG made against the medically relevant snake venom immunotypes found in Australia (tiger, brown, black, death adder and taipan). A simultaneous sandwich ELISA format was used to quantify CN venom binding to venom specific Protein A purified rabbit IgG. The binding profiles demonstrated weak binding of CN venom to rabbit IgG made against both tiger (N. scutatus) and black snake (P. australis) venoms with approximately 0.19% and 0.069% cross reactivity, respectively. However, the concentration of venom likely to be present in the urine of CN envenomed patients and the low cross reactivity suggest that envenomed veterinary patients are unlikely to be detected in the commercial snake venom detection kit. It is possible that CN envenomation is more common but may be underdiagnosed where snake venom antigen detection is relied upon solely. Serum biochemical abnormalities also overlap with other snake species found in the same geographical area. In respect of antivenom therapy, administration of tiger snake antivenom is supported by the binding data, but due to the low cross reactivity multiple vials may be required. Limited clinical evidence also supports the efficacy of tiger snake antivenom for envenomation by CN.


Asunto(s)
Antivenenos , Venenos Elapídicos , Elapidae , Ensayo de Inmunoadsorción Enzimática , Mordeduras de Serpientes , Animales , Venenos Elapídicos/inmunología , Mordeduras de Serpientes/veterinaria , Mordeduras de Serpientes/inmunología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Australia , Antivenenos/inmunología , Antivenenos/uso terapéutico , Conejos , Especificidad de la Especie , Reacciones Cruzadas , Inmunoglobulina G/sangre
5.
Appl Environ Microbiol ; 90(8): e0012124, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38980046

RESUMEN

Naja atra, the Chinese cobra, is a major cause of snake envenomation in Asia, causing hundreds of thousands of clinical incidents annually. The current treatment, horse serum-derived antivenom, has unpredictable side effects and presents manufacturing challenges. This study focused on developing new-generation snake venom antidotes by using microbial phage display technology to derive nanobodies from an alpaca immunized with attenuated N. atra venom. Following confirmation of the immune response in the alpaca, we amplified VHH genes from isolated peripheral blood mononuclear cells and constructed a phage display VHH library of 1.0 × 107 transformants. After four rounds of biopanning, the enriched phages exhibited increased binding activity to N. atra venom. Four nanobody clones with high binding affinities were selected: aNAH1, aNAH6, aNAH7, and aNAH9. Specificity testing against venom from various snake species, including two Southeast Asian cobra species, revealed nanobodies specific to the genus Naja. An in vivo mouse venom neutralization assay demonstrated that all nanobodies prolonged mouse survival and aNAH6 protected 66.6% of the mice from the lethal dosage. These findings highlight the potential of phage display-derived nanobodies as valuable antidotes for N. atra venom, laying the groundwork for future applications in snakebite treatment.IMPORTANCEChinese cobra venom bites present a formidable medical challenge, and current serum treatments face unresolved issues. Our research applied microbial phage display technology to obtain a new, effective, and cost-efficient treatment approach. Despite interest among scientists in utilizing this technology to screen alpaca antibodies against toxins, the available literature is limited. This study makes a significant contribution by introducing neutralizing antibodies that are specifically tailored to Chinese cobra venom. We provide a comprehensive and unbiased account of the antibody construction process, accompanied by thorough testing of various nanobodies and an assessment of cross-reactivity with diverse snake venoms. These nanobodies represent a promising avenue for targeted antivenom development that bridges microbiology and biotechnology to address critical health needs.


Asunto(s)
Antivenenos , Camélidos del Nuevo Mundo , Venenos Elapídicos , Anticuerpos de Dominio Único , Mordeduras de Serpientes , Animales , Anticuerpos de Dominio Único/inmunología , Ratones , Mordeduras de Serpientes/terapia , Mordeduras de Serpientes/inmunología , Antivenenos/inmunología , Venenos Elapídicos/inmunología , Técnicas de Visualización de Superficie Celular , Naja naja , Biblioteca de Péptidos
6.
Toxicon ; 248: 107845, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38960288

RESUMEN

Echis ocellatus is one of the commonest snakes responsible for envenomation in Nigeria. Antivenom is the only effective treatment, but the country suffers from a limited supply of effective antivenom. This study therefore aimed to explore the feasibility of effective, mono-specific antibodies production through immunization in rabbits using the venom of Echis ocellatus from Nigeria. The World Health Organization guide on antivenom production was employed in the immunization and the resultant antibodies were purified using protein A agarose column chromatography. Antibody titer reached a high plateau by 2-month immunization, and SDS PAGE of the sera suggests the presence of intact immunoglobulins accompanied with the heavy (50 kDa) and light (25 kDa) chains. The venom has an intravenous LD50 of 0.35 mg/kg in mice, and the venom lethality at a challenge dose of 2 LD50 was effectively neutralized by the antibodies with a potency value of 0.83 mg venom per g antibodies. The antibodies also neutralized the procoagulant activity of the venom with an effective dose (ED) of 13 ± 0.66 µl, supporting its use for hemotoxic envenomation. The study establishes the feasibility of developing effective, mono-specific antibodies against the Nigerian Carpet viper.


Asunto(s)
Antivenenos , Venenos de Víboras , Viperidae , Animales , Antivenenos/inmunología , Venenos de Víboras/inmunología , Venenos de Víboras/toxicidad , Conejos , Nigeria , Ratones , Dosificación Letal Mediana , Anticuerpos/inmunología , Inmunización , Mordeduras de Serpientes/inmunología , Echis
7.
Biochem Biophys Res Commun ; 732: 150420, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39047403

RESUMEN

Antivenoms are essential in the treatment of the neurotoxicity caused by elapid snakebites. However, there are elapid neurotoxins, e.g., long-chain α-neurotoxins (also known as long-chain three-finger toxins) that are barely neutralized by commercial elapid antivenoms; so, recombinant elapid neurotoxins could be an alternative or complements for improving antibody production against the lethal long-chain α-neurotoxins from elapid venoms. This work communicates the expression of a recombinant long-chain α-neurotoxin, named HisrLcNTx or rLcNTx, which based on the most lethal long-chain α-neurotoxins reported, was constructed de novo. The gene of rLcNTx was synthesized and introduced into the expression vector pQE30, which contains a proteolytic cleavage region for exscinding the mature protein, and His residues in tandem for affinity purification. The cloned pQE30/rLcNTx was transfected into Escherichia coli Origami cells to express rLcNTx. After expression, it was found in inclusion bodies, and folded in multiple Cys-Cys structural isoforms. To observe the capability of those isoforms to generate antibodies against native long-chain α-neurotoxins, groups of rabbits were immunized with different cocktails of Cys-Cys rLcNTx isoforms. In vitro, and in vivo analyses revealed that rabbit antibodies raised against different rLcNTx Cys-Cys isoforms were able to recognize pure native long-chain α-neurotoxins and their elapid venoms, but they were unable to neutralize bungarotoxin, a classical long-chain α-neurotoxin, and other elapid venoms. The rLcNTx Cys-Cys isoform 2 was the immunogen that produced the best neutralizing antibodies in rabbits. Yet to neutralize the elapid venoms from the black mamba Dendroaspis polylepis, and the coral shield cobra Aspidelaps lubricus, it was required to use two types of antibodies, the ones produced using rLcNTx Cys-Cys isoform 2 and antibodies produced using short-chain α-neurotoxins. Expression of recombinant elapid neurotoxins as immunogens could be an alternative to improve elapid antivenoms; nevertheless, recombinant elapid neurotoxins must be well-folded to be used as immunogens for obtaining neutralizing antibodies.


Asunto(s)
Antivenenos , Venenos Elapídicos , Neurotoxinas , Pliegue de Proteína , Proteínas Recombinantes , Animales , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Venenos Elapídicos/inmunología , Venenos Elapídicos/genética , Venenos Elapídicos/química , Antivenenos/inmunología , Antivenenos/química , Neurotoxinas/inmunología , Neurotoxinas/genética , Neurotoxinas/química , Anticuerpos Neutralizantes/inmunología , Conejos , Secuencia de Aminoácidos
8.
Toxins (Basel) ; 16(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39057941

RESUMEN

Alternative recombinant sources of antivenoms have been successfully generated. The application of such strategies requires the characterization of the venoms for the development of specific neutralizing molecules against the toxic components. Five toxic peptides to mammals from the Mexican scorpion Centruroides villegasi were isolated by chromatographic procedures by means of gel filtration on Sephadex G-50, followed by ion-exchange columns on carboxy-methyl-cellulose (CMC) resins and finally purified by high-performance chromatography (HPLC) columns. Their primary structures were determined by Edman degradation. They contain 66 amino acids and are maintained well packed by four disulfide bridges, with molecular mass from 7511.3 to 7750.1 Da. They are all relatively toxic and deadly to mice and show high sequence identity with known peptides that are specific modifiers of the gating mechanisms of Na+ ion channels of type beta-toxin (ß-ScTx). They were named Cv1 to Cv5 and used to test their recognition by single-chain variable fragments (scFv) of antibodies, using surface plasmon resonance. Three different scFvs generated in our laboratory (10FG2, HV, LR) were tested for recognizing the various new peptides described here, paving the way for the development of a novel type of scorpion antivenom.


Asunto(s)
Péptidos , Venenos de Escorpión , Escorpiones , Anticuerpos de Cadena Única , Animales , Venenos de Escorpión/química , Venenos de Escorpión/toxicidad , Venenos de Escorpión/inmunología , Péptidos/química , Anticuerpos de Cadena Única/química , Humanos , Ratones , Secuencia de Aminoácidos , Antivenenos/inmunología , Antivenenos/química , Antivenenos/farmacología , Animales Ponzoñosos
9.
Toxicon ; 247: 107837, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945216

RESUMEN

Camelid immunoglobulins represent a unique facet of antibody biology, challenging conventional understandings of antibody diversification. IgG2 and IgG3 in particular are composed solely of heavy chains and exhibit a reduced molecular weight (90 kDa); their elongated complementarity determining region (CDR) loops play a pivotal role in their functioning, delving deep into enzyme active sites with precision. Serum therapy stands as the primary venom-specific treatment for snakebite envenomation, harnessing purified antibodies available in diverse forms such as whole IgG, monovalent fragment antibody (Fab), or divalent fragment antibody F (ab')2. This investigation looks into the intricacies of IgGs derived from camelid serum previously immunized with crotamine and crotoxin, toxins predominantly in Crotalus durissus venom, exploring their recognition capacity, specificity, and cross-reactivity to snake venoms and its toxins. Initially, IgG purification employed affinity chromatography via protein A and G columns to segregate conventional antibodies (IgG1) from heavy chain antibodies (IgG2 and IgG3) of camelid isotypes sourced from Lama glama serum. Subsequent electrophoretic analysis (SDS-PAGE) revealed distinct bands corresponding to molecular weight profiles of IgG's fractions representing isotypes in Lama glama serum. ELISA cross-reactivity assays demonstrated all three IgG isotypes' ability to recognize the tested venoms. Notably, IgG1 exhibited the lowest interactivity in analyses involving bothropic and crotalic venoms. However, IgG2 and IgG3 displayed notable cross-reactivity, particularly with crotalic venoms and toxins, albeit with exceptions such as PLA2-CB, showing reduced reactivity, and C. atrox, where IgGs exhibited insignificant reactivity. In Western blot assays, IgG2 and IgG3 exhibited recognition of proteins within molecular weight (≈15 kDa) of C. d. collilineatus to C. d. terrificus, with some interaction observed even with bothropic proteins despite lower reactivity. These findings underscore the potential of camelid heavy-chain antibodies, suggesting Lama glama IgGs as prospective candidates for a novel class of serum therapies. However, further investigations are imperative to ascertain their suitability for serum therapy applications.


Asunto(s)
Antivenenos , Inmunoglobulina G , Animales , Antivenenos/inmunología , Inmunoglobulina G/inmunología , Crotalus/inmunología , Venenos de Crotálidos/inmunología , Reacciones Cruzadas , Camélidos del Nuevo Mundo/inmunología , Crotoxina/inmunología , Camelidae/inmunología
10.
Front Immunol ; 15: 1407398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933276

RESUMEN

Poisoning by widow-spider (genus Latrodectus) bites occurs worldwide. The illness, termed latrodectism, can cause severe and persistent pain and can lead to muscle rigidity, respiratory complications, and cardiac problems. It is a global health challenge especially in developing countries. Equine serum-derived polyclonal anti-sera are commercially available as a medication for patients with latrodectism, but the use of sera imposes potential inherent risks related to its animal origin. The treatment may cause allergic reactions in humans (serum sickness), including anaphylactic shock. Furthermore, equine-derived antivenom is observed to have batch-to-batch variability and poor specificity, as it is always an undefined mix of antibodies. Because latrodectism can be extremely painful but is rarely fatal, the use of antivenom is controversial and only a small fraction of patients is treated. In this work, recombinant human antibodies were selected against alpha-latrotoxin of the European black widow (Latrodectus tredecimguttatus) by phage display from a naïve antibody gene library. Alpha-Latrotoxin (α-LTX) binding scFv were recloned and produced as fully human IgG. A novel alamarBlue assay for venom neutralization was developed and used to select neutralizing IgGs. The human antibodies showed in vitro neutralization efficacy both as single antibodies and antibody combinations. This was also confirmed by electrophysiological measurements of neuronal activity in cell culture. The best neutralizing antibodies showed nanomolar affinities. Antibody MRU44-4-A1 showed outstanding neutralization efficacy and affinity to L. tredecimguttatus α-LTX. Interestingly, only two of the neutralizing antibodies showed cross-neutralization of the venom of the Southern black widow (Latrodectus mactans). This was unexpected, because in the current literature the alpha-latrotoxins are described as highly conserved. The here-engineered antibodies are candidates for future development as potential therapeutics and diagnostic tools, as they for the first time would provide unlimited supply of a chemically completely defined drug of constant quality and efficacy, which is also made without the use of animals.


Asunto(s)
Anticuerpos Neutralizantes , Antivenenos , Araña Viuda Negra , Venenos de Araña , Humanos , Animales , Araña Viuda Negra/inmunología , Anticuerpos Neutralizantes/inmunología , Venenos de Araña/inmunología , Antivenenos/inmunología , Anticuerpos de Cadena Única/inmunología , Picaduras de Arañas/inmunología , Inmunoglobulina G/inmunología
11.
Nat Commun ; 15(1): 4310, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773068

RESUMEN

Oligoclonal mixtures of broadly-neutralizing antibodies can neutralize complex compositions of similar and dissimilar antigens, making them versatile tools for the treatment of e.g., infectious diseases and animal envenomations. However, these biotherapeutics are complicated to develop due to their complex nature. In this work, we describe the application of various strategies for the discovery of cross-neutralizing nanobodies against key toxins in coral snake venoms using phage display technology. We prepare two oligoclonal mixtures of nanobodies and demonstrate their ability to neutralize the lethality induced by two North American coral snake venoms in mice, while individual nanobodies fail to do so. We thus show that an oligoclonal mixture of nanobodies can neutralize the lethality of venoms where the clinical syndrome is caused by more than one toxin family in a murine challenge model. The approaches described may find utility for the development of advanced biotherapeutics against snakebite envenomation and other pathologies where multi-epitope targeting is beneficial.


Asunto(s)
Anticuerpos Neutralizantes , Serpientes de Coral , Anticuerpos de Dominio Único , Animales , Anticuerpos de Dominio Único/inmunología , Ratones , Anticuerpos Neutralizantes/inmunología , Serpientes de Coral/inmunología , Modelos Animales de Enfermedad , Antivenenos/inmunología , Venenos Elapídicos/inmunología , Femenino , Mordeduras de Serpientes/inmunología , Mordeduras de Serpientes/terapia , Epítopos/inmunología , Ratones Endogámicos BALB C , Técnicas de Visualización de Superficie Celular
12.
Int J Mol Sci ; 25(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38791221

RESUMEN

Snakebite accidents, neglected tropical diseases per the WHO, pose a significant public health threat due to their severity and frequency. Envenomation by Bothrops genus snakes leads to severe manifestations due to proteolytic enzymes. While the antibothropic serum produced by the Butantan Institute saves lives, its efficacy is limited as it fails to neutralize certain serine proteases. Hence, developing new-generation antivenoms, like monoclonal antibodies, is crucial. This study aimed to explore the inhibitory potential of synthetic peptides homologous to the CDR3 regions of a monoclonal antibody targeting a snake venom thrombin-like enzyme (SVTLE) from B. atrox venom. Five synthetic peptides were studied, all stable against hydrolysis by venoms and serine proteases. Impressively, four peptides demonstrated uncompetitive SVTLE inhibition, with Ki values ranging from 10-6 to 10-7 M. These findings underscore the potential of short peptides homologous to CDR3 regions in blocking snake venom toxins, suggesting their promise as the basis for new-generation antivenoms. Thus, this study offers potential advancements in combatting snakebites, addressing a critical public health challenge in tropical and subtropical regions.


Asunto(s)
Anticuerpos Monoclonales , Bothrops , Péptidos , Serina Proteasas , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacología , Péptidos/química , Péptidos/farmacología , Serina Proteasas/química , Serina Proteasas/metabolismo , Antivenenos/química , Antivenenos/inmunología , Antivenenos/farmacología , Regiones Determinantes de Complementariedad/química , Venenos de Crotálidos/antagonistas & inhibidores , Venenos de Crotálidos/inmunología , Venenos de Crotálidos/enzimología , Venenos de Crotálidos/química , Secuencia de Aminoácidos , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología
13.
Protein J ; 43(3): 627-638, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760596

RESUMEN

Stonustoxin (SNTX) is a lethal protein found in stonefish venom, responsible for many of the symptoms associated with stonefish envenomation. To counter stonefish venom challenges, antivenom is a well-established and effective solution. In this study, we aimed to produce the recombinant alpha subunit protein of Stonustoxin from Synanceia horrida and prepare antibodies against it The SNTXα gene sequence was optimized for E. coli BL21 (DE3) expression and cloned into the pET17b vector. Following purification, the recombinant protein was subcutaneously injected into rabbits, and antibodies were extracted from rabbit´s serum using a G protein column As a result of codon optimization, the codon adaptation index for the SNTXα cassette increased to 0.94. SDS-PAGE analysis validated the expression of SNTXα, with a band observed at 73.5 kDa with a yield of 60 mg/l. ELISA results demonstrated rabbits antibody titers were detectable up to a 1:256,000 dilution. The isolated antibody from rabbit´s serum exhibited a concentration of 1.5 mg/ml, and its sensitivity allowed the detection of a minimum protein concentration of 9.7 ng. In the neutralization assay the purified antibody against SNTXα protected mice challenged with 2 LD50. In conclusion, our study successfully expressed the alpha subunit of Stonustoxin in a prokaryotic host, enabling the production of antibodies for potential use in developing stonefish antivenom.


Asunto(s)
Proteínas Recombinantes , Animales , Conejos , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Ratones , Antivenenos/inmunología , Antivenenos/biosíntesis , Antivenenos/genética , Venenos de los Peces/inmunología , Venenos de los Peces/genética , Venenos de los Peces/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Sueros Inmunes/inmunología
14.
PLoS Negl Trop Dis ; 18(5): e0012187, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38809847

RESUMEN

BACKGROUND: Snakebite envenomation inflicts a high burden of mortality and morbidity in sub-Saharan Africa. Antivenoms are the mainstay in the therapy of envenomation, and there is an urgent need to develop antivenoms of broad neutralizing efficacy for this region. The venoms used as immunogens to manufacture snake antivenoms are normally selected considering their medical importance and availability. Additionally, their ability to induce antibody responses with high neutralizing capability should be considered, an issue that involves the immunization scheme and the animal species being immunized. METHODOLOGY/PRINCIPAL FINDINGS: Using the lethality neutralization assay in mice, we compared the intrageneric neutralization scope of antisera generated by immunization of horses with monospecific, bispecific/monogeneric, and polyspecific/monogeneric immunogens formulated with venoms of Bitis spp., Echis spp., Dendroaspis spp., spitting Naja spp. or non-spitting Naja spp. It was found that the antisera raised by all the immunogens were able to neutralize the homologous venoms and, with a single exception, the heterologous congeneric venoms (considering spitting and non-spitting Naja separately). In general, the polyspecific antisera of Bitis spp, Echis spp, and Dendroaspis spp gave the best neutralization profile against venoms of these genera. For spitting Naja venoms, there were no significant differences in the neutralizing ability between monospecific, bispecific and polyspecific antisera. A similar result was obtained in the case of non-spitting Naja venoms, except that polyspecific antiserum was more effective against the venoms of N. melanoleuca and N. nivea as compared to the monospecific antiserum. CONCLUSIONS/SIGNIFICANCE: The use of polyspecific immunogens is the best alternative to produce monogeneric antivenoms with wide neutralizing coverage against venoms of sub-Saharan African snakes of the Bitis, Echis, Naja (non-spitting) and Dendroaspis genera. On the other hand, a monospecific immunogen composed of venom of Naja nigricollis is suitable to produce a monogeneric antivenom with wide neutralizing coverage against venoms of spitting Naja spp. These findings can be used in the design of antivenoms of wide neutralizing scope for sub-Saharan Africa.


Asunto(s)
Antivenenos , Pruebas de Neutralización , Animales , Caballos/inmunología , Antivenenos/inmunología , Antivenenos/administración & dosificación , Ratones , África del Sur del Sahara , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Venenos de Serpiente/inmunología , Sueros Inmunes/inmunología , Venenos Elapídicos/inmunología , Mordeduras de Serpientes/inmunología
15.
PLoS Negl Trop Dis ; 18(5): e0012152, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38717980

RESUMEN

BACKGROUND: Each year, 3,800 cases of snakebite envenomation are reported in Mexico, resulting in 35 fatalities. The only scientifically validated treatment for snakebites in Mexico is the use of antivenoms. Currently, two antivenoms are available in the market, with one in the developmental phase. These antivenoms, produced in horses, consist of F(ab')2 fragments generated using venoms from various species as immunogens. While previous studies primarily focused on neutralizing the venom of the Crotalus species, our study aims to assess the neutralization capacity of different antivenom batches against pit vipers from various genera in Mexico. METHODOLOGY: We conducted various biological and biochemical tests to characterize the venoms. Additionally, we performed neutralization tests using all three antivenoms to evaluate their effectiveness against lethal activity and their ability to neutralize proteolytic and fibrinogenolytic activities. RESULTS: Our results reveal significant differences in protein content and neutralizing capacity among different antivenoms and even between different batches of the same product. Notably, the venom of Crotalus atrox is poorly neutralized by all evaluated batches despite being the primary cause of envenomation in the country's northern region. Furthermore, even at the highest tested concentrations, no antivenom could neutralize the lethality of Metlapilcoatlus nummifer and Porthidium yucatanicum venoms. These findings highlight crucial areas for improving existing antivenoms and developing new products. CONCLUSION: Our research reveals variations in protein content and neutralizing potency among antivenoms, emphasizing the need for consistency in venom characteristics as immunogens. While Birmex neutralizes more LD50 per vial, Antivipmyn excels in specific neutralization. The inability of antivenoms to neutralize certain venoms, especially M. nummifer and P. yucatanicum, highlights crucial improvement opportunities, given the medical significance of these species.


Asunto(s)
Antivenenos , Pruebas de Neutralización , Antivenenos/farmacología , Antivenenos/inmunología , Animales , México , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/inmunología , Viperidae , Crotalus , Venenos de Crotálidos/inmunología
16.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38673799

RESUMEN

Over 32,000 individuals succumb to snake envenoming in sub-Saharan Africa (sSA) annually. This results from several factors, including a lack of antivenom products capable of neutralising the venoms of diverse snake species in this region. Most manufacturers produce polyvalent antivenoms targeting 3 to 16 clinically important snake species in sSA. However, specific products are unavailable for many others, especially those with a restricted geographic distribution. While next-generation antivenoms, comprising a cocktail of broadly neutralising antibodies, may offer an effective solution to this problem, given the need for their clinical validation, recombinant antivenoms are far from being available to snakebite victims. One of the strategies that could immediately address this issue involves harnessing the cross-neutralisation potential of existing products. Therefore, we assessed the neutralisation potency of PANAF-Premium antivenom towards the venoms of 14 medically important snakes from 13 countries across sSA for which specific antivenom products are unavailable. Preclinical assays in a murine model of snake envenoming revealed that the venoms of most snake species under investigation were effectively neutralised by this antivenom. Thus, this finding highlights the potential use of PANAF-Premium antivenom in treating bites from diverse snakes across sSA and the utility of harnessing the cross-neutralisation potential of antivenoms.


Asunto(s)
Antivenenos , Mordeduras de Serpientes , Venenos de Serpiente , Antivenenos/farmacología , Antivenenos/inmunología , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/inmunología , Animales , África del Sur del Sahara , Ratones , Venenos de Serpiente/inmunología , Serpientes , Anticuerpos Neutralizantes/inmunología , Humanos , Modelos Animales de Enfermedad
17.
Drug Discov Today ; 29(5): 103967, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555033

RESUMEN

Single-domain antibodies (sdAbs) hold promise for developing new biopharmaceuticals to treat neglected tropical diseases (NTDs), including snakebites, which are severe and occur frequently. In addition, limitations of conventional snakebite treatments, especially in terms of local action, and the global antivenom crisis incentivize the use of this biotechnological tool to design next-generation snakebite antivenoms. Conventional antivenoms for snakebite treatment are usually composed of immunoglobulin G or F(ab')2 fragments derived from the plasma of immunized animals. sdAbs, the smallest antigen-binding fragments, are derived from the variable domains of camelid heavy-chain antibodies. sdAbs may have some advantages over conventional antivenoms for local toxicity, such as better penetration into tissues due to their small size, and high solubility and affinity for venom antigens due to their unique antigen-binding loops and ability to access cryptic epitopes. We present an overview of current antivenom therapy in the context of sdAb development for toxin neutralization. Furthermore, strategies are presented for identifying snake venom's major toxins as well as for developing antisnake toxin sdAbs by employing proteomic tools for toxin neutralization.


Asunto(s)
Antivenenos , Proteómica , Anticuerpos de Dominio Único , Mordeduras de Serpientes , Venenos de Serpiente , Animales , Humanos , Antivenenos/inmunología , Proteómica/métodos , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/farmacología , Mordeduras de Serpientes/tratamiento farmacológico , Mordeduras de Serpientes/inmunología , Venenos de Serpiente/inmunología
18.
Curr Protein Pept Sci ; 25(6): 469-479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38275046

RESUMEN

BACKGROUND AND OBJECTIVE: Snakebite envenoming is a serious public health issue causing more than 135,000 annual deaths worldwide. Naja Naja Oxiana is one of the most clinically important venomous snakes in Iran and Central Asia. Conventional animal-derived polyclonal antibodies are the major treatment of snakebite envenoming. Characterization of venom components helps to pinpoint the toxic protein responsible for clinical manifestations in victims, which aids us in developing efficient antivenoms with minimal side effects. Therefore, the present study aimed to identify the major lethal protein of Naja Naja Oxiana by top-down proteomics. METHODS: Venom proteomic profiling was performed using gel filtration (GF), reversed-phase (RP) chromatography, and intact mass spectrometry. The toxicity of GF-, and RP-eluted fractions was analyzed in BALB/c mice. The rabbit polyclonal antisera were produced against crude venom, GF fraction V (FV), and RP peak 1 (CTXP) and applied in neutralization assays. RESULTS: Toxicity studies in BALB/c identified FV as the major toxic fraction of venom. Subsequently, RP separation of FV resulted in eight peaks, of which peak 1, referred to as "CTXP" (cobra toxin peptide), was identified as the major lethal protein. In vivo neutralization assays using rabbit antisera showed that polyclonal antibodies raised against FV and CTXP are capable of neutralizing at least 2-LD50s of crude venom, FV, and CTXP in all tested mice. CONCLUSION: Surprisingly, the Anti-CTXP antibody could neutralize 8-LD50 of the CTXP peptide. These results identified CTXP (a 7 kDa peptide) as a potential target for the development of novel efficient antivenom agents.


Asunto(s)
Antivenenos , Venenos Elapídicos , Naja naja , Animales , Ratones , Conejos , Antivenenos/farmacología , Antivenenos/química , Antivenenos/inmunología , Venenos Elapídicos/química , Venenos Elapídicos/inmunología , Venenos Elapídicos/toxicidad , Dosificación Letal Mediana , Ratones Endogámicos BALB C , Péptidos/farmacología , Péptidos/química , Proteómica/métodos
19.
Toxins (Basel) ; 14(12)2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36548722

RESUMEN

Micrurus dumerilii is a coral snake of clinic interest in Colombia. Its venom is mainly composed of phospholipases A2 being MdumPLA2 the most abundant protein. Nevertheless, Micrurus species produce a low quantity of venom, which makes it difficult to produce anticoral antivenoms. Therefore, in this work, we present the recombinant expression of MdumPLA2 to evaluate its biological activities and its immunogenic potential to produce antivenoms. For this, a genetic construct rMdumPLA2 was cloned into the pET28a vector and expressed heterologously in bacteria. His-rMdumPLA2 was extracted from inclusion bodies, refolded in vitro, and isolated using affinity and RP-HPLC chromatography. His-rMdumPLA2 was shown to have phospholipase A2 activity, a weak anticoagulant effect, and induced myonecrosis and edema. The anti-His-rMdumPLA2 antibodies produced in rabbits recognized native PLA2, the complete venom of M. dumerilii, and a phospholipase from another species of the Micrurus genus. Antibodies neutralized 100% of the in vitro phospholipase activity of the recombinant toxin and a moderate percentage of the myotoxic activity of M. dumerilii venom in mice. These results indicate that His-rMdumPLA2 could be used as an immunogen to improve anticoral antivenoms development. This work is the first report of an M. dumerilii functional recombinant PLA2.


Asunto(s)
Antivenenos , Serpientes de Coral , Venenos Elapídicos , Fosfolipasas A2 , Animales , Ratones , Conejos , Antivenenos/biosíntesis , Antivenenos/genética , Antivenenos/inmunología , Venenos Elapídicos/enzimología , Fosfolipasas A2/biosíntesis , Fosfolipasas A2/genética , Fosfolipasas A2/inmunología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
20.
Front Immunol ; 12: 775678, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899734

RESUMEN

As said by former United Nations Secretary-General Kofi Annan, "Snakebite is the most important tropical disease you've never heard of." Listed as a priority neglected tropical disease by the World Health Organization, snakebite envenoming (SBE) kills in excess of 125,000 people per year. However, due to the complexity and overlap of snake venom compositions, few reliable venom diagnostic methods for genus-/species-specific identification, which is crucial for successful SBE therapy, are available. Here, we develop a strategy to select and prepare genus-specific snake venom antibodies, which allows rapid and efficient clinical diagnosis of snakebite. Multi-omics approaches are used to choose candidate antigens from snake venoms and identify genus-specific antigenic epitope peptide fragments (GSAEPs) with ideal immunogenicity, specificity, and spatial accessibility. Double-antibody sandwich ELISA kit was established by matching a polyclonal antibody against a natural antigen and a monoclonal antibody that was prepared by natural protein as antigen and can specifically target the GSAEPs. The kit shows the ability to accurately identify venoms from similar genera of Trimeresurus and Protobothrops with a detection limit of 6.25 ng/ml on the snake venoms and a little cross-reaction, thus proving high feasibility and applicability.


Asunto(s)
Antivenenos/inmunología , Ensayo de Inmunoadsorción Enzimática , Mordeduras de Serpientes/diagnóstico , Mordeduras de Serpientes/inmunología , Venenos de Serpiente/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Antivenenos/química , Ensayo de Inmunoadsorción Enzimática/métodos , Mapeo Epitopo , Epítopos/química , Epítopos/inmunología , Humanos , Modelos Moleculares , Péptidos/química , Péptidos/inmunología , Conformación Proteica , Sensibilidad y Especificidad , Venenos de Serpiente/química , Especificidad de la Especie , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA