Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.013
Filtrar
1.
Ecol Lett ; 27(5): e14429, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38690608

RESUMEN

Coral bleaching, the stress-induced breakdown of coral-algal symbiosis, threatens reefs globally. Paradoxically, despite adverse fitness effects, corals bleach annually, even outside of abnormal temperatures. This generally occurs shortly after the once-per-year mass coral spawning. Here, we propose a hypothesis linking annual coral bleaching and the transmission of symbionts to the next generation of coral hosts. We developed a dynamic model with two symbiont growth strategies, and found that high sexual recruitment and low adult coral survivorship and growth favour bleaching susceptibility, while the reverse promotes bleaching resilience. Otherwise, unexplained trends in the Indo-Pacific align with our hypothesis, where reefs and coral taxa exhibiting higher recruitment are more bleaching susceptible. The results from our model caution against interpreting potential shifts towards more bleaching-resistant symbionts as evidence of climate adaptation-we predict such a shift could also occur in declining systems experiencing low recruitment rates, a common scenario on today's reefs.


Asunto(s)
Antozoos , Blanqueamiento de los Corales , Arrecifes de Coral , Simbiosis , Animales , Antozoos/fisiología , Antozoos/microbiología , Modelos Biológicos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38739684

RESUMEN

The Bacteroidota is one of the dominant bacterial phyla in corals. However, the exact taxa of those coral bacteria under the Bacteroidota are still unclear. Two aerobic, Gram-stain-negative, non-motile rods, designated strains BMA10T and BMA12T, were isolated from stony coral Porites lutea collected from Weizhou Island, PR China. Global alignment of 16S rRNA gene sequences indicated that both strains are closest to species of Fulvivirga with the highest identities being lower than 93 %, and the similarity value between these two strains was 92.3 %. Phylogenetic analysis based on 16S rRNA gene and genome sequences indicated that these two strains form an monophylogenetic lineage alongside the families Fulvivirgaceae, Reichenbachiellaceae, Roseivirgaceae, Marivirgaceae, Cyclobacteriaceae, and Cesiribacteraceae in the order Cytophagales, phylum Bacteroidota. The genomic DNA G+C contents of BMA10T and BMA12T were 38.4 and 41.9 mol%, respectively. The major polar lipids of BMA10T were phosphatidylethanolamine, unidentified aminophospholipid, four unidentified aminolipids, and five unidentified lipids. While those of BMA12T were phosphatidylethanolamine, two unidentified aminolipids, and five unidentified lipids. The major cellular fatty acids detected in both isolates were iso-C15 : 0 and C16 : 1 ω5c. Carbohydrate-active enzyme analysis indicated these two strains may utilize coral mucus or chitin. Based on above characteristics, these two strains are suggested to represent two new species in two new genera of a new family in the order Cytophagales, for which the name Splendidivirga corallicola gen. nov., sp. nov., Agaribacillus aureus gen. nov., sp. nov. and Splendidivirgaceae fam. nov. are proposed. The type strain of S. corallicola is BMA10T (=MCCC 1K08300T=KCTC 102045T), and that for A. aureus is BMA12T (=MCCC 1K08309T=KCTC 102046T).


Asunto(s)
Antozoos , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Antozoos/microbiología , Animales , ARN Ribosómico 16S/genética , Ácidos Grasos/análisis , ADN Bacteriano/genética , China , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Bacteroidetes/clasificación , Fosfolípidos/análisis
3.
World J Microbiol Biotechnol ; 40(7): 219, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809492

RESUMEN

Protectins, 10,17-dihydroxydocosahexaenoic acids (10,17-DiHDHAs), are belonged to specialized pro-resolving mediators (SPMs). Protectins are generated by polymorphonuclear leukocytes in humans and resolve inflammation and infection in trace amounts. However, the quantitative production of protectin DX 10-epimer (10-epi-PDX, 10R,17S-4Z,7Z,11E,13Z,15E,19Z-DiHDHA) has been not attempted to date. In this study, 10-epi-PDX was quantitatively produced from docosahexaenoic acid (DHA) by serial whole-cell biotransformation of Escherichia coli expressing arachidonate (ARA) 8R-lipoxygenase (8R-LOX) from the coral Plexaura homomalla and E. coli expressing ARA 15S-LOX from the bacterium Archangium violaceum. The optimal bioconversion conditions to produce 10R-hydroxydocosahexaenoic acid (10R-HDHA) and 10-epi-PDX were pH 8.0, 30 °C, 2.0 mM DHA, and 4.0 g/L cells; and pH 8.5, 20 °C, 1.4 mM 10R-HDHA, and 1.0 g/L cells, respectively. Under these optimized conditions, 2.0 mM (657 mg/L) DHA was converted into 1.2 mM (433 mg/L) 10-epi-PDX via 1.4 mM (482 mg/L) 10R-HDHA by the serial whole-cell biotransformation within 90 min, with a molar conversion of 60% and volumetric productivity of 0.8 mM/h (288 mg/L/h). To the best of our knowledge, this is the first quantitative production of 10-epi-PDX. Our results contribute to the efficient biocatalytic synthesis of SPMs.


Asunto(s)
Antozoos , Biotransformación , Ácidos Docosahexaenoicos , Escherichia coli , Ácidos Docosahexaenoicos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Antozoos/microbiología , Antozoos/metabolismo , Animales , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato Lipooxigenasas/metabolismo , Araquidonato Lipooxigenasas/genética , Concentración de Iones de Hidrógeno
4.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38739683

RESUMEN

Temperate phages can interact with bacterial hosts through lytic and lysogenic cycles via different mechanisms. Lysogeny has been identified as the major form of bacteria-phage interaction in the coral-associated microbiome. However, the lysogenic-to-lytic switch of temperate phages in ecologically important coral-associated bacteria and its ecological impact have not been extensively investigated. By studying the prophages in coral-associated Halomonas meridiana, we found that two prophages, Phm1 and Phm3, are inducible by the DNA-damaging agent mitomycin C and that Phm3 is spontaneously activated under normal cultivation conditions. Furthermore, Phm3 undergoes an atypical lytic pathway that can amplify and package adjacent host DNA, potentially resulting in lateral transduction. The induction of Phm3 triggered a process of cell lysis accompanied by the formation of outer membrane vesicles (OMVs) and Phm3 attached to OMVs. This unique cell-lysis process was controlled by a four-gene lytic module within Phm3. Further analysis of the Tara Ocean dataset revealed that Phm3 represents a new group of temperate phages that are widely distributed and transcriptionally active in the ocean. Therefore, the combination of lateral transduction mediated by temperate phages and OMV transmission offers a versatile strategy for host-phage coevolution in marine ecosystems.


Asunto(s)
Antozoos , Halomonas , Profagos , Halomonas/virología , Halomonas/genética , Antozoos/microbiología , Antozoos/virología , Profagos/genética , Profagos/fisiología , Animales , Lisogenia , Transducción Genética , Mitomicina/farmacología
5.
Nat Commun ; 15(1): 2902, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575584

RESUMEN

Microbial diversity has been extensively explored in reef-building corals. However, the functional roles of coral-associated microorganisms remain poorly elucidated. Here, we recover 191 bacterial and 10 archaeal metagenome-assembled genomes (MAGs) from the coral Acropora kenti (formerly A. tenuis) and adjacent seawater, to identify microbial functions and metabolic interactions within the holobiont. We show that 82 MAGs were specific to the A. kenti holobiont, including members of the Pseudomonadota, Bacteroidota, and Desulfobacterota. A. kenti-specific MAGs displayed significant differences in their genomic features and functional potential relative to seawater-specific MAGs, with a higher prevalence of genes involved in host immune system evasion, nitrogen and carbon fixation, and synthesis of five essential B-vitamins. We find a diversity of A. kenti-specific MAGs encode the biosynthesis of essential amino acids, such as tryptophan, histidine, and lysine, which cannot be de novo synthesised by the host or Symbiodiniaceae. Across a water quality gradient spanning 2° of latitude, A. kenti microbial community composition is correlated to increased temperature and dissolved inorganic nitrogen, with corresponding enrichment in molecular chaperones, nitrate reductases, and a heat-shock protein. We reveal mechanisms of A. kenti-microbiome-symbiosis on the Great Barrier Reef, highlighting the interactions underpinning the health of this keystone holobiont.


Asunto(s)
Antozoos , Microbiota , Resiliencia Psicológica , Animales , Antozoos/genética , Antozoos/microbiología , Microbiota/genética , Metagenoma/genética , Nitrógeno , Arrecifes de Coral , Simbiosis/genética
6.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38653719

RESUMEN

Since their radiation in the Middle Triassic period ∼240 million years ago, stony corals have survived past climate fluctuations and five mass extinctions. Their long-term survival underscores the inherent resilience of corals, particularly when considering the nutrient-poor marine environments in which they have thrived. However, coral bleaching has emerged as a global threat to coral survival, requiring rapid advancements in coral research to understand holobiont stress responses and allow for interventions before extensive bleaching occurs. This review encompasses the potential, as well as the limits, of multiomics data applications when applied to the coral holobiont. Synopses for how different omics tools have been applied to date and their current restrictions are discussed, in addition to ways these restrictions may be overcome, such as recruiting new technology to studies, utilizing novel bioinformatics approaches, and generally integrating omics data. Lastly, this review presents considerations for the design of holobiont multiomics studies to support lab-to-field advancements of coral stress marker monitoring systems. Although much of the bleaching mechanism has eluded investigation to date, multiomic studies have already produced key findings regarding the holobiont's stress response, and have the potential to advance the field further.


Asunto(s)
Antozoos , Simbiosis , Antozoos/genética , Antozoos/microbiología , Animales , Genómica , Metabolómica , Estrés Fisiológico , Proteómica , Biología Computacional/métodos , Multiómica
7.
Mol Ecol ; 33(9): e17342, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38584356

RESUMEN

Endosymbiotic dinoflagellates (Symbiodiniaceae) influence coral thermal tolerance at both local and regional scales. In isolation, the effects of host genetics, environment, and thermal disturbances on symbiont communities are well understood, yet their combined effects remain poorly resolved. Here, we investigate Symbiodiniaceae across 1300 km in Australia's Coral Sea Marine Park to disentangle these interactive effects. We identified Symbiodiniaceae to species-level resolution for three coral species (Acropora cf humilis, Pocillopora verrucosa, and Pocillopora meandrina) by sequencing two genetic markers of the symbiont (ITS2 and psbAncr), paired with genotype-by-sequencing of the coral host (DArT-seq). Our samples predominantly returned sequences from the genus Cladocopium, where Acropora cf humilis affiliated with C3k, Pocillopora verrucosa with C. pacificum, and Pocillopora meandrina with C. latusorum. Multivariate analyses revealed that Acropora symbionts were driven strongly by local environment and thermal disturbances. In contrast, Pocillopora symbiont communities were both partitioned 2.5-fold more by host genetic structure than by environmental structure. Among the two Pocillopora species, the effects of environment and host genetics explained four times more variation in symbionts for P. meandrina than P. verrucosa. The concurrent bleaching event in 2020 had variable impacts on symbiont communities, consistent with patterns in P. verrucosa and A. cf humilis, but not P. meandrina. Our findings demonstrate how symbiont macroscale community structure responses to environmental gradients depend on host species and their respective population structure. Integrating host, symbiont, and environmental data will help forecast the adaptive potential of corals and their symbionts amidst a rapidly changing environment.


Asunto(s)
Antozoos , Arrecifes de Coral , Dinoflagelados , Simbiosis , Dinoflagelados/genética , Simbiosis/genética , Animales , Antozoos/microbiología , Antozoos/genética , Australia , Temperatura , Filogenia
8.
Commun Biol ; 7(1): 434, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594357

RESUMEN

Beneficial microorganisms for corals (BMCs), or probiotics, can enhance coral resilience against stressors in laboratory trials. However, the ability of probiotics to restructure the coral microbiome in situ is yet to be determined. As a first step to elucidate this, we inoculated putative probiotic bacteria (pBMCs) on healthy colonies of Pocillopora verrucosa in situ in the Red Sea, three times per week, during 3 months. pBMCs significantly influenced the coral microbiome, while bacteria of the surrounding seawater and sediment remained unchanged. The inoculated genera Halomonas, Pseudoalteromonas, and Bacillus were significantly enriched in probiotic-treated corals. Furthermore, the probiotic treatment also correlated with an increase in other beneficial groups (e.g., Ruegeria and Limosilactobacillus), and a decrease in potential coral pathogens, such as Vibrio. As all corals (treated and non-treated) remained healthy throughout the experiment, we could not track health improvements or protection against stress. Our data indicate that healthy, and therefore stable, coral microbiomes can be restructured in situ, although repeated and continuous inoculations may be required in these cases. Further, our study provides supporting evidence that, at the studied scale, pBMCs have no detectable off-target effects on the surrounding microbiomes of seawater and sediment near inoculated corals.


Asunto(s)
Antozoos , Bacillus , Microbiota , Probióticos , Vibrio , Animales , Antozoos/microbiología
9.
mSystems ; 9(5): e0026124, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38606974

RESUMEN

Corals establish symbiotic relationships with microorganisms, especially endosymbiotic photosynthetic algae. Although other microbes have been commonly detected in coral tissues, their identity and beneficial functions for their host are unclear. Here, we confirm the beneficial outcomes of the inoculation of bacteria selected as probiotics and use fluorescence in situ hybridization (FISH) to define their localization in the coral Pocillopora damicornis. Our results show the first evidence of the inherent presence of Halomonas sp. and Cobetia sp. in native coral tissues, even before their inoculation. Furthermore, the relative enrichment of these coral tissue-associated bacteria through their inoculation in corals correlates with health improvements, such as increases in photosynthetic potential, and productivity. Our study suggests the symbiotic status of Halomonas sp. and Cobetia sp. in corals by indicating their localization within coral gastrodermis and epidermis and correlating their increased relative abundance through active inoculation with beneficial outcomes for the holobiont. This knowledge is crucial to facilitate the screening and application of probiotics that may not be transient members of the coral microbiome. IMPORTANCE: Despite the promising results indicating the beneficial outcomes associated with the application of probiotics in corals and some scarce knowledge regarding the identity of bacterial cells found within the coral tissue, the correlation between these two aspects is still missing. This gap limits our understanding of the actual diversity of coral-associated bacteria and whether these symbionts are beneficial. Some researchers, for example, have been suggesting that probiotic screening should only focus on the very few known tissue-associated bacteria, such as Endozoicomonas sp., assuming that the currently tested probiotics are not tissue-associated. Here, we provide specific FISH probes for Halomonas sp. and Cobetia sp., expand our knowledge of the identity of coral-associated bacteria and confirm the probiotic status of the tested probiotics. The presence of these beneficial microorganisms for corals (BMCs) inside host tissues and gastric cavities also supports the notion that direct interactions with the host may underpin their probiotic role. This is a new breakthrough; these results argue against the possibility that the positive effects of BMCs are due to factors that are not related to a direct symbiotic interaction, for example, that the host simply feeds on inoculated bacteria or that the bacteria change the water quality.


Asunto(s)
Antozoos , Probióticos , Simbiosis , Antozoos/microbiología , Antozoos/fisiología , Simbiosis/fisiología , Animales , Probióticos/farmacología , Hibridación Fluorescente in Situ , Halomonas/fisiología , Microbiota/fisiología
10.
Appl Environ Microbiol ; 90(4): e0193923, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38445866

RESUMEN

The thermal bleaching percentage of coral holobionts shows interspecific differences under heat-stress conditions, which are closely related to the coral-associated microbiome. However, the ecological effects of community dynamics and interactions between Symbiodiniaceae and fungi on coral thermal bleaching susceptibility remain unclear. In this study, we analyzed the diversity, community structure, functions, and potential interaction of Symbiodiniaceae and fungi among 18 coral species from a high thermal bleaching risk atoll using next-generation sequencing. The results showed that heat-tolerant C3u sub-clade and Durusdinium dominated the Symbiodiniaceae community of corals and that there were no core amplicon sequence variants in the coral-associated fungal community. Fungal richness and the abundance of confirmed functional animal-plant pathogens were significantly positively correlated with the coral thermal bleaching percentage. Fungal indicators, including Didymellaceae, Chaetomiaceae, Schizophyllum, and Colletotrichum, were identified in corals. Each coral species had a complex Symbiodiniaceae-fungi interaction network (SFIN), which was driven by the dominant Symbiodiniaceae sub-clades. The SFINs of coral holobionts with low thermal bleaching susceptibility exhibited low complexity and high betweenness centrality. These results indicate that the extra heat tolerance of coral in Huangyan Island may be linked to the high abundance of heat-tolerant Symbiodiniaceae. Fungal communities have high interspecific flexibility, and the increase of fungal diversity and pathogen abundance was correlated with higher thermal bleaching susceptibility of corals. Moreover, fungal indicators were associated with the degrees of coral thermal bleaching susceptibility, including both high and intermediate levels. The topological properties of SFINs suggest that heat-tolerant coral have limited fungal parasitism and strong microbial network resilience.IMPORTANCEGlobal warming and enhanced marine heatwaves have led to a rapid decline in coral reef ecosystems worldwide. Several studies have focused on the impact of coral-associated microbiomes on thermal bleaching susceptibility in corals; however, the ecological functions and interactions between Symbiodiniaceae and fungi remain unclear. We investigated the microbiome dynamics and potential interactions of Symbiodiniaceae and fungi among 18 coral species in Huangyan Island. Our study found that the Symbiodiniaceae community of corals was mainly composed of heat-tolerant C3u sub-clade and Durusdinium. The increase in fungal diversity and pathogen abundance has close associations with higher coral thermal bleaching susceptibility. We first constructed an interaction network between Symbiodiniaceae and fungi in corals, which indicated that restricting fungal parasitism and strong interaction network resilience would promote heat acclimatization of corals. Accordingly, this study provides insights into the role of microorganisms and their interaction as drivers of interspecific differences in coral thermal bleaching.


Asunto(s)
Antozoos , Dinoflagelados , Microbiota , Animales , Antozoos/microbiología , Arrecifes de Coral , Simbiosis , Hongos/genética
11.
Appl Environ Microbiol ; 90(4): e0227423, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38470181

RESUMEN

Vibrio species are prevalent in ocean ecosystems, particularly Vibrio coralliilyticus, and pose a threat to corals and other marine organisms under global warming conditions. While microbiota manipulation is considered for coral disease management, understanding the role of commensal bacteria in stress resilience remains limited. Here, a single bacterial species (Ruegeria profundi) rather than a consortium of native was used to combat pathogenic V. coralliilyticus and protect corals from bleaching. R. profundi showed therapeutic activity in vivo, preventing a significant reduction in bacterial diversity in bleached corals. Notably, the structure of the bacterial community differed significantly among all the groups. In addition, compared with the bleached corals caused by V. coralliilyticus, the network analysis revealed that complex interactions and positive correlations in the bacterial community of the R. profundi protected non-bleached corals, indicating R. profundi's role in fostering synergistic associations. Many genera of bacteria significantly increased in abundance during V. coralliilyticus infection, including Vibrio, Alteromonas, Amphritea, and Nautella, contributing to the pathogenicity of the bacterial community. However, R. profundi effectively countered the proliferation of these genera, promoting potential probiotic Endozoicomonas and other taxa, while reducing the abundance of betaine lipids and the type VI section system of the bacterial community. These changes ultimately influenced the interactive relationships among symbionts and demonstrated that probiotic R. profundi intervention can modulate coral-associated bacterial community, alleviate pathogenic-induced dysbiosis, and preserve coral health. These findings elucidated the relationship between the behavior of the coral-associated bacterial community and the occurrence of pathological coral bleaching.IMPORTANCEChanges in the global climate and marine environment can influence coral host and pathogen repartition which refers to an increased likelihood of pathogen infection in hosts. The risk of Vibrio coralliilyticus-induced coral disease is significantly heightened, primarily due to its thermos-dependent expression of virulent and populations. This study investigates how coral-associated bacterial communities respond to bleaching induced by V. coralliilyticus. Our findings demonstrate that Ruegeria profundi exhibits clear evidence of defense against pathogenic bacterial infection, contributing to the maintenance of host health and symbiont homeostasis. This observation suggests that bacterial pathogens could cause dysbiosis in coral holobionts. Probiotic bacteria display an essential capability in restructuring and manipulating coral-associated bacterial communities. This restructuring effectively reduces bacterial community virulence and enhances the pathogenic resistance of holobionts. The study provides valuable insights into the correlation between the health status of corals and how coral-associated bacterial communities may respond to both pathogens and probiotics.


Asunto(s)
Antozoos , Rhodobacteraceae , Vibrio , Animales , Blanqueamiento de los Corales , Ecosistema , Disbiosis , Antozoos/microbiología , Arrecifes de Coral
12.
Bioelectrochemistry ; 158: 108697, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38554560

RESUMEN

Heat stress and coral diseases are the predominant factors causing the degradation of coral reef ecosystems. Over recent years, Vibrio coralliilyticus was identified as a temperature-dependent pathogen causing tissue lysis in Pocillopora damicornis and one of the primary pathogens causing bleaching and mortality in other corals. Yet current detection techniques for V. coralliilyticus rely primarily on qPCR and ddPCR, which cannot meet the requirements for non-invasive and real-time detection. Herein, we developed an effective electrochemical biosensor modified by an Au-MoS2/rGO (AMG) nanocomposites and a specific capture probe to dynamically detect V. coralliilyticus environment DNA (eDNA) in aquarium experiments, with a lower limit of detection (0.28 fM) for synthetic DNA and a lower limit of quantification (9.8 fg/µL, ∼0.86 copies/µL) for genomic DNA. Its reliability and accuracy were verified by comparison with the ddPCR method (P > 0.05). Notably, coral tissue started to lyse at only 29 °C when the concentration of V. coralliilyticus increased abruptly to 880 copies/µL, indicating the biosensor could reflect the types of pathogen and health risks of corals under heat stress. Overall, the novel and reliable electrochemical biosensing technology provides an efficient strategy for the on-site monitoring and early warning of coral health in the context of global warming.


Asunto(s)
Antozoos , Técnicas Biosensibles , Vibrio , Técnicas Biosensibles/métodos , Animales , Vibrio/genética , Vibrio/aislamiento & purificación , Antozoos/microbiología , ADN Bacteriano/genética , ADN Bacteriano/análisis , Límite de Detección , Técnicas Electroquímicas/métodos , Nanocompuestos/química , Oro/química , ADN Ambiental/genética , ADN Ambiental/análisis
13.
Mar Pollut Bull ; 201: 116172, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394797

RESUMEN

Corals harbour ~25 % of the marine diversity referring to biodiversity hotspots in marine ecosystems. Global efforts to find ways to restore the coral reef ecosystem from various threats can be complemented by studying coral-associated bacteria. Coral-associated bacteria are vital components of overall coral wellbeing. We explored the bacterial diversity associated with coral Dipsastraea favus (D. favus) collected from the Gulf of Kutch, India, using both culture-dependent and metagenomic approaches. In both approaches, phylum Proteobacteria, Firmicutes, and Actinobacteria predominated, comprising the genera Vibrio, Bacillus, Shewanella, Pseudoalteromonas, Exiguobacterium and Streptomyces. Moreover, the majority of culturable isolates showed multiple antibiotic resistance index ≥0.2. In this study, specific bacterial diversity associated with coral sp. D. favus and its possible role in managing coral health was established. Almost 43 strains from the samples were successfully cultured, creating a base for exploring these microbes for their potential use in coral conservation methods.


Asunto(s)
Antozoos , Tiña Favosa , Animales , Antozoos/microbiología , Ecosistema , Filogenia , ARN Ribosómico 16S , Bacterias/genética , Arrecifes de Coral , Biodiversidad
14.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38366190

RESUMEN

The increasing trend in sea surface temperature promotes the spread of Vibrio species, which are known to cause diseases in a wide range of marine organisms. Among these pathogens, Vibrio mediterranei has emerged as a significant threat, leading to bleaching in the coral species Oculina patagonica. Bacteriophages, or phages, are viruses that infect bacteria, thereby regulating microbial communities and playing a crucial role in the coral's defense against pathogens. However, our understanding of phages that infect V. mediterranei is limited. In this study, we identified two phage species capable of infecting V. mediterranei by utilizing a combination of cultivation and metagenomic approaches. These phages are low-abundance specialists within the coral mucus layer that exhibit rapid proliferation in the presence of their hosts, suggesting a potential role in coral defense. Additionally, one of these phages possesses a conserved domain of a leucine-rich repeat protein, similar to those harbored in the coral genome, that plays a key role in pathogen recognition, hinting at potential coral-phage coevolution. Furthermore, our research suggests that lytic Vibrio infections could trigger prophage induction, which may disseminate genetic elements, including virulence factors, in the coral mucus layer. Overall, our findings underscore the importance of historical coral-phage interactions as a form of coral immunity against invasive Vibrio pathogens.


Asunto(s)
Antozoos , Bacteriófagos , Vibrio , Animales , Antozoos/microbiología , Bacteriófagos/genética , Vibrio/fisiología , Temperatura , Moco
15.
Environ Res ; 250: 118469, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38354884

RESUMEN

Global warming reportedly poses a critical risk to coral reef ecosystems. Bacteria and archaea are crucial components of the coral holobiont. The response of archaea associated with warming is less well understood than that of the bacterial community in corals. Also, there have been few studies on the dynamics of the microbial community in the coral holobiont under long-term heat stress. In order to track the dynamic alternations in the microbial communities within the heat-stressed coral holobiont, three-week heat-stress monitoring was carried out on the coral Pocillopora damicornis. The findings demonstrate that the corals were stressed at 32 °C, and showed a gradual decrease in Symbiodiniaceae density with increasing duration of heat stress. The archaeal community in the coral holobiont remained relatively unaltered by the increasing temperature, whereas the bacterial community was considerably altered. Sustained heat stress exacerbated the dissimilarities among parallel samples of the bacterial community, confirming the Anna Karenina Principle in animal microbiomes. Heat stress leads to more complex and unstable microbial networks, characterized by an increased average degree and decreased modularity, respectively. With the extension of heat stress duration, the relative abundances of the gene (nifH) and genus (Tistlia) associated with nitrogen fixation increased in coral samples, as well as the potential pathogenic bacteria (Flavobacteriales) and opportunistic bacteria (Bacteroides). Hence, our findings suggest that coral hosts might recruit nitrogen-fixing bacteria during the initial stages of suffering heat stress. An environment that is conducive to the colonization and development of opportunistic and pathogenic bacteria when the coral host becomes more susceptible as heat stress duration increases.


Asunto(s)
Antozoos , Archaea , Bacterias , Antozoos/microbiología , Antozoos/fisiología , Animales , Archaea/genética , Archaea/fisiología , Bacterias/genética , Bacterias/clasificación , Respuesta al Choque Térmico , Microbiota , Calor , Arrecifes de Coral
16.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365239

RESUMEN

Coral microhabitats are colonized by a myriad of microorganisms, including diverse bacteria which are essential for host functioning and survival. However, the location, transmission, and functions of individual bacterial species living inside the coral tissues remain poorly studied. Here, we show that a previously undescribed bacterial symbiont of the coral Pocillopora acuta forms cell-associated microbial aggregates (CAMAs) within the mesenterial filaments. CAMAs were found in both adults and larval offspring, suggesting vertical transmission. In situ laser capture microdissection of CAMAs followed by 16S rRNA gene amplicon sequencing and shotgun metagenomics produced a near complete metagenome-assembled genome. We subsequently cultured the CAMA bacteria from Pocillopora acuta colonies, and sequenced and assembled their genomes. Phylogenetic analyses showed that the CAMA bacteria belong to an undescribed Endozoicomonadaceae genus and species, which we propose to name Candidatus Sororendozoicomonas aggregata gen. nov sp. nov. Metabolic pathway reconstruction from its genome sequence suggests this species can synthesize most amino acids, several B vitamins, and antioxidants, and participate in carbon cycling and prey digestion, which may be beneficial to its coral hosts. This study provides detailed insights into a new member of the widespread Endozoicomonadaceae family, thereby improving our understanding of coral holobiont functioning. Vertically transmitted, tissue-associated bacteria, such as Sororendozoicomonas aggregata may be key candidates for the development of microbiome manipulation approaches with long-term positive effects on the coral host.


Asunto(s)
Antozoos , Gammaproteobacteria , Animales , Antozoos/microbiología , Filogenia , ARN Ribosómico 16S/genética , Bacterias/genética , Metagenoma , Gammaproteobacteria/genética , Arrecifes de Coral , Simbiosis
17.
Environ Microbiol Rep ; 16(1): e13229, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38192237

RESUMEN

Coral propagation and out-planting based restoration approaches are increasingly being applied to assist natural recovery of coral reefs. However, many restoration methods rely on plastic zip-ties to secure coral material which is potentially problematic for the marine environment. Plastic-free biodegradable alternatives may however pose unique risks to coral-associated bacterial communities integral to coral health. Therefore, to identify whether biodegradable materials differentially impact coral-associated bacterial communities we examined Acropora millepora coral-associated bacterial communities during propagation in two experiments on the Great Barrier Reef. Coral fragments were secured to coral nurseries with conventional plastic, metal, or biodegradable (polyester and polycaprolactone) ties. Tie failure and coral-associated bacterial communities were then characterized over six months. Minimal coral mortality was observed (3.6%-8%) and all ties had low failure rates (0%-4.2%) except for biodegradable polyester ties (29.2% failure). No differences were observed between coral-associated bacterial communities of fragments secured with different ties, and no proliferation of putatively pathogenic bacteria was recorded. Overall, our findings suggest that reducing reliance on conventional plastic is feasible through transitions to biodegradable materials, without any notable impacts on coral-associated bacterial communities. However, we caution the need to examine more coral taxa of different morphologies and new plastic-free materials prior to application.


Asunto(s)
Antozoos , Animales , Antozoos/microbiología , Arrecifes de Coral , Bacterias/genética , Poliésteres
18.
Microbiol Res ; 281: 127607, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38228019

RESUMEN

The potential to produce and release outer membrane vesicles (OMVs) is evolutionarily conserved among bacteria, facilitating interactions between microbes. OMV release and its ecological significance have rarely been reported in coral holobionts. Here, via transmission electron microscopy (TEM), we discovered that the coral-associated strain Vibrio coralliilyticus DSM 19607 produced OMVs in culture. OMVs purified from V. coralliilyticus DSM 19607 inhibited the bacteriophage (phage) SBM1 infection of the V. coralliilyticus host, which was impaired by elevated temperature. Observation via TEM showed that sequestrating phages was a potential approach for V. coralliilyticus OMVs protection against phage infection. Furthermore, detection in coral mucus showed that interactions between membrane vesicles and phages potentially occurred in the natural environment. These results imply that OMVs regulate the coral microbiome and may have important implications for our mechanistic understanding of coral health and disease in the face of climate change.


Asunto(s)
Antozoos , Bacteriófagos , Vibrio , Animales , Antozoos/microbiología
19.
Trends Microbiol ; 32(5): 422-434, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38216372

RESUMEN

Stony corals are poster child holobionts due to their intimate association with diverse microorganisms from all domains of life. We are only beginning to understand the diverse functions of most of these microbial associates, including potential main contributors to holobiont health and resilience. Among these, bacteria of the elusive genus Endozoicomonas are widely perceived as beneficial symbionts based on their genomic potential and their high prevalence and ubiquitous presence in coral tissues. Simultaneously, evidence of pathogenic and parasitic Endozoicomonas lineages in other marine animals is emerging. Synthesizing the current knowledge on the association of Endozoicomonas with marine holobionts, we challenge the perception of a purely mutualistic coral-Endozoicomonas relationship and propose directions to elucidate its role along the symbiotic spectrum.


Asunto(s)
Antozoos , Arrecifes de Coral , Simbiosis , Antozoos/microbiología , Antozoos/fisiología , Animales , Filogenia , Microbiota
20.
Microbiol Spectr ; 12(2): e0243623, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38174936

RESUMEN

Fungiidae have shown increased thermal adaptability in coral reef ecosystems under global warming. This study analyzes the evolutionary divergence and microbial communities of Fungiidae in the Sanjiao Reef of the southern South China Sea and explores the impact of coral evolution radiation and microbial dynamics on the heat tolerance of Fungiidae. The results found that Cycloseris was an ancient branch of Fungiidae, dating back approximately 147.8953 Mya, and Fungiidae differentiated into two ancestral clades (clades I and II) before 107.0312 Ma. Fungiidae exhibited specific symbioses with the Cladocopium C27 sub-clade. Notably, the Cladocopium C1 sub-clade has a high relative abundance in clade I, whereas the heat-tolerant Cladocopium C40 and C3u sub-clades subdominante in clade II. Regarding bacterial communities, Cycloseris costulata, the earliest divergent species, had higher bacterial ß-diversity, while the latest divergent species, Lithophyllon scabra, displayed lower bacterial α-diversity and higher community stability. Beneficial bacteria dominante Fungiidae's bacterial community (54%). The co-occurrence network revealed that microbial networks in clade II exhibited lower complexity and greater resilience than those in clade I. Our study highlights that host evolutionary radiation and microbial communities shaped Fungiidae's thermal tolerance. The variability in subdominant Symbiodiniaceae populations may contribute to interspecific differences in thermal tolerance along the evolutionary branches of Fungiidae. The presence of abundant beneficial bacteria may further enhance the thermal ability of the Fungiidae. Furthermore, the later divergent species of Fungiidae have stronger heat tolerance, possibly driven by the increased regulation ability of the host on the bacterial community, greater microbial community stability, and interaction network resistance.IMPORTANCECoral reefs are facing significant threats due to global warming. The heat tolerance of coral holobionts depends on both the coral host and its microbiome. However, the association between coral evolutionary radiation and interspecific differences in microbial communities remains unclear. In this study, we investigated the role of evolutionary radiation and microbial community dynamics in shaping the thermal acclimation potential of Fungiidae in the Sanjiao Reef of the southern South China Sea. The study's results suggest that evolutionary radiation enhances the thermal tolerance of Fungiidae. Fungiidae species that have diverged more recently have exhibited a higher presence of heat-tolerant Symbiodiniaceae taxa, more stable bacterial communities, and a robust and resilient microbial interaction network, improving the thermal adaptability of Fungiidae. In summary, this study provides new insights into the thermal adaptation patterns of corals under global warming conditions.


Asunto(s)
Antozoos , Dinoflagelados , Microbiota , Animales , Antozoos/microbiología , Antozoos/fisiología , Arrecifes de Coral , Aclimatación , Bacterias , China , Dinoflagelados/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA