Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.103
Filtrar
1.
BMC Genomics ; 25(1): 851, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261781

RESUMEN

BACKGROUND: The WD40 domain, one of the most abundant in eukaryotic genomes, is widely involved in plant growth and development, secondary metabolic biosynthesis, and mediating responses to biotic and abiotic stresses. WD40 repeat (WD40) protein has been systematically studied in several model plants but has not been reported in the Capsicum annuum (pepper) genome. RESULTS: Herein, 269, 237, and 257 CaWD40 genes were identified in the Zunla, CM334, and Zhangshugang genomes, respectively. CaWD40 sequences from the Zunla genome were selected for subsequent analysis, including chromosomal localization, phylogenetic relationships, sequence characteristics, motif compositions, and expression profiling. CaWD40 proteins were unevenly distributed on 12 chromosomes, encompassing 19 tandem duplicate gene pairs. The 269 CaWD40s were divided into six main branches (A to F) with 17 different types of domain distribution. The CaWD40 gene family exhibited diverse expression patterns, and several genes were specifically expressed in flowers and seeds. Yeast two-hybrid (Y2H) and dual-luciferase assay indicated that CaWD40-91 could interact with CaAN1 and CaDYT1, suggesting its involvement in anthocyanin biosynthesis and male sterility in pepper. CONCLUSIONS: In summary, we systematically characterized the phylogeny, classification, structure, and expression of the CaWD40 gene family in pepper. Our findings provide a valuable foundation for further functional investigations on WD40 genes in pepper.


Asunto(s)
Antocianinas , Capsicum , Filogenia , Proteínas de Plantas , Capsicum/genética , Capsicum/metabolismo , Antocianinas/biosíntesis , Antocianinas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulación de la Expresión Génica de las Plantas , Infertilidad Vegetal/genética , Repeticiones WD40/genética , Familia de Multigenes , Perfilación de la Expresión Génica , Cromosomas de las Plantas/genética
2.
BMC Genomics ; 25(1): 823, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223495

RESUMEN

BACKGROUND: The Flavonoid 3'-hydroxylase gene(F3'H) is an important structural gene in the anthocyanin synthesis pathway of plants, which has been proven to be involved in the color formation of organs such as leaves, flowers, and fruits in many plants. However, the mechanism and function in barley are still unclear. RESULTS: In order to explore the molecular mechanism of the grain color formation of purple qingke, we used the cultivated qingke variety Nierumzha (purple grain) and the selected qingke variety Kunlun 10 (white grain) to conduct transcriptomic sequencing at the early milk, late milk and soft dough stage. Weighted Gene Co-expression Network Analysis (WGCNA) was used to construct weighted gene co-expression network related to grain color formation, and three key modules (brown, yellow, and turquoise modules) related to purple grain of qingke were selected. F3'H (HORVU1Hr1G094880) was selected from the hub gene of the module for the yeast library, yeast two-hybrid (Y2H), subcellular localization and other studies. It was found that in purple qingke, HvnF3'H mainly distributed in the cytoplasm and cell membrane and interacted with several stress proteins such as methyltransferase protein and zinc finger protein. CONCLUSIONS: The results of this study provide reference for the regulation mechanism of anthocyanin-related genes in purple grain qingke.


Asunto(s)
Antocianinas , Sistema Enzimático del Citocromo P-450 , Regulación de la Expresión Génica de las Plantas , Antocianinas/biosíntesis , Antocianinas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Redes Reguladoras de Genes , Pigmentación/genética
3.
Physiol Plant ; 176(5): e14500, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221482

RESUMEN

Angelica sinensis, a traditional Chinese medicinal plant, has been primarily reported due to its nutritional value. Pigmentation in this plant is an important appearance trait that directly affects its commercial value. To understand the mechanism controlling purpleness in A. sinensis, hormonal and transcriptomic analyses were performed in three different tissues (leave, root and stem), using two cultivars with contrasting colors. The two-dimensional data set provides dynamic hormonal and gene expression networks underpinning purpleness in A. sinensis. We found abscisic acid as a crucial hormone modulating anthocyanin biosynthesis in A. sinensis. We further identified and validated 7 key genes involved in the anthocyanin biosynthesis pathway and found a specific module containing ANS as a hub gene in WGCNA. Overexpression of a candidate pigment regulatory gene, AsANS (AS08G02092), in transgenic calli of A. sinensis resulted in increased anthocyanin production and caused purpleness. Together, these analyses provide an important understanding of the molecular networks underlying A. sinensis anthocyanin production and its correlation with plant hormones, which can provide an important source for breeding.


Asunto(s)
Angelica sinensis , Antocianinas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas , Angelica sinensis/genética , Angelica sinensis/metabolismo , Antocianinas/biosíntesis , Antocianinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Pigmentación/genética , Ácido Abscísico/metabolismo , Pigmentos Biológicos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
4.
BMC Plant Biol ; 24(1): 910, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349997

RESUMEN

BACKGROUND: Oil palm (Elaeis guineensis Jacq.) is a very important tropical woody oil plant with high commercial and ornamental value. The exocarp of the oil palm fruit is rich in anthocyanosides and proanthocyanidins, which not only give it a bright colour, but also mark the maturity of the fruit. The study of the dynamic change pattern of anthocyanoside content and important anthocyanoside metabolism-related regulatory genes during oil palm ripening is conducive to the improvement of the ornamental value of oil palm and the determination of the optimal harvesting period of the fruits. METHODS: We analyzed the virescens oil palm (AS) and nigrescens oil palm (AT) at 95 days (AS1, AT1), 125 days (AS2, AT2) and 185 days (AS3, AT3) after pollination were used as experimental materials for determining the changes in the total amount of anthocyanins as well as their metabolomics and transcriptomics studies by using the LC-MS/MS technique and RNA-Seq technique. RESULT: The results showed that the total anthocyanin content decreased significantly from AS1 (119 µg/g) to AS3 (23 µg/g), and from AT1 (1302 µg/g) to AT3 (170 µg/g), indicating a clear decreasing trend during fruit development. Among them, the higher flavonoids in AS and AT included anthocyanins such as peonidin-3-O-rutinoside (H35), pelargonidin-3-O-rutinoside (H21), and cyanidin-3-O-glucoside (H7), as well as condensed tannins such as procyanidin B2 (H47), procyanidin C1 (H49), and procyanidin B3 (H48). Notably, nine genes involved in the anthocyanin biosynthetic pathway exhibited up-regulated expression during the pre-development stage of oil palm fruits, particularly during the AS1 and AT1 periods. These genes include: Chalcone synthase (CHS; LOC105036364); Flavanone 3-hydroxylase (F3H; LOC105054663); Dihydroflavonol 4-reductase (DFR; LOC105040724, LOC105048473); Anthocyanidin synthase (ANS; LOC105035842), UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT; LOC105039612); Flavonoid 3',5'-hydroxylase (F3'5'H; LOC105036086, LOC105044124, LOC105045493). In contrast, five genes demonstrated up-regulated expression as the fruits developed, specifically during the AS3 and AT3 periods. These genes include: Chalcone synthase (CHS; LOC105036921, LOC105035716); Chalcone isomerase (CHI; LOC105045978); UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT; LOC105046326); Flavonoid 3'-hydroxylase (F3'H; LOC105036086). CONCLUSION: Most of differentially expressed genes exhibited up-regulation during the early stages of fruit development, which may contribute to the elevated anthocyanin content observed in oil palm fruits of both types during the pre-developmental period. Furthermore, the expression levels of most genes were found to be higher in the AT fruit type compared to the AS fruit type, suggesting that the differential expression of these genes may be a key factor underlying the differences in anthocyanoside production in the exocarp of oil palm fruits from these two fruit types. The findings of this study provide a theoretical foundation for the identification and characterization of genes involved in anthocyanin synthesis in oil palm fruits, as well as the development of novel variations using molecular biology approaches.


Asunto(s)
Antocianinas , Arecaceae , Frutas , Perfilación de la Expresión Génica , Metabolómica , Antocianinas/metabolismo , Antocianinas/biosíntesis , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Arecaceae/genética , Arecaceae/metabolismo , Arecaceae/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metaboloma
5.
BMC Plant Biol ; 24(1): 912, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39350074

RESUMEN

BACKGROUND: Understanding the molecular basis of sport mutations in fruit trees has the potential to accelerate generation of improved cultivars. RESULTS: For this, we analyzed the genome of the apple tree that developed the RubyMac phenotype through a sport mutation that led to the characteristic fruit coloring of this variety. Overall, we found 46 somatic mutations that distinguished the mutant and wild-type branches of the tree. In addition, we found 54 somatic gene conversions (i.e., loss-of-heterozygosity mutations) that also distinguished the two parts of the tree. Approximately 20% of the mutations were specific to individual cell lineages, suggesting that they originated from the corresponding meristematic layers. Interestingly, the de novo mutations were enriched for GC = > AT transitions while the gene conversions showed the opposite bias for AT = > GC transitions, suggesting that GC-biased gene conversions have the potential to counteract the AT-bias of de novo mutations. By comparing the gene expression patterns in fruit skins from mutant and wild-type branches, we found 56 differentially expressed genes including 18 involved in anthocyanin biosynthesis. While none of the differently expressed genes harbored a somatic mutation, we found that some of them in regions of the genome that were recently associated with natural variation in fruit coloration. CONCLUSION: Our analysis revealed insights in the characteristics of somatic change, which not only included de novo mutations but also gene conversions. Some of these somatic changes displayed strong candidate mutations for the change in fruit coloration in RubyMac.


Asunto(s)
Frutas , Malus , Meristema , Mutación , Malus/genética , Meristema/genética , Frutas/genética , Fenotipo , Antocianinas/metabolismo , Antocianinas/genética , Antocianinas/biosíntesis , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
6.
Int J Mol Sci ; 25(18)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39337346

RESUMEN

Long non-coding RNAs (lncRNAs), a class of important regulatory factors for many biological processes in plants, have received much attention in recent years. To explore the molecular roles of lncRNAs in sweet cherry fruit ripening, we conducted widely targeted metabolome, transcriptome and lncRNA analyses of sweet cherry fruit at three ripening stages (yellow stage, pink stage, and dark red stage). The results show that the ripening of sweet cherry fruit involves substantial metabolic changes, and the rapid accumulation of anthocyanins (cyanidin 3-rutinoside, cyanidin 3-O-galactoside, and cyanidin 3-O-glucoside) is the main cause of fruit coloration. These ripening-related alterations in the metabolic profile are driven by specific enzyme genes related to the synthesis and decomposition of abscisic acid (ABA), cell wall disintegration, and anthocyanin biosynthesis, as well as transcription factor genes, such as MYBs, bHLHs, and WD40s. LncRNAs can target these ripening-related genes to form regulatory modules, incorporated into the sweet cherry fruit ripening regulatory network. Our study reveals that the lncRNA-mRNA module is an important component of the sweet cherry fruit ripening regulatory network. During sweet cherry fruit ripening, the differential expression of lncRNAs will meditate the spatio-temporal specific expression of ripening-related target genes (encoding enzymes and transcription factors related to ABA metabolism, cell wall metabolism and anthocyanin metabolism), thus driving fruit ripening.


Asunto(s)
Antocianinas , Frutas , Regulación de la Expresión Génica de las Plantas , Metaboloma , Prunus avium , ARN Largo no Codificante , Transcriptoma , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Antocianinas/biosíntesis , Antocianinas/metabolismo , Prunus avium/genética , Prunus avium/metabolismo , Prunus avium/crecimiento & desarrollo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ácido Abscísico/metabolismo , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Redes Reguladoras de Genes , Galactósidos
7.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39337692

RESUMEN

Basic leucine zipper (bZIP) transcription factors (TFs) play a crucial role in anthocyanin accumulation in plants. In addition to bZIP TFs, abscisic acid (ABA) increases anthocyanin biosynthesis. Therefore, this study aimed to investigate whether bZIP TFs are involved in ABA-induced anthocyanin accumulation in sweet cherry and elucidate the underlying molecular mechanisms. Specifically, the BLAST method was used to identify bZIP genes in sweet cherry. Additionally, we examined the expression of ABA- and anthocyanin-related genes in sweet cherry following the overexpression or knockdown of a bZIP candidate gene. In total, we identified 54 bZIP-encoding genes in the sweet cherry genome. Basic leucine zipper 6 (bZIP6) showed significantly increased expression, along with increased anthocyanin accumulation in sweet cherry. Additionally, yeast one-hybrid and dual-luciferase assays indicated that PavbZIP6 enhanced the expression of anthocyanin biosynthetic genes (PavDFR, PavANS, and PavUFGT), thereby increasing anthocyanin accumulation. Moreover, PavbZIP6 interacted directly with the PavBBX6 promoter, thereby regulating PavNCED1 to promote abscisic acid (ABA) synthesis and enhance anthocyanin accumulation in sweet cherry fruit. Conclusively, this study reveals a novel mechanism by which PavbZIP6 mediates anthocyanin biosynthesis in response to ABA and contributes to our understanding of the mechanism of bZIP genes in the regulation of anthocyanin biosynthesis in sweet cherry.


Asunto(s)
Ácido Abscísico , Antocianinas , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Prunus avium , Antocianinas/metabolismo , Antocianinas/biosíntesis , Ácido Abscísico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Prunus avium/genética , Prunus avium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Frutas/metabolismo , Frutas/genética
8.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39337399

RESUMEN

Dihydroflavonol 4-reductase (DFR) significantly influences the modification of flower color. To explore the role of DFR in the synthesis of strawberry anthocyanins, in this study, we downloaded the CDS sequences of the DFR gene family from the Arabidopsis genome database TAIR; the DFR family of forest strawberry was compared; then, a functional domain screen was performed using NCBI; the selected strawberry DFR genes were analyzed; and the expression characteristics of the family members were studied by qRT-PCR. The results showed that there are 57 members of the DFR gene family in strawberry, which are mainly expressed in the cytoplasm and chloroplast; most of them are hydrophilic proteins; and the secondary structure of the protein is mainly composed of α-helices and random coils. The analysis revealed that FvDFR genes mostly contain light, hormone, abiotic stress, and meristem response elements. From the results of the qRT-PCR analysis, the relative expression of each member of the FvDFR gene was significantly different, which was expressed throughout the process of fruit coloring. Most genes had the highest expression levels in the full coloring stage (S4). The expression of FvDFR30, FvDFR54, and FvDFR56 during the S4 period was 8, 2.4, and 2.4 times higher than during the S1 period, indicating that the DFR gene plays a key role in regulating the fruit coloration of strawberry. In the strawberry genome, 57 members of the strawberry DFR gene family were identified. The higher the DFR gene expression, the higher the anthocyanin content, and the DFR gene may be the key gene in anthocyanin synthesis. Collectively, the DFR gene is closely related to fruit coloring, which lays a foundation for further exploring the function of the DFR gene family.


Asunto(s)
Oxidorreductasas de Alcohol , Fragaria , Frutas , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Fragaria/genética , Fragaria/enzimología , Fragaria/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Antocianinas/biosíntesis , Antocianinas/metabolismo , Genoma de Planta , Pigmentación/genética , Perfilación de la Expresión Génica
9.
Int J Biol Macromol ; 277(Pt 3): 134296, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094888

RESUMEN

Anthocyanidins and anthocyanins are one subclass of flavonoids in plants with diverse biological functions and have health-promoting effects. Dihydroflavonol 4-reductase (DFR) is one of the important enzymes involved in the biosynthesis of anthocyanidins and other flavonoids. Here, a new MOF-based nano-immobilized DFR enzyme acting as a nano-biocatalyst for the production of anthocyanidins in vitro was designed. We prepared UiO-66-NH2 MOF nano-carrier and recombinant DFR enzyme from genetic engineering. DFR@UiO-66-NH2 nano-immobilized enzyme was constructed based on covalent bonding under the optimum immobilization conditions of the enzyme/carrier ratio of 250 mg/g, 37 °C, pH 6.5 and fixation time of 10 min. DFR@UiO-66-NH2 was characterized and its catalytic function for the synthesis of anthocyanidins in vitro was testified using UPLC-QQQ-MS analysis. Compared with free DFR enzyme, the enzymatic reaction catalyzed by DFR@UiO-66-NH2 was more easily for manipulation in a wide range of reaction temperatures and pH values. DFR@UiO-66-NH2 had better thermal stability, enhanced adaptability, longer-term storage, outstanding tolerances to the influences of several organic reagents and Zn2+, Cu2+ and Fe2+ ions, and relatively good reusability. This work developed a new MOF-based nano-immobilized biocatalyst that had a good prospect of application in the green synthesis of anthocyanins in the future.


Asunto(s)
Antocianinas , Biocatálisis , Enzimas Inmovilizadas , Estructuras Metalorgánicas , Antocianinas/química , Antocianinas/biosíntesis , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Estructuras Metalorgánicas/química , Concentración de Iones de Hidrógeno , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Temperatura , Estabilidad de Enzimas
10.
Theor Appl Genet ; 137(9): 208, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181956

RESUMEN

As important secondary metabolites in plants, anthocyanins not only contribute to colored plants organs, but also provide protections against various biotic and abiotic stresses. In this study, a MYB transcription factor gene TdRCA1 from wild emmer wheat regulating anthocyanin biosynthesis in wheat coleoptile was identified on the short arm of chromosome 7A in common wheat genetic background. The TdRCA1 overexpression lines showed colored callus, coleoptile, auricle and stem nodes, as well as up regulation of six anthocyanin-related structural genes. The expression of TdRCA1 was activated by light in a temporal manner. While coleoptile color of 48 and 60 h dark-grown seedlings changed from green to red after 24 h light treatment, those grown in dark for 72 and 96 h failed to develop red coleoptiles after light restoration. Interestingly, the over expression of TdRCA1 resulted in increased resistance to Fusarium crown rot, a chronic and severe fungal disease in many cereal growing regions in the world. Our results offer a better understanding of the molecular basis of coleoptile color in bread wheat.


Asunto(s)
Antocianinas , Cotiledón , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Proteínas de Plantas , Factores de Transcripción , Triticum , Triticum/genética , Triticum/metabolismo , Antocianinas/biosíntesis , Antocianinas/metabolismo , Cotiledón/genética , Cotiledón/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/genética , Resistencia a la Enfermedad/genética , Fusarium , Filogenia
11.
Plant Physiol Biochem ; 215: 108980, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39102766

RESUMEN

Asparagus is a key global vegetable crop with significant economic importance. Purple asparagus, rich in anthocyanins, stands out for its nutritional value. Despite its prominence, the molecular mechanisms driving purple peel coloration in asparagus remain unclear. This study focuses on three asparagus varieties with distinct peel colors to analyze anthocyanins in both the metabolome and transcriptome, unraveling the regulatory mechanisms. Our findings identify 30 anthocyanins, categorized into five major anthocyanin aglycones across diverse asparagus peel colors. Notably, among the 30 differentially expressed metabolites (DEMs), 18 anthocyanins displayed significantly up-regulated expression in the 'Purple Passion' variety. Key contributors include Cyanidin-3-O-rutinoside-5-O-glucoside and Cyanidin-3-O-sophoroside. Cyanidin-3-O-glucoside is most abundant in 'Purple Passion', while Petunidin-glucoside-galactoside is the least. Analysis of differentially expressed genes (DEGs) displayed 21 structural genes in anthocyanin synthesis, with F3H, DFR, ANS, and one of three UFGTs showing significantly higher expression in the 'Purple Passion' compared to 'Grande' and 'Erasmus'. Additionally, transcription factors (TFs), including 38 MYB, 33 bHLH, and 13 bZIP, also display differential expression in this variety. Validation through real-time qPCR supports the idea that increased expression of anthocyanin structural genes contribute to anthocyanin accumulation. Transient overexpression of AoMYB17 in tobacco further showed that it had the vital function of increasing anthocyanin content. This study sheds light on the mechanisms behind anthocyanin coloration in three distinct asparagus peels. Therefore, it lays the foundation for potential genetic enhancements, aiming to develop new purple-fleshed asparagus germplasms with heightened anthocyanin content.


Asunto(s)
Antocianinas , Asparagus , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Antocianinas/metabolismo , Antocianinas/biosíntesis , Asparagus/genética , Asparagus/metabolismo , Pigmentación/genética , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolómica
12.
Genes (Basel) ; 15(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39202350

RESUMEN

To explore the regulatory mechanism of endogenous hormones in the synthesis of anthocyanins in Anoectochilus roxburghii (Wall.) Lindl (A. roxburghii) under different light intensities, this study used metabolomics and transcriptomics techniques to identify the key genes and transcription factors involved in anthocyanin biosynthesis. We also analyzed the changes in and correlations between plant endogenous hormones and anthocyanin metabolites under different light intensities. The results indicate that light intensity significantly affects the levels of anthocyanin glycosides and endogenous hormones in leaves. A total of 38 anthocyanin-related differential metabolites were identified. Under 75% light transmittance (T3 treatment), the leaves exhibited the highest anthocyanin content and differentially expressed genes such as chalcone synthase (CHS), flavonol synthase (FLS), and flavonoid 3'-monooxygenase (F3'H) exhibited the highest expression levels. Additionally, 13 transcription factors were found to have regulatory relationships with 7 enzyme genes, with 11 possessing cis-elements responsive to plant hormones. The expression of six genes and two transcription factors was validated using qRT-PCR, with the results agreeing with those obtained using RNA sequencing. This study revealed that by modulating endogenous hormones and transcription factors, light intensity plays a pivotal role in regulating anthocyanin glycoside synthesis in A. roxburghii leaves. These findings provide insights into the molecular mechanisms underlying light-induced changes in leaf coloration and contribute to our knowledge of plant secondary metabolite regulation caused by environmental factors.


Asunto(s)
Antocianinas , Regulación de la Expresión Génica de las Plantas , Luz , Metaboloma , Orchidaceae , Hojas de la Planta , Proteínas de Plantas , Transcriptoma , Antocianinas/biosíntesis , Antocianinas/genética , Antocianinas/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Orchidaceae/efectos de la radiación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metaboloma/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Perfilación de la Expresión Génica/métodos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Genes (Basel) ; 15(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39202401

RESUMEN

Rhododendron simsii Planchon is an important ornamental species in the northern hemisphere. Flower color is an important objective of Rhododendron breeding programs. However, information on anthocyanin synthesis in R. simsii is limited. In this research, the regulatory mechanism of anthocyanin biosynthesis in R. simsii was performed through the integrated analysis of metabolome and RNA-seq. A total of 805 and 513 metabolites were screened by positive and negative ionization modes, respectively, In total, 79 flavonoids contained seven anthocyanidins, 42 flavanones, 10 flavans, 13 flavones, and seven flavonols. Methylated and glycosylated derivatives took up the most. Differentially accumulated metabolites were mainly involved in "flavone and flavonol biosynthesis", "cyanoamino acid metabolism", "pyrimidine metabolism", and "phenylalanine metabolism" pathways. For flavonoid biosynthesis, different expression of shikimate O-hydroxycinnamoyltransferase, caffeoyl-CoA O-methyltransferase, flavonoid 3'-monooxygenase, flavonol synthase, dihydroflavonol 4-reductase/flavanone 4-reductase, F3'5'H, chalcone synthase, leucoanthocyanidin reductase, and 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase genes ultimately led to different accumulations of quercetin, myricetin, cyanidin, and eriodictyol. In flavone and flavonol biosynthesis pathway, differential expression of F3'5'H, flavonoid 3'-monooxygenase and flavonol-3-O-glucoside/galactoside glucosyltransferase genes led to the differential accumulation of quercetin, isovitexin, and laricitrin. This research will provide a biochemical basis for further modification of flower color and genetic breeding in R. simsii and related Rhododendron species.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Metaboloma , RNA-Seq , Rhododendron , Rhododendron/genética , Rhododendron/metabolismo , Flores/genética , Flores/metabolismo , Metaboloma/genética , Flavonoides/metabolismo , Flavonoides/biosíntesis , Antocianinas/biosíntesis , Antocianinas/genética , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentación/genética , Transcriptoma/genética
14.
J Agric Food Chem ; 72(34): 19003-19015, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39155472

RESUMEN

Nitrogen (N) is a key factor for plant growth and affects anthocyanin synthesis. This study aimed to clarify the potential mechanisms of N levels (LN, 0 kg·ha-1; MN, 150 kg·ha-1; HN, 225 kg·ha-1) in anthocyanin synthesis and grain quality of colored grain wheat. HN increased the yield component traits and grain morphology traits in colored grain wheat while decreasing the processing and nutrient quality traits. Most quality traits were significantly negatively correlated with the yield composition and morphological traits. Anthocyanin was more accumulated under LN conditions, but other related yield and morphological traits of colored grain wheat declined. The anthocyanin content was the highest in blue wheat, followed by that in purple wheat. Cyanidin-3-O-(6-O-malonyl-ß-d-glucoside) and cyanidin-3-O-rutinoside were the predominant anthocyanins in blue and purple wheat. The identified anthocyanin-related metabolites were associated with flavonoid biosynthesis, anthocyanin biosynthesis, and secondary metabolite biosynthesis. Therefore, the study provided information for optimizing nitrogen fertilizer management in producing high quality colored wheat and verified the close relationship between anthocyanin and low N condition.


Asunto(s)
Antocianinas , Metabolómica , Nitrógeno , Semillas , Triticum , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Triticum/química , Antocianinas/metabolismo , Antocianinas/biosíntesis , Antocianinas/análisis , Nitrógeno/metabolismo , Semillas/metabolismo , Semillas/química , Semillas/crecimiento & desarrollo , Fertilizantes/análisis , Color
15.
J Agric Food Chem ; 72(36): 19826-19837, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39213503

RESUMEN

Chlorophyll (Chl) catabolism and anthocyanin synthesis play pivotal roles in determining the final skin color of fruits during maturation. However, in peach (Prunus persica) fruit, the regulatory mechanism governing skin color, especially the Chl catabolism, remains largely elusive. In this study, we identified ten Chl catabolic genes (CCGs), with PpSGR emerging as a key regulator in Chl degradation in peaches. Furthermore, a NAC-like, activated by AP3/P1 (NAP) transcription factor (TF), PpNAP4, was identified as a positive modulator of Chl breakdown. PpNAP4 induced the expression of PpSGR and other CCGs, including PpPPH, PpPAO, and PpTIC55-2, by directly binding to their promoters. Overexpression of PpNAP4 resulted in a heightened expression of these genes and accelerated Chl degradation. Notably, PpNAP4 also positively regulated the expression of PpANS and PpMYB10.1, one key structural gene and a core transcriptional regulator of anthocyanin synthesis, thereby contributing to fruit coloration. In summary, our findings elucidate that PpNAP4 serves as a pivotal regulator in determining the final skin color of peach by orchestrating Chl degradation and anthocyanin accumulation through direct activation of multiple CCGs and anthocyanin related genes.


Asunto(s)
Antocianinas , Clorofila , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Prunus persica , Factores de Transcripción , Antocianinas/biosíntesis , Antocianinas/metabolismo , Frutas/metabolismo , Frutas/genética , Frutas/química , Prunus persica/genética , Prunus persica/metabolismo , Prunus persica/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Plant Physiol Biochem ; 215: 109043, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39181084

RESUMEN

'Benihoppe' and 'Fenyu No.1' are representative varieties of red and pink strawberries in China, possess distinct hue and flavor profiles. This study analyzed the underlying biochemical and molecular differences of two varieties utilizing transcriptomics and high-performance liquid chromatography (HPLC). Ripening 'Benihoppe' fruits accumulated more sucrose and pelargonin-3-glucoside (P3G) with a little cyanidin and higher firmness. Whereas ripening 'Fenyu No.1' fruits contained more fructose, glucose, malic acid and ascorbic acid (AsA), but less P3G and citric acid. Moreover, genotype significantly influenced phenolic compounds contents in strawberries. Transcriptome analysis revealed that pectin degradation (PL, PG, PE), sucrose synthesis (CWINV, SUS, TPS) and citric acid metabolism (α-OGDH, ICDH, GAD, GS, GDH, PEPCK, AST) were weakened in 'Benihoppe' fruit. In contrast, the synthesis of sucrose (CWINH, SPS), citric acid (CS, PEPC), anthocyanin (F3H, F3'H, F3'5'H, DFR, UFGT and ANS), and citric acid transport (V-ATPase) was enhanced. In 'Fenyu No.1' fruit, the degradation of sucrose, citric acid, and pectin was enhanced, along with the synthesis of malic acid (ME) and ascorbic acid (PMM, MDHAR and GaLUR). However, anthocyanins synthesis, glucose metabolism (HK, G6PI, PFK, G6PDH, PGK, PGM, ENO, PK), fructose metabolism (FK), citric acid synthesis and transport, and AsA degradation (AO, APX) were relatively weak. RT-qPCR results corroborated the transcriptome data. In conclusion, this study revealed the distinctions and characteristics of strawberries with different fruit colors regarding texture, flavor and color formation processes. These findings offer valuable insights for regulating metabolic pathways and identifying key candidate genes to improve strawberry quality.


Asunto(s)
Fragaria , Frutas , Fragaria/genética , Fragaria/metabolismo , Cromatografía Líquida de Alta Presión , Frutas/metabolismo , Frutas/genética , Antocianinas/metabolismo , Antocianinas/biosíntesis , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sacarosa/metabolismo , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biosíntesis , Ácido Cítrico/metabolismo
17.
Microb Cell Fact ; 23(1): 228, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143478

RESUMEN

BACKGROUND: Anthocyanins are water-soluble flavonoids in plants, which give plants bright colors and are widely used as food coloring agents, nutrients, and cosmetic additives. There are several limitations for traditional techniques of collecting anthocyanins from plant tissues, including species, origin, season, and technology. The benefits of using engineering microbial production of natural products include ease of use, controllability, and high efficiency. RESULTS: In this study, ten genes encoding enzymes involved in the anthocyanin biosynthetic pathway were successfully cloned from anthocyanin-rich plant materials blueberry fruit and purple round eggplant rind. The Yeast Fab Assembly technology was utilized to construct the transcriptional units of these genes under different promoters. The transcriptional units of PAL and C4H, 4CL and CHS were fused and inserted into Chr. XVI and IV of yeast strain JDY52 respectively using homologous recombination to gain Strain A. The fragments containing the transcriptional units of CHI and F3H, F3'H and DFR were inserted into Chr. III and XVI to gain Strain B1. Strain B2 has the transcriptional units of ANS and 3GT in Chr. IV. Several anthocyanidins, including cyanidin, peonidin, pelargonidin, petunidin, and malvidin, were detected by LC-MS/MS following the predicted outcomes of the de novo biosynthesis of anthocyanins in S. cerevisiae using a multi-strain co-culture technique. CONCLUSIONS: We propose a novel concept for advancing the heterologous de novo anthocyanin biosynthetic pathway, as well as fundamental information and a theoretical framework for the ensuing optimization of the microbial synthesis of anthocyanins.


Asunto(s)
Antocianinas , Arándanos Azules (Planta) , Saccharomyces cerevisiae , Antocianinas/biosíntesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Arándanos Azules (Planta)/genética , Arándanos Azules (Planta)/metabolismo , Ingeniería Metabólica/métodos , Vías Biosintéticas , Redes y Vías Metabólicas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
BMC Genomics ; 25(1): 784, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138573

RESUMEN

BACKGROUND: Chinese cherry [Cerasus pseudocerasus (Lindl.) G.Don] (syn. Prunus pseudocerasus Lindl.) is an economically important fruiting cherry species with a diverse range of attractive colors, spanning from the lightest yellow to the darkest black purple. However, the MYB transcription factors involved in anthocyanin biosynthesis underlying fruit color variation in Chinese cherry remain unknown. RESULTS: In this study, we characterized the R2R3-MYB gene family of Chinese cherry by genome-wide identification and compared it with those of 10 Rosaceae relatives and Arabidopsis thaliana. A total of 1490 R2R3-MYBs were classified into 43 subfamilies, which included 29 subfamilies containing both Rosaceae MYBs and AtMYBs. One subfamily (S45) contained only Rosaceae MYBs, while three subfamilies (S12, S75, and S77) contained only AtMYBs. The variation in gene numbers within identical subfamilies among different species and the absence of certain subfamilies in some species indicated the species-specific expansion within MYB gene family in Chinese cherry and its relatives. Segmental and tandem duplication events primarily contributed to the expansion of Chinese cherry R2R3-CpMYBs. The duplicated gene pairs underwent purifying selection during evolution after duplication events. Phylogenetic relationships and transcript profiling revealed that CpMYB10 and CpMYB4 are involved in the regulation of anthocyanin biosynthesis in Chinese cherry fruits. Expression patterns, transient overexpression and VIGS results confirmed that CpMYB10 promotes anthocyanin accumulation in the fruit skin, while CpMYB4 acts as a repressor, inhibiting anthocyanin biosynthesis of Chinese cherry. CONCLUSIONS: This study provides a comprehensive and systematic analysis of R2R3-MYB gene family in Chinese cherry and Rosaceae relatives, and identifies two regulators, CpMYB10 and CpMYB4, involved in anthocyanin biosynthesis in Chinese cherry. These results help to develop and utilize the potential functions of anthocyanins in Chinese cherry.


Asunto(s)
Antocianinas , Familia de Multigenes , Filogenia , Factores de Transcripción , Antocianinas/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus avium/genética , Prunus avium/metabolismo , Genoma de Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Frutas/genética , Frutas/metabolismo
19.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125947

RESUMEN

Anthocyanin is one important nutrition composition in Tartary buckwheat (Fagopyrum tataricum) sprouts, a component missing in its seeds. Although anthocyanin biosynthesis requires light, the mechanism of light-induced anthocyanin accumulation in Tartary buckwheat is unclear. Here, comparative transcriptome analysis of Tartary buckwheat sprouts under light and dark treatments and biochemical approaches were performed to identify the roles of one B-box protein BBX22 and ELONGATED HYPOCOTYL 5 (HY5). The overexpression assay showed that FtHY5 and FtBBX22 could both promote anthocyanin synthesis in red-flower tobacco. Additionally, FtBBX22 associated with FtHY5 to form a complex that activates the transcription of MYB transcription factor genes FtMYB42 and FtDFR, leading to anthocyanin accumulation. These findings revealed the regulation mechanism of light-induced anthocyanin synthesis and provide excellent gene resources for breeding high-quality Tartary buckwheat.


Asunto(s)
Antocianinas , Fagopyrum , Regulación de la Expresión Génica de las Plantas , Luz , Proteínas de Plantas , Factores de Transcripción , Fagopyrum/genética , Fagopyrum/metabolismo , Fagopyrum/crecimiento & desarrollo , Fagopyrum/efectos de la radiación , Antocianinas/biosíntesis , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Perfilación de la Expresión Génica , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/crecimiento & desarrollo
20.
Plant Physiol Biochem ; 215: 108964, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094477

RESUMEN

Rehmannia piasezkii is a kind of medicinal plants, of the Orobanchaceae family, and well known for its large pink or purple corolla. However, no research on the molecular mechanism of flower color formation in R. piasezkii has been conducted so far. In this study, we investigated the transcriptome of root, stem, leaf and corollas of R. piasezkii using transcriptome sequencing technology and assembled 144,582 unigenes. A total of 58 anthocyanin biosynthetic genes were identified in the R. piasezkii transcriptome, fourteen of which were highly correlated with anthocyanin content, especially RpF3H2, RpDFR2, RpANS1, RpANS2 and RpUFGT. Totally, 35 MYB genes with FPKM values greater than 5 were identified in the R. piasezkii transcriptome, including an R2R3 MYB transcriptional factor RpMYB1, which belongs to subgroup 6 of the R2R3 MYB family. Agrobacterium-mediated transient expression of Nicotiana benthamiana revealed that overexpression of RpMYB1 could activate the expression of structural genes in anthocyanin synthesis pathway and promote the accumulation of anthocyanins in N. benthamiana leaves, indicating that RpMYB1 is a positive regulator of anthocyanin synthesis. Furthermore, combined transient overexpression of RpMYB1 with RpANS1, RpMYB1+RpANS1 with other structural genes all could further enhance the accumulation of anthocyanins in N. benthamiana leaves. Permanent overexpression of RpMYB1 in R. glutinosa promoted anthocyanin accumulation and expression levels of RgCHS, RgF3H, RgDFR and RgANS. Further evidence from dual-luciferase assay suggested that RpMYB1 could bind to the promoter of RpDFR2 and hence activating its expression. These findings provide insight into the molecular regulation in anthocyanin biosynthesis in R. piasezkii and provide valuable genetic resources for the genetic improvement of flower color.


Asunto(s)
Antocianinas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Rehmannia , Antocianinas/biosíntesis , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rehmannia/genética , Rehmannia/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Flores/genética , Flores/metabolismo , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA