Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.623
Filtrar
1.
Int J Biol Macromol ; 270(Pt 2): 132450, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772462

RESUMEN

A comparative transcriptomic and metabolomic analysis of Polygonum cuspidatum leaves treated with MeJA was carried out to investigate the regulatory mechanisms of its active compounds. A total of 692 metabolites and 77,198 unigenes were obtained, including 200 differentially accumulated metabolites and 6819 differentially expressed genes. We screened potential regulatory transcription factors involved in resveratrol and flavonoids biosynthesis, and successfully identified an MYB transcription factor, PcMYB62, which could significantly decrease the resveratrol content in P. cuspidatum leaves when over-expressed. PcMYB62 could directly bind to the MBS motifs in the promoter region of stilbene synthase (PcSTS) gene and repress its expression. Besides, PcMYB62 could also repress PcSTS expression and resveratrol biosynthesis in transgenic Arabidopsis thaliana. Our results provide abundant candidate genes for further investigation, and the new finding of the inhibitory role of PcMYB62 on the resveratrol biosynthesis could also potentially be used in metabolic engineering of resveratrol in P. cuspidatum.


Asunto(s)
Acetatos , Ciclopentanos , Fallopia japonica , Regulación de la Expresión Génica de las Plantas , Metaboloma , Oxilipinas , Proteínas de Plantas , Resveratrol , Factores de Transcripción , Transcriptoma , Resveratrol/metabolismo , Resveratrol/farmacología , Fallopia japonica/metabolismo , Fallopia japonica/genética , Acetatos/farmacología , Acetatos/metabolismo , Metaboloma/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Oxilipinas/farmacología , Oxilipinas/metabolismo , Transcriptoma/efectos de los fármacos , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Aciltransferasas/genética , Aciltransferasas/metabolismo , Perfilación de la Expresión Génica , Plantas Modificadas Genéticamente/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/efectos de los fármacos
2.
Cryo Letters ; 45(4): 221-230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38809786

RESUMEN

BACKGROUND: Today, synthetic chemicals are used in vitrification solutions for cryopreservation studies to mimic natural cryoprotectants that supply tolerance to organisms in nature against freezing stress. In the case of plants, PVS2, containing glycerol, dimethyl sulfoxide (Me2SO), ethylene glycol and sucrose, is considered as the golden standard for successful cryopreservation. However, Me2SO can generally cause toxicity to certain plant cells, adversely affecting viability after freezing and/or thawing. Hence, the replacement (or substantial reduction) of Me2SO by cheap, non-toxic and natural cryoprotectants became a matter of high priority to vitrification solutions or reducing their content gained escalating importance for the cryopreservation of plants. Fructans, sucrose derivatives mainly consisting of fructose residues, are candidate cryoprotectants. OBJECTIVE: Inspired by their protective role in nature, we here explored, for the first time, the potential of an array of 8 structurally different fructans as cryoprotectants in plant cryopreservation. MATERIALS AND METHODS: Arabidopsis thaliana L. seedlings were used as a model system with a one-step vitrification method. PVS2 solutions with different Me2SO and fructan contents were evaluated. RESULTS: It was found that branched low DP graminan, extracted from milky stage wheat kernels, led to the highest recovery (85%) among tested fructans with 12.5% Me2SO after cryopreservation, which was remarkably close to the viability (90%) observed with the original PVS2 containing 15% Me2SO. Moreover, its protective efficacy could be further optimized by addition of vitamin C acting as an antioxidant. CONCLUSION: Such novel formulations offer great perspectives for cryopreservation of various crop species. Doi.org/10.54680/fr24410110512.


Asunto(s)
Arabidopsis , Criopreservación , Crioprotectores , Dimetilsulfóxido , Fructanos , Vitrificación , Crioprotectores/farmacología , Crioprotectores/química , Criopreservación/métodos , Fructanos/farmacología , Fructanos/química , Arabidopsis/efectos de los fármacos , Vitrificación/efectos de los fármacos , Dimetilsulfóxido/farmacología , Glicerol/farmacología , Glicerol/química , Plantones/efectos de los fármacos , Congelación , Sacarosa/farmacología , Sacarosa/química , Glicol de Etileno/farmacología , Glicol de Etileno/química , Antioxidantes/farmacología
3.
Nat Commun ; 15(1): 4438, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806462

RESUMEN

Various microbes isolated from healthy plants are detrimental under laboratory conditions, indicating the existence of molecular mechanisms preventing disease in nature. Here, we demonstrated that application of sodium chloride (NaCl) in natural and gnotobiotic soil systems is sufficient to induce plant disease caused by an otherwise non-pathogenic root-derived Pseudomonas brassicacearum isolate (R401). Disease caused by combinatorial treatment of NaCl and R401 triggered extensive, root-specific transcriptional reprogramming that did not involve down-regulation of host innate immune genes, nor dampening of ROS-mediated immunity. Instead, we identified and structurally characterized the R401 lipopeptide brassicapeptin A as necessary and sufficient to promote disease on salt-treated plants. Brassicapeptin A production is salt-inducible, promotes root colonization and transitions R401 from being beneficial to being detrimental on salt-treated plants by disturbing host ion homeostasis, thereby bolstering susceptibility to osmolytes. We conclude that the interaction between a global change stressor and a single exometabolite from a member of the root microbiome promotes plant disease in complex soil systems.


Asunto(s)
Presión Osmótica , Enfermedades de las Plantas , Raíces de Plantas , Pseudomonas , Enfermedades de las Plantas/microbiología , Pseudomonas/metabolismo , Pseudomonas/genética , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Microbiología del Suelo , Lipopéptidos/farmacología , Lipopéptidos/metabolismo , Arabidopsis/microbiología , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de los fármacos
4.
Elife ; 122024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780431

RESUMEN

The elevation of atmospheric CO2 leads to a decline in plant mineral content, which might pose a significant threat to food security in coming decades. Although few genes have been identified for the negative effect of elevated CO2 on plant mineral composition, several studies suggest the existence of genetic factors. Here, we performed a large-scale study to explore genetic diversity of plant ionome responses to elevated CO2, using six hundred Arabidopsis thaliana accessions, representing geographical distributions ranging from worldwide to regional and local environments. We show that growth under elevated CO2 leads to a global decrease of ionome content, whatever the geographic distribution of the population. We observed a high range of genetic diversity, ranging from the most negative effect to resilience or even to a benefit in response to elevated CO2. Using genome-wide association mapping, we identified a large set of genes associated with this response, and we demonstrated that the function of one of these genes is involved in the negative effect of elevated CO2 on plant mineral composition. This resource will contribute to understand the mechanisms underlying the effect of elevated CO2 on plant mineral nutrition, and could help towards the development of crops adapted to a high-CO2 world.


Asunto(s)
Arabidopsis , Dióxido de Carbono , Variación Genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Dióxido de Carbono/metabolismo , Estudio de Asociación del Genoma Completo
5.
Nat Commun ; 15(1): 3978, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729926

RESUMEN

A key mechanism employed by plants to adapt to salinity stress involves maintaining ion homeostasis via the actions of ion transporters. While the function of cation transporters in maintaining ion homeostasis in plants has been extensively studied, little is known about the roles of their anion counterparts in this process. Here, we describe a mechanism of salt adaptation in plants. We characterized the chloride channel (CLC) gene AtCLCf, whose expression is regulated by WRKY transcription factor under salt stress in Arabidopsis thaliana. Loss-of-function atclcf seedlings show increased sensitivity to salt, whereas AtCLCf overexpression confers enhanced resistance to salt stress. Salt stress induces the translocation of GFP-AtCLCf fusion protein to the plasma membrane (PM). Blocking AtCLCf translocation using the exocytosis inhibitor brefeldin-A or mutating the small GTPase gene AtRABA1b/BEX5 (RAS GENES FROM RAT BRAINA1b homolog) increases salt sensitivity in plants. Electrophysiology and liposome-based assays confirm the Cl-/H+ antiport function of AtCLCf. Therefore, we have uncovered a mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of AtCLCf to the PM, thus facilitating Cl- removal at the roots, and increasing the plant's salinity tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Canales de Cloruro , Aparato de Golgi , Estrés Salino , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de los fármacos , Membrana Celular/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Aparato de Golgi/metabolismo , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Regulación de la Expresión Génica de las Plantas , Transporte de Proteínas/efectos de los fármacos , Tolerancia a la Sal/genética , Cloruro de Sodio/farmacología , Plantas Modificadas Genéticamente
6.
Planta ; 260(1): 5, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777878

RESUMEN

MAIN CONCLUSION: Trace amounts of epibrassinolide (EpiBL) could partially rescue wheat root length inhibition in salt-stressed situation by scavenging ROS, and ectopic expression of TaDWF4 or TaBAK1 enhances root salt tolerance in Arabidopsis by balancing ROS level. Salt stress often leads to ion toxicity and oxidative stress, causing cell structure damage and root development inhibition in plants. While prior research indicated the involvement of exogenous brassinosteroid (BR) in plant responses to salt stress, the precise cytological role and the function of BR in wheat root development under salt stress remain elusive. Our study demonstrates that 100 mM NaCl solution inhibits wheat root development, but 5 nM EpiBL partially rescues root length inhibition by decreasing H2O2 content, oxygen free radical (OFR) content, along with increasing the peroxidase (POD) and catalase (CAT) activities in salt-stressed roots. The qRT-PCR experiment also shows that expression of the ROS-scavenging genes (GPX2 and CAT2) increased in roots after applying BR, especially during salt stress situation. Transcriptional analysis reveals decreased expression of BR synthesis and root meristem development genes under salt stress in wheat roots. Differential expression gene (DEG) enrichment analysis highlights the significant impact of salt stress on various biological processes, particularly "hydrogen peroxide catabolic process" and "response to oxidative stress". Additionally, the BR biosynthesis pathway is enriched under salt stress conditions. Therefore, we investigated the involvement of wheat BR synthesis gene TaDWF4 and BR signaling gene TaBAK1 in salt stress responses in roots. Our results demonstrate that ectopic expression of TaDWF4 or TaBAK1 enhances salt tolerance in Arabidopsis by balancing ROS (Reactive oxygen species) levels in roots.


Asunto(s)
Brasinoesteroides , Homeostasis , Raíces de Plantas , Especies Reactivas de Oxígeno , Tolerancia a la Sal , Esteroides Heterocíclicos , Triticum , Triticum/genética , Triticum/fisiología , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Triticum/efectos de los fármacos , Brasinoesteroides/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/genética , Esteroides Heterocíclicos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Estrés Salino , Estrés Oxidativo , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Catalasa/metabolismo
7.
J Agric Food Chem ; 72(20): 11321-11330, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38714361

RESUMEN

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial target enzyme in albino herbicides. The inhibition of HPPD activity interferes with the synthesis of carotenoids, blocking photosynthesis and resulting in bleaching and necrosis. To develop herbicides with excellent activity, a series of 3-hydroxy-2-(6-substituted phenoxynicotinoyl)-2-cyclohexen-1-one derivatives were designed via active substructure combination. The title compounds were characterized via infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopies, and high-resolution mass spectrometry. The structure of compound III-17 was confirmed via single-crystal X-ray diffraction. Preliminary tests demonstrated that some compounds had good herbicidal activity. Crop safety tests revealed that compound III-29 was safer than the commercial herbicide mesotrione in wheat and peanuts. Moreover, the compound exhibited the highest inhibitory activity against Arabidopsis thaliana HPPD (AtHPPD), with a half-maximal inhibitory concentration of 0.19 µM, demonstrating superior activity compared with mesotrione (0.28 µM) in vitro. A three-dimensional quantitative structure-activity relationship study revealed that the introduction of smaller groups to the 5-position of cyclohexanedione and negative charges to the 3-position of the benzene ring enhanced the herbicidal activity. A molecular structure comparison demonstrated that compound III-29 was beneficial to plant absorption and conduction. Molecular docking and molecular dynamics simulations further verified the stability of the complex formed by compound III-29 and AtHPPD. Thus, this study may provide insights into the development of green and efficient herbicides.


Asunto(s)
4-Hidroxifenilpiruvato Dioxigenasa , Arabidopsis , Diseño de Fármacos , Inhibidores Enzimáticos , Herbicidas , Simulación del Acoplamiento Molecular , Herbicidas/química , Herbicidas/farmacología , Herbicidas/síntesis química , 4-Hidroxifenilpiruvato Dioxigenasa/antagonistas & inhibidores , 4-Hidroxifenilpiruvato Dioxigenasa/química , 4-Hidroxifenilpiruvato Dioxigenasa/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Relación Estructura-Actividad , Estructura Molecular , Cetonas/química , Cetonas/farmacología , Cetonas/síntesis química , Ciclohexanonas/química , Ciclohexanonas/farmacología , Ciclohexanonas/síntesis química , Triticum/química , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo
8.
Ecotoxicol Environ Saf ; 278: 116407, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38691884

RESUMEN

Fluoride (F) can be absorbed from the environment and hyperaccumulate in leaves of Camellia sinensis without exhibiting any toxic symptoms. Fluoride exporter in C. sinensis (CsFEX) could transport F to extracellular environment to alleviate F accumulation and F toxicity, but its functional mechanism remains unclear. Here, combining with pH condition of C. sinensis growth, the characteristics of CsFEX and mechanism of F detoxification were further explored. The results showed that F accumulation was influenced by various pH, and pH 4.5 and 6.5 had a greater impact on the F accumulation of C. sinensis. Through Non-invasive Micro-test Technology (NMT) detection, it was found that F uptake/accumulation of C. sinensis and Arabidopsis thaliana might be affected by pH through changing the transmembrane electrochemical proton gradient of roots. Furthermore, diverse expression patterns of CsFEX were induced by F treatment under different pH, which was basically up-regulated in response to high F accumulation, indicating that CsFEX was likely to participate in the process of F accumulation in C. sinensis and this process might be regulated by pH. Additionally, CsFEX functioned in the mitigation of F sensitivity and accumulation strengthened by lower pH in Escherichia coli and A. thaliana. Moreover, the changes of H+ flux and potential gradient caused by F were relieved as well in transgenic lines, also suggesting that CsFEX might play an important role in the process of F accumulation. Above all, F uptake/accumulation were alleviated in E. coli and A. thaliana by CsFEX through exporting F-, especially at lower pH, implying that CsFEX might regulate F accumulation in C. sinensis.


Asunto(s)
Camellia sinensis , Fluoruros , Camellia sinensis/metabolismo , Concentración de Iones de Hidrógeno , Fluoruros/toxicidad , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Transporte Biológico , Proteínas de Plantas/metabolismo , Escherichia coli/efectos de los fármacos , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad
9.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791475

RESUMEN

Amaranth species are C4 plants that are rich in betalains, and they are tolerant to salinity stress. A small family of plant-specific TCP transcription factors are involved in the response to salt stress. However, it has not been investigated whether amaranth TCP1 is involved in salt stress. We elucidated that the growth and physiology of amaranth were affected by salt concentrations of 50-200 mmol·L-1 NaCl. The data showed that shoot and root growth was inhibited at 200 mmol·L-1, while it was promoted at 50 mmol·L-1. Meanwhile, the plants also showed physiological responses, which indicated salt-induced injuries and adaptation to the salt stress. Moreover, AtrTCP1 promoted Arabidopsis seed germination. The germination rate of wild-type (WT) and 35S::AtrTCP1-GUS Arabidopsis seeds reached around 92% by the seventh day and 94.5% by the second day under normal conditions, respectively. With 150 mmol·L-1 NaCl treatment, the germination rate of the WT and 35S::AtrTCP1-GUS plant seeds was 27.0% by the seventh day and 93.0% by the fourth day, respectively. Under salt stress, the transformed 35S::AtrTCP1 plants bloomed when they grew 21.8 leaves after 16.2 days of treatment, which was earlier than the WT plants. The transformed Arabidopsis plants flowered early to resist salt stress. These results reveal amaranth's growth and physiological responses to salt stress, and provide valuable information on the AtrTCP1 gene.


Asunto(s)
Amaranthus , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Germinación , Proteínas de Plantas , Estrés Salino , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Amaranthus/efectos de los fármacos , Amaranthus/genética , Amaranthus/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Germinación/efectos de los fármacos , Germinación/genética , Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas Modificadas Genéticamente , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Semillas/genética , Tolerancia a la Sal/genética , Cloruro de Sodio/farmacología
10.
Ecotoxicol Environ Saf ; 276: 116290, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599154

RESUMEN

Thallium (Tl) is a non-essential metal mobilized through industrial processes which can lead to it entering the environment and exerting toxic effects. Plants are fundamental components of all ecosystems. Therefore, understanding the impact of Tl on plant growth and development is of great importance for assessing the potential environmental risks of Tl. Here, the responses of Arabidopsis thaliana to Tl were elucidated using physiological, genetic, and transcriptome analyses. Thallium can be absorbed by plant roots and translocated to the aerial parts, accumulating at comparable concentrations throughout plant parts. Genetic evidence supported the regulation of Tl uptake and movement by different molecular compartments within plants. Thallium primarily caused growth inhibition, oxidative stress, leaf chlorosis, and the impairment of K homeostasis. The disturbance of redox balance toward oxidative stress was supported by significant differences in the expression of genes involved in oxidative stress and antioxidant defense under Tl exposure. Reduced GSH levels in cad2-1 mutant rendered plants highly sensitive to Tl, suggesting that GSH has a prominent role in alleviating Tl-triggered oxidative responses. Thallium down-regulation of the expression of LCHII-related genes is believed to be responsible for leaf chlorosis. These findings illuminate some of the mechanisms underlying Tl toxicity at the physiological and molecular levels in plants with an eye toward the future environment management of this heavy metal.


Asunto(s)
Arabidopsis , Estrés Oxidativo , Talio , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Talio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Contaminantes del Suelo/toxicidad
11.
Environ Int ; 186: 108655, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626494

RESUMEN

The rhizosphere is one of the key determinants of plant health and productivity. Mixtures of pesticides are commonly used in intensified agriculture. However, the combined mechanisms underlying their impacts on soil microbiota remain unknown. The present study revealed that the rhizosphere microbiota was more sensitive to azoxystrobin and oxytetracycline, two commonly used pesticides, than was the microbiota present in bulk soil. Moreover, the rhizosphere microbiota enhanced network complexity and stability and increased carbohydrate metabolism and xenobiotic biodegradation as well as the expression of metabolic genes involved in defence against pesticide stress. Co-exposure to azoxystrobin and oxytetracycline had antagonistic effects on Arabidopsis thaliana growth and soil microbial variation by recruiting organic-degrading bacteria and regulating ABC transporters to reduce pesticide uptake. Our study explored the composition and function of soil microorganisms through amplicon sequencing and metagenomic approaches, providing comprehensive insights into the synergistic effect of plants and rhizosphere microbiota on pesticides and contributing to our understanding of the ecological risks associated with pesticide use.


Asunto(s)
Arabidopsis , Microbiota , Oxitetraciclina , Pirimidinas , Rizosfera , Microbiología del Suelo , Estrobilurinas , Arabidopsis/microbiología , Arabidopsis/efectos de los fármacos , Oxitetraciclina/toxicidad , Microbiota/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Plaguicidas/toxicidad , Biodegradación Ambiental
12.
Plant Cell Physiol ; 65(4): 576-589, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591870

RESUMEN

In the last years, plant organelles have emerged as central coordinators of responses to internal and external stimuli, which can induce stress. Mitochondria play a fundamental role as stress sensors being part of a complex communication network between the organelles and the nucleus. Among the different environmental stresses, salt stress poses a significant challenge and requires efficient signaling and protective mechanisms. By using the why2 T-DNA insertion mutant and a novel knock-out mutant prepared by CRISPR/Cas9-mediated genome editing, this study revealed that WHIRLY2 is crucial for protecting mitochondrial DNA (mtDNA) integrity during salt stress. Loss-of-function mutants show an enhanced sensitivity to salt stress. The disruption of WHIRLY2 causes the impairment of mtDNA repair that results in the accumulation of aberrant recombination products, coinciding with severe alterations in nucleoid integrity and overall mitochondria morphology besides a compromised redox-dependent response and misregulation of antioxidant enzymes. The results of this study revealed that WHIRLY2-mediated structural features in mitochondria (nucleoid compactness and cristae) are important for an effective response to salt stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ADN Mitocondrial , Mitocondrias , Estrés Salino , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estrés Salino/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Regulación de la Expresión Génica de las Plantas , Sistemas CRISPR-Cas
13.
Chemosphere ; 358: 142125, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670509

RESUMEN

Microcystin-LR (MC-LR) is a harmful cyanotoxin that inhibits 1 and 2A serine-threonine protein phosphatases. This study examines the influence of MC-LR on chloroplast division and the underlying mechanisms and consequences in Arabidopsis. MC-LR increased the frequency of dividing chloroplasts in hypocotyls in a time range of 1-96 h. At short-term exposures to MC-LR, small-sized chloroplasts (longitudinal diameters ≤6 µm) were more sensitive to these stimulatory effects, while both small and large chloroplasts showed stimulations at long-term exposure. After 48 h, the cyanotoxin increased the frequency of small-sized chloroplasts, indicating the stimulation of division. MC-LR inhibited protein phosphatases in whole hypocotyls and isolated chloroplasts, while it did not induce oxidative stress. We show for the first time that total cellular phosphatases play important roles in chloroplast division and that particular chloroplast phosphatases may be involved in these processes. Interestingly, MC-LR has a protective effect on cyanobacterial division during methyl-viologen (MV) treatments in Synechococcus PCC6301. MC-LR production has harmful effects on ecosystems and it may have an ancient cell division regulatory role in stressed cyanobacterial cells, the evolutionary ancestors of chloroplasts. We propose that cytoplasmic (eukaryotic) factors also contribute to the relevant effects of MC-LR in plants.


Asunto(s)
Arabidopsis , Cloroplastos , Toxinas Marinas , Microcistinas , Fosfoproteínas Fosfatasas , Microcistinas/toxicidad , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Arabidopsis/efectos de los fármacos , Cianobacterias/efectos de los fármacos , División Celular/efectos de los fármacos , Synechococcus/efectos de los fármacos
14.
Plant Physiol Biochem ; 210: 108592, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569422

RESUMEN

The present study investigates the phytotoxic potential of azelaic acid (AZA) on Arabidopsis thaliana roots. Effects on root morphology, anatomy, auxin content and transport, gravitropic response and molecular docking were analysed. AZA inhibited root growth, stimulated lateral and adventitious roots, and altered the root apical meristem by reducing meristem cell number, length and width. The treatment also slowed down the roots' gravitropic response, likely due to a reduction in statoliths, starch-rich organelles involved in gravity perception. In addition, auxin content, transport and distribution, together with PIN proteins' expression and localisation were altered after AZA treatment, inducing a reduction in auxin transport and its distribution into the meristematic zone. Computational simulations showed that AZA has a high affinity for the auxin receptor TIR1, competing with auxin for the binding site. The AZA binding with TIR1 could interfere with the normal functioning of the TIR1/AFB complex, disrupting the ubiquitin E3 ligase complex and leading to alterations in the response of the plant, which could perceive AZA as an exogenous auxin. Our results suggest that AZA mode of action could involve the modulation of auxin-related processes in Arabidopsis roots. Understanding such mechanisms could lead to find environmentally friendly alternatives to synthetic herbicides.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Dicarboxílicos , Proteínas F-Box , Gravitropismo , Ácidos Indolacéticos , Raíces de Plantas , Receptores de Superficie Celular , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Gravitropismo/efectos de los fármacos , Ácidos Dicarboxílicos/metabolismo , Proteínas F-Box/metabolismo , Receptores de Superficie Celular/metabolismo , Sitios de Unión , Transporte Biológico/efectos de los fármacos , Simulación del Acoplamiento Molecular
15.
J Hazard Mater ; 471: 134276, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640682

RESUMEN

Environmental pollution from cadmium (Cd) presents a serious threat to plant growth and development. Therefore, it's crucial to find out how plants resist this toxic metal to develop strategies for remediating Cd-contaminated soils. In this study, we identified CIP1, a transporter protein, by screening interactors of the protein kinase CIPK23. CIP1 is located in vesicles membranes and can transport Cd2+ when expressed in yeast cells. Cd stress specifically induced the accumulation of CIP1 transcripts and functional proteins, particularly in the epidermal cells of the root tip. CIKP23 could interact directly with the central loop region of CIP1, phosphorylating it, which is essential for the efficient transport of Cd2+. A loss-of-function mutation of CIP1 in wild-type plants led to increased sensitivity to Cd stress. Conversely, tobacco plants overexpressing CIP1 exhibited improved Cd tolerance and increased Cd accumulation capacity. Interestingly, this Cd accumulation was restricted to roots but not shoots, suggesting that manipulating CIP1 does not risk Cd contamination of plants' edible parts. Overall, this study characterizes a novel Cd transporter, CIP1, with potential to enhance plant tolerance to Cd toxicity while effectively eliminating environmental contamination without economic losses.


Asunto(s)
Biodegradación Ambiental , Cadmio , Nicotiana , Cadmio/toxicidad , Cadmio/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Nicotiana/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Plantas Modificadas Genéticamente/metabolismo
16.
New Phytol ; 242(6): 2524-2540, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641854

RESUMEN

Leaf senescence is a complex process strictly regulated by various external and endogenous factors. However, the key signaling pathway mediating leaf senescence remains unknown. Here, we show that Arabidopsis SPX1/2 negatively regulate leaf senescence genetically downstream of the strigolactone (SL) pathway. We demonstrate that the SL receptor AtD14 and MAX2 mediate the age-dependent degradation of SPX1/2. Intriguingly, we uncover an age-dependent accumulation of SLs in leaves via transcriptional activation of SL biosynthetic genes by the transcription factors (TFs) SPL9/15. Furthermore, we reveal that SPX1/2 interact with the WRKY75 subclade TFs to inhibit their DNA-binding ability and thus repress transcriptional activation of salicylic acid (SA) biosynthetic gene SA Induction-Deficient 2, gating the age-dependent SA accumulation in leaves at the leaf senescence onset stage. Collectively, our new findings reveal a signaling pathway mediating sequential activation of SL and salicylate biosynthesis for the onset of leaf senescence in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Lactonas , Hojas de la Planta , Senescencia de la Planta , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lactonas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ácido Salicílico/metabolismo , Salicilatos/metabolismo , Transducción de Señal , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética
17.
J Plant Physiol ; 297: 154257, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688043

RESUMEN

The chemical form and physiological activity of iron (Fe) in soil are dependent on soil pH and redox potential (Eh), and Fe levels in soils are frequently elevated to the point of causing Fe toxicity in plants, with inhibition of normal physiological activities and of growth and development. In this review, we describe how iron toxicity triggers important physiological changes, including nitric-oxide (NO)-mediated potassium (K+) efflux at the tips of roots and accumulation of reactive oxygen species (ROS) and reactive nitrogen (RNS) in roots, resulting in physiological stress. We focus on the root system, as the first point of contact with Fe in soil, and describe the key processes engaged in Fe transport, distribution, binding, and other mechanisms that are drawn upon to defend against high-Fe stress. We describe the root-system regulation of key physiological processes and of morphological development through signaling substances such as ethylene, auxin, reactive oxygen species, and nitric oxide, and discuss gene-expression responses under high Fe. We especially focus on studies on the physiological and molecular mechanisms in rice and Arabidopsis under high Fe, hoping to provide a valuable theoretical basis for improving the ability of crop roots to adapt to soil Fe toxicity.


Asunto(s)
Hierro , Raíces de Plantas , Hierro/metabolismo , Hierro/toxicidad , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Oryza/fisiología , Oryza/metabolismo , Oryza/genética , Oryza/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
18.
Environ Sci Pollut Res Int ; 31(19): 28368-28378, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38532215

RESUMEN

Imazethapyr is a widely used imidazolinone herbicide worldwide, and its potential adverse effects on non-target plants have raised concerns. Understanding the mechanisms of imazethapyr phytotoxicity is crucial for its agro-ecological risk assessment. Here, the comprehensive molecular responses and metabolic alterations of Arabidopsis in response to imazethapyr were investigated. Our results showed that root exposure to imazethapyr inhibited shoot growth, reduced chlorophyll contents, induced photoinhibition and decreased photosynthetic activity. By non-target metabolomic analysis, we identified 75 metabolites that were significantly changed after imazethapyr exposure, and they are mainly enriched in carbohydrate, lipid and amino acid metabolism. Transcriptomic analysis confirmed that imazethapyr significantly downregulated the genes involved in photosynthetic electron transport and the carbon cycle. In detail, 48 genes in the photosynthetic lightreaction and 11 genes in Calvin cycle were downregulated. Additionally, the downregulation of genes related to electron transport in mitochondria provides strong evidence for imazethapyr inhibiting photosynthetic carbon fixation and cellular energy metabolism as one of mechanisms of toxicity. These results revealed the molecular and metabolic basis of imazethapyr toxicity on non-target plants, contributing to environmental risk assessment and mitigate negative impact of imazethapyr residues in agricultural soils.


Asunto(s)
Arabidopsis , Herbicidas , Metabolómica , Transcriptoma , Herbicidas/toxicidad , Transcriptoma/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Fotosíntesis/efectos de los fármacos , Ácidos Nicotínicos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA