Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
BMC Ecol Evol ; 24(1): 75, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844857

RESUMEN

BACKGROUND: The parallel evolution of similar traits or species provides strong evidence for the role of natural selection in evolution. Traits or species that evolved repeatedly can be driven by separate de novo mutations or interspecific gene flow. Although parallel evolution has been reported in many studies, documented cases of parallel evolution caused by gene flow are scarce by comparison. Aquilegia ecalcarata and A. kansuensis belong to the genus of Aquilegia, and are the closest related sister species. Mutiple origins of A. ecalcarata have been reported in previous studies, but whether they have been driven by separate de novo mutations or gene flow remains unclear. RESULTS: In this study, We conducted genomic analysis from 158 individuals of two repeatedly evolving pairs of A. ecalcarata and A. kansuensis. All samples were divided into two distinct clades with obvious geographical distribution based on phylogeny and population structure. Demographic modeling revealed that the origin of the A. ecalcarata in the Eastern of China was caused by gene flow, and the Eastern A. ecalcarata occurred following introgression from Western A. ecalcarata population. Analysis of Treemix and D-statistic also revealed that a strong signal of gene flow was detected from Western A. ecalcarata to Eastern A. ecalcarata. Genetic divergence and selective sweep analyses inferred parallel regions of genomic divergence and identified many candidate genes associated with ecologically adaptive divergence between species pair. Comparative analysis of parallel diverged regions and gene introgression confirms that gene flow contributed to the parallel evolution of A. ecalcarata. CONCLUSIONS: Our results further confirmed the multiple origins of A. ecalcarata and highlighted the roles of gene flow. These findings provide new evidence for parallel origin after hybridization as well as insights into the ecological adaptation mechanisms underlying the parallel origins of species.


Asunto(s)
Aquilegia , Flujo Génico , Aquilegia/genética , Genómica , China , Filogenia , Hibridación Genética
2.
BMC Plant Biol ; 24(1): 142, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413922

RESUMEN

BACKGROUND: Aquilegia is a model system for studying the evolution of adaptive radiation. However, very few studies have been conducted on the Aquilegia mitochondrial genome. Since mitochondria play a key role in plant adaptation to abiotic stress, analyzing the mitochondrial genome may provide a new perspective for understanding adaptive evolution. RESULTS: The Aquilegia amurensis mitochondrial genome was characterized by a circular chromosome and two linear chromosomes, with a total length of 538,736 bp; the genes included 33 protein-coding genes, 24 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. We subsequently conducted a phylogenetic analysis based on single nucleotide polymorphisms (SNPs) in the mitochondrial genomes of 18 Aquilegia species, which were roughly divided into two clades: the European-Asian clade and the North American clade. Moreover, the genes mttB and rpl5 were shown to be positively selected in European-Asian species, and they may help European and Asian species adapt to environmental changes. CONCLUSIONS: In this study, we assembled and annotated the first mitochondrial genome of the adaptive evolution model plant Aquilegia. The subsequent analysis provided us with a basis for further molecular studies on Aquilegia mitochondrial genomes and valuable information on adaptive evolution in Aquilegia.


Asunto(s)
Aquilegia , Genoma Mitocondrial , Filogenia , Aquilegia/genética , Genoma Mitocondrial/genética , Mitocondrias/genética , ARN de Transferencia/genética
3.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003641

RESUMEN

Salt stress has a considerable impact on the development and growth of plants. The soil is currently affected by salinisation, a problem that is becoming worse every year. This means that a significant amount of salt-tolerant plant material needs to be added. Aquilegia vulgaris has aesthetically pleasing leaves, unique flowers, and a remarkable tolerance to salt. In this study, RNA-seq technology was used to sequence and analyse the transcriptome of the root of Aquilegia vulgaris seedlings subjected to 200 mM NaCl treatment for 12, 24, and 48 h. In total, 12 Aquilegia vulgaris seedling root transcriptome libraries were constructed. At the three time points of salt treatment compared with the control, 3888, 1907, and 1479 differentially expressed genes (DEGs) were identified, respectively. Various families of transcription factors (TFs), mainly AP2, MYB, and bHLH, were identified and might be linked to salt tolerance. Gene Ontology (GO) analysis of DEGs revealed that the structure and composition of the cell wall and cytoskeleton may be crucial in the response to salt stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs showed a significant enrichment of the pentose and glucuronate interconversion pathway, which is associated with cell wall metabolism after 24 and 48 h of salt treatment. Based on GO and KEGG analyses of DEGs, the pentose and glucuronate interconversion pathway was selected for further investigation. AP2, MYB, and bHLH were found to be correlated with the functional genes in this pathway based on a correlation network. This study provides the groundwork for understanding the key pathways and gene networks in response to salt stress, thereby providing a theoretical basis for improving salt tolerance in Aquilegia vulgaris.


Asunto(s)
Aquilegia , Tolerancia a la Sal , Tolerancia a la Sal/genética , Aquilegia/genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Transcriptoma , Plantones/genética , Glucuronatos , Pentosas , Salinidad
4.
Environ Monit Assess ; 195(5): 623, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37115430

RESUMEN

Climate change is one of the primary causes of species redistribution and biodiversity loss, especially for threatened and endemic important plant species. Therefore, it is vital to comprehend "how" and "where" priority medicinal and aromatic plants (MAPs) might be effectively used to address conservation-related issues under rapid climate change. In the present study, an ensemble modelling approach was used to investigate the present and future distribution patterns of Aquilegia fragrans Benth. under climate change in the entire spectrum of Himalayan biodiversity hotspot. The results of the current study revealed that, under current climatic conditions, the northwest states of India (Jammu and Kashmir, Himachal Pradesh and the northern part of Uttarakhand), the eastern and southern parts of Pakistan Himalaya have highly suitable climatic conditions for the growth of A. fragrans. The ensemble model exhibited high forecast accuracy, with temperature seasonality and precipitation seasonality as the main climatic variables responsible for the distribution of the A. fragrans in the biodiversity hotspot. Furthermore, the study predicted that future climate change scenarios will diminish habitat suitability for the species by -46.9% under RCP4.5 2050 and -55.0% under RCP4.5 2070. Likewise, under RCP8.5, the habitat suitability will decrease by -51.7% in 2050 and -94.3% in 2070. The current study also revealed that the western Himalayan area will show the most habitat loss. Some currently unsuitable regions, such as the northern Himalayan regions of Pakistan, will become more suitable under climate change scenarios. Hopefully, the current approach may provide a robust technique and showcases a model with learnings for predicting cultivation hotspots and developing scientifically sound conservation plans for this endangered medicinal plant in the Himalayan biodiversity hotspot.


Asunto(s)
Aquilegia , Cambio Climático , Monitoreo del Ambiente , Ecosistema , Biodiversidad
5.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835360

RESUMEN

Salt stress is one of the main abiotic stresses that strongly affects plant growth. Clarifying the molecular regulatory mechanism in ornamental plants under salt stress is of great significance for the ecological development of saline soil areas. Aquilegia vulgaris is a perennial with a high ornamental and commercial value. To narrow down the key responsive pathways and regulatory genes, we analyzed the transcriptome of A. vulgaris under a 200 mM NaCl treatment. A total of 5600 differentially expressed genes were identified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis pointed out that starch and sucrose metabolism and plant hormone signal transduction were significantly improved. The above pathways played crucial roles when A. vulgaris was coping with salt stress, and their protein-protein interactions (PPIs) were predicted. This research provides new insights into the molecular regulatory mechanism, which could be the theoretical basis for screening candidate genes in Aquilegia.


Asunto(s)
Aquilegia , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Aquilegia/genética , Aquilegia/metabolismo , Perfilación de la Expresión Génica , Almidón/metabolismo , Estrés Salino/genética , Transcriptoma , Transducción de Señal , Sacarosa , Regulación de la Expresión Génica de las Plantas
6.
Gene ; 852: 147057, 2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36410606

RESUMEN

Nectar spur is a hollow extension of certain flower parts and shows strikingly diverse size and shape in Aquilegia. Nectar spur development is involved in cell division and expansion processes. The basic helix-loop-helix (bHLH) transcription factors (TFs) control a diversity of organ morphogenesis, including cell division and cell expansion processes. However, the role of bHLH genes in nectar spur development in Aquilegia is mainly unknown. We conducted a genome-wide identification of the bHLH gene family in Aquilegia to determine structural characteristics and phylogenetic relationships, and to analyze expression profiles of these genes during the development of nectar spur in spurless and spurred species. A total of 120 AqbHLH genes were identified from the Aquilegia coerulea genome. The phylogenetic tree showed that AqbHLH proteins were divided into 15 subfamilies, among which S7 and S8 subfamilies occurred marked expansion. The AqbHLH genes in the same clade had similar motif composition and gene structure characteristics. Conserved residue analysis indicated nineteen residues with conservation of more than 50% were found in the four conserved regions. In the upstream sequence of AqbHLH genes, the light-responsive element was the most abundant cis-acting element. Eighteen AqbHLH genes showed syntenic relationships, and eight genes from four syntenic pairs underwent tandem duplications. According to the expression profiling analysis by public RNA-Seq data and qRT-PCR results, five AqbHLH genes, including AqbHLH027, AqbHLH046, AqbHLH082, AqbHLH083 and AqbHLH092, were differentially expressed between different tissues in A. coerulea at early developmental stages, as well as between spurless and spurred Aquilegia species. Of them, AqbHLH046 was not only highly expressed in spur compared with blade, but also showed higher expression levels in spurred species than spurless specie, suggesting it plays an essential role in the development of spur by regulating cell division. This study lays a foundation to investigate the function of AqbHLH genes family in nectar spur development, and has potential implications for speciation and genetic breeding in the genus Aquilegia.


Asunto(s)
Aquilegia , Néctar de las Plantas , Néctar de las Plantas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Aquilegia/genética , Filogenia , Fitomejoramiento
7.
Am J Bot ; 109(9): 1360-1381, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35971626

RESUMEN

PREMISE: Determining the developmental programs underlying morphological variation is key to elucidating the evolutionary processes that generated the stunning biodiversity of the angiosperms. Here, we characterized the developmental and transcriptional dynamics of the elaborate petal nectar spur of Aquilegia (columbine) in species with contrasting pollination syndromes and spur morphologies. METHODS: We collected petal epidermal cell number and length data across four Aquilegia species, two with short, curved nectar spurs of the bee-pollination syndrome and two with long, straight spurs of the hummingbird-pollination syndrome. We also performed RNA-seq on A. brevistyla (bee) and A. canadensis (hummingbird) distal and proximal spur compartments at multiple developmental stages. Finally, we intersected these data sets with a previous QTL mapping study on spur length and shape to identify new candidate loci. RESULTS: The differential growth between the proximal and distal surfaces of curved spurs is primarily driven by differential cell division. However, independent transitions to straight spurs in the hummingbird syndrome have evolved by increasing differential cell elongation between spur surfaces. The RNA-seq data reveal these tissues to be transcriptionally distinct and point to auxin signaling as being involved with the differential cell elongation responsible for the evolution of straight spurs. We identify several promising candidate genes for future study. CONCLUSIONS: Our study, taken together with previous work in Aquilegia, reveals the complexity of the developmental mechanisms underlying trait variation in this system. The framework we established here will lead to exciting future work examining candidate genes and processes involved in the rapid radiation of the genus.


Asunto(s)
Aquilegia , Animales , Aquilegia/genética , Abejas , Flores , Ácidos Indolacéticos/metabolismo , Néctar de las Plantas/metabolismo , Polinización
8.
Prev Med ; 162: 107176, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35878710

RESUMEN

White individuals in the United States (US) have historically had disproportionate access to firearms. The real-life availability of firearms, including those most lethal, may still be greater among White populations, manifesting in the number of victims in shootings. We compared the severity of US mass public shootings since Columbine by race and/or ethnicity of the perpetrator using The Violence Project Database of Mass Shooters, assessing fatalities (minimum four), total victims, type, and legal status of guns used. We used data visualization and Quasi-Poisson regression of victims minus four - accounting for truncation at 4 fatalities - to assess fatality and total victim rates comparing Non-Hispanic (NH) White with NH Black shooters, using winsorization to account for outlier bias from the 2017 Las Vegas shooting. In 104 total mass public shootings until summer 2021, NH White shooters had higher median fatalities (6 [IQR 5-9] versus 5 [IQR 4-6]) and total victims (9 [IQR 6-19] versus 7 [IQR 5-12]) per incident. Confidence intervals of NH Black versus NH White fatalities rate ratios (RR) ranged from 0.17-1.15, and of total victim RRs from 0.15-1.04. White shooters were overrepresented in mass public shootings with the most victims, typically involving legally owned assault rifles. To better understand the consequences when firearms are readily available, including assault rifles, we need a database of all US gun violence. Our assessment of total victims beyond fatalities emphasizes the large number of US gun violence survivors and the need to understand their experiences to capture the full impact of gun violence.


Asunto(s)
Aquilegia , Armas de Fuego , Violencia con Armas , Heridas por Arma de Fuego , Etnicidad , Homicidio , Humanos , Estados Unidos/epidemiología
9.
J Exp Bot ; 73(18): 6241-6254, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35731618

RESUMEN

Floral organs are produced by floral meristems (FMs), which harbor stem cells in their centers. Since each flower only has a finite number of organs, the stem cell activity of an FM will always terminate at a specific time point, a process termed floral meristem termination (FMT). Variation in the timing of FMT can give rise to floral morphological diversity, but how this process is fine-tuned at a developmental and evolutionary level is poorly understood. Flowers from the genus Aquilegia share identical floral organ arrangement except for stamen whorl number (SWN), making Aquilegia a well-suited system for investigation of this process: differences in SWN between species represent differences in the timing of FMT. By crossing A. canadensis and A. brevistyla, quantitative trait locus (QTL) mapping has revealed a complex genetic architecture with seven QTL. We explored potential candidate genes under each QTL and characterized novel expression patterns of select loci of interest using in situ hybridization. To our knowledge, this is the first attempt to dissect the genetic basis of how natural variation in the timing of FMT is regulated, and our results provide insight into how floral morphological diversity can be generated at the meristematic level.


Asunto(s)
Aquilegia , Meristema , Meristema/genética , Meristema/metabolismo , Aquilegia/genética , Aquilegia/anatomía & histología , Regulación de la Expresión Génica de las Plantas , Flores/genética , Flores/metabolismo , Mapeo Cromosómico
10.
Genes (Basel) ; 13(5)2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35627179

RESUMEN

Widely grown in the Northern Hemisphere, the genus Aquilegia (columbine) is a model system in adaptive radiation research. While morphological variations between species have been associated with environmental factors, such as pollinators, how genetic and epigenetic factors are involved in the rapid divergence in this genus remains under investigated. In this study, we surveyed the genomes and DNA methylomes of ten Aquilegia species, representative of the Asian, European and North American lineages. Our analyses of the phylogeny and population structure revealed high genetic and DNA methylomic divergence across these three lineages. By multi-level genome-wide scanning, we identified candidate genes exhibiting lineage-specific genetic or epigenetic variation patterns that were signatures of inter-specific divergence. We demonstrated that these species-specific genetic variations and epigenetic variabilities are partially independent and are both functionally related to various biological processes vital to adaptation, including stress tolerance, cell reproduction and DNA repair. Our study provides an exploratory overview of how genetic and epigenetic signatures are associated with the diversification of the Aquilegia species.


Asunto(s)
Aquilegia , Aquilegia/genética , Epigénesis Genética , Epigenómica , Filogenia , Especificidad de la Especie
11.
Am J Bot ; 109(5): 676-688, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35435247

RESUMEN

PREMISE: Shifts in abiotic factors can affect many plant traits, including floral volatiles. This study examined the response of floral volatiles to water availability and whether phenotypic plasticity to water availability differs among populations. It also investigated genetic differentiation in floral volatiles, determined the effect of temperature on phenotypic plasticity to water availability, and assessed temporal variation in floral scent emission between day and evening, since pollinator visitation differs at those times. METHODS: Rocky Mountain columbine plants (Aquilegia coerulea), started from seeds collected in three wild populations in Colorado, Utah, and Arizona, were grown under two water treatments in a greenhouse in Madison, Wisconsin, United States. One population was also grown under the two water treatments, at two temperatures. Air samples were collected from enclosed flowers using dynamic headspace methods and floral volatiles were identified and quantified by gas chromatography (GC) with mass spectrometry (MS). RESULTS: Emission of three floral volatiles increased in the wetter environment, indicating phenotypic plasticity. The response of six floral volatiles to water availability differed among populations, suggesting genetic differentiation in phenotypic plasticity. Five floral volatiles varied among populations, and emission of most floral volatiles was greater during the day. CONCLUSIONS: Phenotypic plasticity to water availability permits a quick response of floral volatiles in changing environments. The genetic differentiation in phenotypic plasticity suggests that phenotypic plasticity can evolve but complicates predictions of the effects of environmental changes on a plant and its pollinators.


Asunto(s)
Aquilegia , Polinización , Aquilegia/fisiología , Flores/fisiología , Cromatografía de Gases y Espectrometría de Masas , Odorantes/análisis , Polinización/fisiología
12.
Development ; 149(4)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35175330

RESUMEN

In-depth investigation of any developmental process in plants requires knowledge of both the underpinning molecular networks and how they directly determine patterns of cell division and expansion over time. Floral meristems (FMs) produce floral organs, after which they undergo floral meristem termination (FMT); precise control of organ initiation and FMT is crucial to the reproductive success of any flowering plant. Using live confocal imaging, we characterized developmental dynamics during floral organ primordia initiation and FMT in Aquilegia coerulea (Ranunculaceae). Our results uncover distinct patterns of primordium initiation between stamens and staminodes compared with carpels, and provide insight into the process of FMT, which is discernable based on cell division dynamics that precede carpel initiation. To our knowledge, this is the first quantitative live imaging of meristem development in a system with numerous whorls of floral organs, as well as an apocarpous gynoecium. This study provides crucial information for our understanding of how the spatial-temporal regulation of floral meristem behavior is achieved in both evolutionary and developmental contexts. This article has an associated 'The people behind the papers' interview.


Asunto(s)
Aquilegia/metabolismo , Meristema/metabolismo , Microscopía Fluorescente , Aquilegia/crecimiento & desarrollo , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Flores/metabolismo , Procesamiento de Imagen Asistido por Computador , Proteínas de Plantas/metabolismo
13.
Curr Biol ; 32(6): 1332-1341.e5, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35176226

RESUMEN

Here, we describe a polymorphic population of Aquilegia coerulea with a naturally occurring floral homeotic mutant, A. coerulea var. daileyae, where the characteristic petals with nectar spurs are replaced with a second set of sepals. Although it would be expected that this loss of pollinator reward would be disadvantageous to the mutant, we find that it has reached relatively high frequency (∼25%) and is under strong, positive selection across multiple seasons (s = 0.17-0.3) primarily due to reduced floral herbivory. We identify the underlying locus (APETALA3-3) and multiple causal loss-of-function mutations indicating an ongoing soft sweep. Elevated linkage disequilibrium around the two most common causal alleles indicates that positive selection has been occurring for many generations. Lastly, genotypic frequencies at AqAP3-3 indicate a degree of positive assortative mating by morphology. Together, these data provide both a compelling example that large-scale discontinuous morphological changes differentiating taxa can occur due to single mutations and a particularly clear example of linking genotype, phenotype, and fitness.


Asunto(s)
Aquilegia , Aquilegia/genética , Flores/anatomía & histología , Flores/genética , Fenotipo , Néctar de las Plantas , Recompensa
14.
Ann Bot ; 128(7): 931-942, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34508638

RESUMEN

BACKGROUND AND AIMS: Aquilegia produce elongated, three-dimensional petal spurs that fill with nectar to attract pollinators. Previous studies have shown that the diversity of spur length across the Aquilegia genus is a key innovation that is tightly linked with its recent and rapid diversification into new ranges, and that evolution of increased spur lengths is achieved via anisotropic cell elongation. Previous work identified a brassinosteroid response transcription factor as being enriched in the early developing spur cup. Brassinosteroids are known to be important for cell elongation, suggesting that brassinosteroid-mediated response may be an important regulator of spur elongation and potentially a driver of spur length diversity in Aquilegia. In this study, we investigated the role of brassinosteroids in the development of the Aquilegia coerulea petal spur. METHODS: We exogenously applied the biologically active brassinosteroid brassinolide to developing petal spurs to investigate spur growth under high hormone conditions. We used virus-induced gene silencing and gene expression experiments to understand the function of brassinosteroid-related transcription factors in A. coerulea petal spurs. KEY RESULTS: We identified a total of three Aquilegia homologues of the BES1/BZR1 protein family and found that these genes are ubiquitously expressed in all floral tissues during development, yet, consistent with the previous RNAseq study, we found that two of these paralogues are enriched in early developing petals. Exogenously applied brassinosteroid increased petal spur length due to increased anisotropic cell elongation as well as cell division. We found that targeting of the AqBEH genes with virus-induced gene silencing resulted in shortened petals, a phenotype caused in part by a loss of cell anisotropy. CONCLUSIONS: Collectively, our results support a role for brassinosteroids in anisotropic cell expansion in Aquilegia petal spurs and highlight the brassinosteroid pathway as a potential player in the diversification of petal spur length in Aquilegia.


Asunto(s)
Aquilegia , Brasinoesteroides , División Celular , Flores , Regulación de la Expresión Génica de las Plantas , Néctar de las Plantas
15.
Oxid Med Cell Longev ; 2021: 4786227, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34457112

RESUMEN

The anti-cancer, anti-aging, anti-inflammatory, antioxidant, and anti-diabetic effects of zinc oxide nanoparticles (ZnO-NPs) produced from aqueous leaf extract of Aquilegia pubiflora were evaluated in this study. Several methods were used to characterize ZnO-NPs, including SEM, FTIR, XRD, DLS, PL, Raman, and HPLC. The nanoparticles that had a size of 34.23 nm as well as a strong aqueous dispersion potential were highly pure, spherical or elliptical in form, and had a mean size of 34.23 nm. According to FTIR and HPLC studies, the flavonoids and hydroxycinnamic acid derivatives were successfully capped. Synthesized ZnO-NPs in water have a zeta potential of -18.4 mV, showing that they are stable solutions. The ZnO-NPs proved to be highly toxic for the HepG2 cell line and showed a reduced cell viability of 23.68 ± 2.1% after 24 hours of ZnO-NP treatment. ZnO-NPs also showed excellent inhibitory potential against the enzymes acetylcholinesterase (IC50: 102 µg/mL) and butyrylcholinesterase (IC50: 125 µg/mL) which are involved in Alzheimer's disease. Overall, the enzymes involved in aging, diabetes, and inflammation showed a moderate inhibitory response to ZnO-NPs. Given these findings, these biosynthesized ZnO-NPs could be a good option for the cure of deadly diseases such as cancer, diabetes, Alzheimer's, and other inflammatory diseases due to their strong anticancer potential and efficient antioxidant properties.


Asunto(s)
Antineoplásicos/farmacología , Aquilegia/química , Nanopartículas del Metal/administración & dosificación , Extractos Vegetales/farmacología , Hojas de la Planta/química , Especies Reactivas de Oxígeno/farmacología , Óxido de Zinc/química , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Proliferación Celular , Inhibidores de la Colinesterasa/farmacología , Células Hep G2 , Humanos , Hipoglucemiantes/farmacología , Técnicas In Vitro , Nanopartículas del Metal/química
16.
Mol Ecol ; 30(22): 5796-5813, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34448283

RESUMEN

Quaternary climate oscillations and geographical heterogeneity play important roles in determining species and genetic diversity distribution patterns, but how these factors affect the migration and differentiation of East Asian plants species at the population level remains poorly understood. The Aquilegia ecalcarata complex, a group that originated in the Late Tertiary and is widely distributed throughout East Asia, displays high genetic variation that is suitable for studying elaborate phylogeographic patterns and demographic history related to the impact of Quaternary climate and geography. We used plastid genome data from 322 individuals in 60 populations of the A. ecalcarata complex to thoroughly explore the impact of Quaternary climate oscillations and geography on the phylogeographic patterns and demographic history of the A. ecalcarata complex through a series of phylogenetic, divergence time estimation, and demographic history analyses. The dry, cold climate and frequent climate oscillations that occurred during the early Pleistocene and the Mid-Pleistocene transition led to the differentiation of the A. ecalcarata complex, which was isolated in various areas. Geographically, the A. ecalcarata complex can be divided into Eastern and Western Clades and five subclades, which conform to the divergence of the East Asian flora. Our results clearly show the impact of Quaternary climate and geography on evolutionary history at the population level. These findings promote the understanding of the relationship between plant genetic differentiation and climate and geographical factors of East Asia at the population level.


Asunto(s)
Aquilegia , Genoma de Plastidios , Clima , Variación Genética , Haplotipos , Humanos , Filogenia , Filogeografía
17.
Evolution ; 75(9): 2197-2216, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34270789

RESUMEN

Interactions with animal pollinators have helped shape the stunning diversity of flower morphologies across the angiosperms. A common evolutionary consequence of these interactions is that some flowers have converged on suites of traits, or pollination syndromes, that attract and reward specific pollinator groups. Determining the genetic basis of these floral pollination syndromes can help us understand the processes that contributed to the diversification of the angiosperms. Here, we characterize the genetic architecture of a bee-to-hummingbird pollination shift in Aquilegia (columbine) using QTL mapping of 17 floral traits encompassing color, nectar composition, and organ morphology. In this system, we find that the genetic architectures underlying differences in floral color are quite complex, and we identify several likely candidate genes involved in anthocyanin and carotenoid floral pigmentation. Most morphological and nectar traits also have complex genetic underpinnings; however, one of the key floral morphological phenotypes, nectar spur curvature, is shaped by a single locus of large effect.


Asunto(s)
Aquilegia , Animales , Aquilegia/genética , Abejas/genética , Aves/genética , Flores/genética , Fenotipo , Polinización
18.
Plant J ; 107(5): 1332-1345, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34160111

RESUMEN

Small RNAs play important roles in plant growth and development by modulating expression of genes and transposons. In many flowering plant species, male reproductive organs, the anthers, produce abundant phased small interfering RNAs (phasiRNAs). Two classes of reproductive phasiRNAs are generally known, mostly from monocots: (i) pre-meiotic 21-nucleotide (nt) phasiRNAs triggered by miR2118 and (ii) meiotic 24-nt phasiRNAs triggered by miR2275. Here, we describe conserved and non-conserved triggers of 24-nt phasiRNAs in several eudicots. We found that the abundant 24-nt phasiRNAs in the basal eudicot columbine (Aquilegia coerulea) are produced by the canonical trigger miR2275, as well as by other non-canonical triggers, miR482/2118 and miR14051. These triggering microRNAs (miRNAs) are localized in microspore mother cells and tapetal cells of meiotic and post-meiotic stage anthers. Furthermore, we identified a lineage-specific trigger (miR11308) of 24-nt phasiRNAs and an expanded number of 24-PHAS loci in wild strawberry (Fragaria vesca). We validated the presence of the miR2275-derived 24-nt phasiRNA pathway in rose (Rosa chinensis). Finally, we evaluated all eudicots that have been validated for the presence of 24-nt phasiRNAs as possible model systems in which to study the biogenesis and function of 24-nt phasiRNAs. We conclude that columbine (Aquilegia coerulea) would be a strong model because of its extensive number of 24-PHAS loci and its diversity of trigger miRNAs.


Asunto(s)
Aquilegia/genética , Magnoliopsida/genética , MicroARNs/genética , ARN de Planta/genética , ARN Interferente Pequeño/genética , Fragaria/genética , Sitios Genéticos/genética , Meiosis/genética , Especificidad de Órganos
19.
BMC Complement Med Ther ; 21(1): 165, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34098912

RESUMEN

BACKGROUND: Himalayan Columbine (Aquilegia pubiflora Wall. Ex Royle) is a medicinal plant and have been used as traditional treatments for various human diseases including skin burns, jaundice, hepatitis, wound healing, cardiovascular and circulatory diseases. Till now there is no report available on phytochemical investigation of Himalayan Columbine and to the best of our knowledge, through present study we have reported for the first time, the phytochemical analysis and pharmacological potentials of different leaf extracts of Aquilegia pubiflora. METHODS: Four types of extracts were prepared using solvent of different polarities (Distilled water APDW, Methanol APM, Ethanol APE and Ethyl acetate APEA), and were evaluated to determine the best candidate for potent bioactivity. Phytochemical constituents in prepared extracts were quantified through HPLC analysis. Subsequently, all four types of leaf extracts were then evaluated for their potential bioactivities including antimicrobial, protein kinase inhibition, anti-inflammatory, anti-diabetic, antioxidant, anti-Alzheimer, anti-aging and cytotoxic effect. RESULTS: HPLC analysis demonstrated the presence of dvitexin, isovitexin, orientin, isoorientin, ferulic acid, sinapic acid and chlorogenic acid in varied proportions in all plant extracts. Antimicrobial studies showed that, K. pneumonia was found to be most susceptible to inhibition zones of 11.2 ± 0.47, 13.9 ± 0.33, 12.7 ± 0.41, and 13.5 ± 0.62 measured at 5 mg/mL for APDW, APM, APE and APEA respectively. A. niger was the most susceptible strain in case of APDW with the highest zone of inhibition 14.3 ± 0.32, 13.2 ± 0.41 in case of APM, 13.7 ± 0.39 for APE while 15.4 ± 0.43 zone of inhibition was recorded in case of APEA at 5 mg/mL. The highest antioxidant activity of 92.6 ± 1.8 µgAAE/mg, 89.2 ± 2.4 µgAAE/mg, 277.5 ± 2.9 µM, 289.9 ± 1.74 µM for TAC, TRP, ABTS and FRAP, respectively, was shown by APE. APM, APE and APEA extracts showed a significant % cell inhibition (above 40%) against HepG2 cells. The highest anti-inflammatory of the samples was shown by APE (52.5 ± 1.1) against sPLA2, (41.2 ± 0.8) against 15-LOX, followed by (38.5 ± 1.5) and (32.4 ± 0.8) against COX-1 and COX-2, respectively. CONCLUSIONS: Strong antimicrobial, Protein Kinase potency and considerable α-glucosidase, α-amylase, and cytotoxic potential were exhibited by plant samples. Significant anti-Alzheimer, anti-inflammatory, anti-aging, and kinase inhibitory potential of each plant sample thus aware us for further detailed research to determine novel drugs.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Aquilegia/química , Fitoquímicos , Extractos Vegetales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Flavonoides/química , Flavonoides/farmacología , Células Hep G2 , Humanos , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología
20.
Genome Biol ; 21(1): 295, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33292440

RESUMEN

The accurate placement of an ancient whole-genome duplication (WGD) in relation to the lineage divergence is important. Here, we re-investigated the Aquilegia coerulea WGD and found it is more likely lineage-specific rather than shared by all eudicots.


Asunto(s)
Aquilegia , Aquilegia/genética , Duplicación de Gen , Genoma , Filogenia , Semillas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA