Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.245
Filtrar
1.
PeerJ ; 12: e17285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708359

RESUMEN

Background: Waterlogging poses a significant threat to plant growth and yield worldwide. Identifying the genes responsible for mitigating waterlogging stress is crucial. Ethylene-responsive factors (ERFs) are transcriptional regulators that respond to various biotic and abiotic stresses in plants. However, their roles and involvement in responding to waterlogging stress remain largely unexplored. Hence, this study aimed to elucidate the role of ERFs in enhancing banana plant resilience to waterlogging. Methods: We hypothesized that introducing a group VII ERF transcription factor in Arabidopsis could enhance waterlogging stress tolerance. To test this hypothesis, we isolated MaERFVII3 from banana roots, where it exhibited a significant induction in response to waterlogging stress. The isolated MaERFVII3 was introduced into Arabidopsis plants for functional gene studies. Results: Compared with wild-type plants, the MaERFVII3-expressing Arabidopsis showed increased survival and biomass under waterlogging stress. Furthermore, the abundance of transcripts related to waterlogging and hypoxia response showed an elevation in transgenic plants but a decrease in wild-type and empty vector plants when exposed to waterlogging stress. Our results demonstrate the significant contribution of MaERFVII3 to waterlogging tolerance in Arabidopsis, providing baseline data for further exploration and potentially contributing to crop improvement programs.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Musa , Proteínas de Plantas , Raíces de Plantas , Plantas Modificadas Genéticamente , Estrés Fisiológico , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Musa/genética , Musa/crecimiento & desarrollo , Musa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas Modificadas Genéticamente/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Agua/metabolismo
2.
PLoS Biol ; 22(5): e3002592, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38691548

RESUMEN

Stomata are pores on plant aerial surfaces, each bordered by a pair of guard cells. They control gas exchange vital for plant survival. Understanding how guard cells respond to environmental signals such as atmospheric carbon dioxide (CO2) levels is not only insightful to fundamental biology but also relevant to real-world issues of crop productivity under global climate change. In the past decade, multiple important signaling elements for stomatal closure induced by elevated CO2 have been identified. Yet, there is no comprehensive understanding of high CO2-induced stomatal closure. In this work, we assemble a cellular signaling network underlying high CO2-induced stomatal closure by integrating evidence from a comprehensive literature analysis. We further construct a Boolean dynamic model of the network, which allows in silico simulation of the stomatal closure response to high CO2 in wild-type Arabidopsis thaliana plants and in cases of pharmacological or genetic manipulation of network nodes. Our model has a 91% accuracy in capturing known experimental observations. We perform network-based logical analysis and reveal a feedback core of the network, which dictates cellular decisions in closure response to high CO2. Based on these analyses, we predict and experimentally confirm that applying nitric oxide (NO) induces stomatal closure in ambient CO2 and causes hypersensitivity to elevated CO2. Moreover, we predict a negative regulatory relationship between NO and the protein phosphatase ABI2 and find experimentally that NO inhibits ABI2 phosphatase activity. The experimental validation of these model predictions demonstrates the effectiveness of network-based modeling and highlights the decision-making role of the feedback core of the network in signal transduction. We further explore the model's potential in predicting targets of signaling elements not yet connected to the CO2 network. Our combination of network science, in silico model simulation, and experimental assays demonstrates an effective interdisciplinary approach to understanding system-level biology.


Asunto(s)
Arabidopsis , Dióxido de Carbono , Modelos Biológicos , Estomas de Plantas , Transducción de Señal , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacología , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Simulación por Computador , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
3.
Plant Signal Behav ; 19(1): 2348917, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38704856

RESUMEN

Plants can activate protective and defense mechanisms under biotic and abiotic stresses. Their roots naturally grow in the soil, but when they encounter sunlight in the top-soil layers, they may move away from the light source to seek darkness. Here we investigate the skototropic behavior of roots, which promotes their fitness and survival. Glutamate-like receptors (GLRs) of plants play roles in sensing and responding to signals, but their role in root skototropism is not yet understood. Light-induced tropisms are known to be affected by auxin distribution, mainly determined by auxin efflux proteins (PIN proteins) at the root tip. However, the role of PIN proteins in root skototropism has not been investigated yet. To better understand root skototropism and its connection to the distance between roots and light, we established five distance settings between seedlings and darkness to investigate the variations in root bending tendencies. We compared differences in root skototropic behavior across different expression lines of Arabidopsis thaliana seedlings (atglr3.7 ko, AtGLR3.7 OE, and pin2 knockout) to comprehend their functions. Our research shows that as the distance between roots and darkness increases, the root's positive skototropism noticeably weakens. Our findings highlight the involvement of GLR3.7 and PIN2 in root skototropism.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Raíces de Plantas , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Raíces de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Oscuridad , Luz , Plantones/metabolismo , Ácidos Indolacéticos/metabolismo
4.
BMC Plant Biol ; 24(1): 372, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714917

RESUMEN

BACKGROUND: High-affinity potassium transporters (HKTs) are crucial in facilitating potassium uptake by plants. Many types of HKTs confer salt tolerance to plants through regulating K+ and Na+ homeostasis under salinity stress. However, their specific functions in cassava (Manihot esculenta) remain unclear. RESULTS: Herein, an HKT gene (MeHKT1) was cloned from cassava, and its expression is triggered by exposure to salt stress. The expression of a plasma membrane-bound protein functions as transporter to rescue a low potassium (K+) sensitivity of yeast mutant strain, but the complementation of MeHKT1 is inhibited by NaCl treatment. Under low K+ stress, transgenic Arabidopsis with MeHKT1 exhibits improved growth due to increasing shoot K+ content. In contrast, transgenic Arabidopsis accumulates more Na+ under salt stress than wild-type (WT) plants. Nevertheless, the differences in K+ content between transgenic and WT plants are not significant. Additionally, Arabidopsis expressing MeHKT1 displayed a stronger salt-sensitive phenotype. CONCLUSION: These results suggest that under low K+ condition, MeHKT1 functions as a potassium transporter. In contrast, MeHKT1 mainly transports Na+ into cells under salt stress condition and negatively regulates the response of transgenic Arabidopsis to salt stress. Our results provide a reference for further research on the function of MeHKT1, and provide a basis for further application of MeHKT1 in cassava by molecular biological means.


Asunto(s)
Arabidopsis , Manihot , Proteínas de Plantas , Plantas Modificadas Genéticamente , Potasio , Estrés Salino , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Manihot/genética , Manihot/metabolismo , Manihot/fisiología , Plantas Modificadas Genéticamente/genética , Potasio/metabolismo , Estrés Salino/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas , Tolerancia a la Sal/genética , Sodio/metabolismo
5.
Nat Commun ; 15(1): 3978, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729926

RESUMEN

A key mechanism employed by plants to adapt to salinity stress involves maintaining ion homeostasis via the actions of ion transporters. While the function of cation transporters in maintaining ion homeostasis in plants has been extensively studied, little is known about the roles of their anion counterparts in this process. Here, we describe a mechanism of salt adaptation in plants. We characterized the chloride channel (CLC) gene AtCLCf, whose expression is regulated by WRKY transcription factor under salt stress in Arabidopsis thaliana. Loss-of-function atclcf seedlings show increased sensitivity to salt, whereas AtCLCf overexpression confers enhanced resistance to salt stress. Salt stress induces the translocation of GFP-AtCLCf fusion protein to the plasma membrane (PM). Blocking AtCLCf translocation using the exocytosis inhibitor brefeldin-A or mutating the small GTPase gene AtRABA1b/BEX5 (RAS GENES FROM RAT BRAINA1b homolog) increases salt sensitivity in plants. Electrophysiology and liposome-based assays confirm the Cl-/H+ antiport function of AtCLCf. Therefore, we have uncovered a mechanism of plant adaptation to salt stress involving the NaCl-induced translocation of AtCLCf to the PM, thus facilitating Cl- removal at the roots, and increasing the plant's salinity tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Membrana Celular , Canales de Cloruro , Aparato de Golgi , Estrés Salino , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de los fármacos , Membrana Celular/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Aparato de Golgi/metabolismo , Canales de Cloruro/metabolismo , Canales de Cloruro/genética , Regulación de la Expresión Génica de las Plantas , Transporte de Proteínas/efectos de los fármacos , Tolerancia a la Sal/genética , Cloruro de Sodio/farmacología , Plantas Modificadas Genéticamente
6.
Planta ; 259(6): 142, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702456

RESUMEN

MAIN CONCLUSION: PLDα1 promoted H2S production by positively regulating the expression of LCD. Stomatal closure promoted by PLDα1 required the accumulation of H2S under drought stress. Phospholipase Dα1 (PLDα1) acting as one of the signal enzymes can respond to drought stress. It is well known that hydrogen sulfide (H2S) plays an important role in plant responding to biotic or abiotic stress. In this study, the functions and relationship between PLDα1 and H2S in drought stress resistance in Arabidopsis were explored. Our results indicated that drought stress promotes PLDα1 and H2S production by inducing the expression of PLDα1 and LCD genes. PLDα1 and LCD enhanced plant tolerance to drought by regulating membrane lipid peroxidation, proline accumulation, H2O2 content and stomatal closure. Under drought stress, the H2O2 content of PLDα1-deficient mutant (pldα1), L-cysteine desulfhydrase (LCD)-deficient mutant (lcd) was higher than that of ecotype (WT), the stomatal aperture of pldα1 and lcd was larger than that of WT. The transcriptional and translational levels of LCD were lower in pldα1 than that in WT. Exogenous application of the H2S donor NaHS or GYY reduced the stomatal aperture of WT, pldα1, PLDα1-CO, and PLDα1-OE lines, while exogenous application of the H2S scavenger hypotaurine (HT) increased the stomatal aperture. qRT-PCR analysis of stomatal movement-related genes showed that the expression of CAX1, ABCG5, SCAB1, and SLAC1 genes in pldα1 and lcd were down-regulated, while ACA1 and OST1 gene expression was significantly up-regulated. Thus, PLDα1 and LCD are required for stomatal closure to improve drought stress tolerance.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sequías , Regulación de la Expresión Génica de las Plantas , Sulfuro de Hidrógeno , Fosfolipasa D , Estomas de Plantas , Arabidopsis/genética , Arabidopsis/fisiología , Estomas de Plantas/fisiología , Estomas de Plantas/genética , Fosfolipasa D/metabolismo , Fosfolipasa D/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sulfuro de Hidrógeno/metabolismo , Peróxido de Hidrógeno/metabolismo , Estrés Fisiológico/genética , Prolina/metabolismo , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Peroxidación de Lípido
7.
BMC Ecol Evol ; 24(1): 56, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702598

RESUMEN

BACKGROUND: Despite its implications for population dynamics and evolution, the relationship between genetic and phenotypic variation in wild populations remains unclear. Here, we estimated variation and plasticity in life-history traits and fitness of the annual plant Arabidopsis thaliana in two common garden experiments that differed in environmental conditions. We used up to 306 maternal inbred lines from six Iberian populations characterized by low and high genotypic (based on whole-genome sequences) and ecological (vegetation type) diversity. RESULTS: Low and high genotypic and ecological diversity was found in edge and core Iberian environments, respectively. Given that selection is expected to be stronger in edge environments and that ecological diversity may enhance both phenotypic variation and plasticity, we expected genotypic diversity to be positively associated with phenotypic variation and plasticity. However, maternal lines, irrespective of the genotypic and ecological diversity of their population of origin, exhibited a substantial amount of phenotypic variation and plasticity for all traits. Furthermore, all populations harbored maternal lines with canalization (robustness) or sensitivity in response to harsher environmental conditions in one of the two experiments. CONCLUSIONS: Overall, we conclude that the environmental attributes of each population probably determine their genotypic diversity, but all populations maintain substantial phenotypic variation and plasticity for all traits, which represents an asset to endure in changing environments.


Asunto(s)
Arabidopsis , Aptitud Genética , Genotipo , Rasgos de la Historia de Vida , Arabidopsis/genética , Arabidopsis/fisiología , España , Variación Genética , Fenotipo , Variación Biológica Poblacional
8.
Planta ; 260(1): 5, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777878

RESUMEN

MAIN CONCLUSION: Trace amounts of epibrassinolide (EpiBL) could partially rescue wheat root length inhibition in salt-stressed situation by scavenging ROS, and ectopic expression of TaDWF4 or TaBAK1 enhances root salt tolerance in Arabidopsis by balancing ROS level. Salt stress often leads to ion toxicity and oxidative stress, causing cell structure damage and root development inhibition in plants. While prior research indicated the involvement of exogenous brassinosteroid (BR) in plant responses to salt stress, the precise cytological role and the function of BR in wheat root development under salt stress remain elusive. Our study demonstrates that 100 mM NaCl solution inhibits wheat root development, but 5 nM EpiBL partially rescues root length inhibition by decreasing H2O2 content, oxygen free radical (OFR) content, along with increasing the peroxidase (POD) and catalase (CAT) activities in salt-stressed roots. The qRT-PCR experiment also shows that expression of the ROS-scavenging genes (GPX2 and CAT2) increased in roots after applying BR, especially during salt stress situation. Transcriptional analysis reveals decreased expression of BR synthesis and root meristem development genes under salt stress in wheat roots. Differential expression gene (DEG) enrichment analysis highlights the significant impact of salt stress on various biological processes, particularly "hydrogen peroxide catabolic process" and "response to oxidative stress". Additionally, the BR biosynthesis pathway is enriched under salt stress conditions. Therefore, we investigated the involvement of wheat BR synthesis gene TaDWF4 and BR signaling gene TaBAK1 in salt stress responses in roots. Our results demonstrate that ectopic expression of TaDWF4 or TaBAK1 enhances salt tolerance in Arabidopsis by balancing ROS (Reactive oxygen species) levels in roots.


Asunto(s)
Brasinoesteroides , Homeostasis , Raíces de Plantas , Especies Reactivas de Oxígeno , Tolerancia a la Sal , Esteroides Heterocíclicos , Triticum , Triticum/genética , Triticum/fisiología , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Triticum/efectos de los fármacos , Brasinoesteroides/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal/genética , Esteroides Heterocíclicos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Estrés Salino , Estrés Oxidativo , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Catalasa/metabolismo
9.
Plant Mol Biol ; 114(3): 59, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750303

RESUMEN

The plant-specific homeodomain-leucine zipper I subfamily is involved in the regulation of various biological processes, particularly growth, development and stress response. In the present study, we characterized four BnaHB6 homologues from Brassica napus. All BnaHB6 proteins have transcriptional activation activity. Structural and functional data indicate the complex role of BnaHB6 genes in regulating biological processes, with some functions conserved and others diverged. Transcriptional analyzes revealed that they are induced in a similar manner in different tissues but show different expression patterns in response to stress and circadian rhythm. Only the BnaA09HB6 and BnaC08HB6 genes are expressed under dehydration and salt stress, and in darkness. The partial transcriptional overlap of BnaHB6s with the evolutionarily related genes BnaHB5 and BnaHB16 was also observed. Transgenic Arabidopsis thaliana plants expressing a single proBnaHB6::GUS partially confirmed the expression results. Bioinformatic analysis allowed the identification of TF-binding sites in the BnaHB6 promoters that may control their expression under stress and circadian rhythm. ChIP-qPCR analysis revealed that BnaA09HB6 and BnaC08HB6 bind directly to the promoters of the target genes BnaABF4 and BnaDREB2A. Comparison of their expression patterns in the WT plants and the bnac08hb6 mutant showed that BnaC08HB6 positively regulates the expression of the BnaABF4 and BnaDREB2A genes under dehydration and salt stress. We conclude that four BnaHB6 homologues have distinct functions in response to stress despite high sequence similarity, possibly indicating different binding preferences with BnaABF4 and BnaDREB2A. We hypothesize that BnaC08HB6 and BnaA09HB6 function in a complex regulatory network under stress.


Asunto(s)
Brassica napus , Deshidratación , Regulación de la Expresión Génica de las Plantas , Leucina Zippers , Proteínas de Plantas , Estrés Salino , Factores de Transcripción , Brassica napus/genética , Brassica napus/metabolismo , Brassica napus/fisiología , Brassica napus/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Leucina Zippers/genética , Plantas Modificadas Genéticamente , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Regiones Promotoras Genéticas/genética , Filogenia , Ritmo Circadiano/genética , Estrés Fisiológico/genética
10.
Plant Cell Rep ; 43(5): 126, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652181

RESUMEN

KEY MESSAGE: Innovatively, we consider stomatal detection as rotated object detection and provide an end-to-end, batch, rotated, real-time stomatal density and aperture size intelligent detection and identification system, RotatedeStomataNet. Stomata acts as a pathway for air and water vapor in the course of respiration, transpiration, and other gas metabolism, so the stomata phenotype is important for plant growth and development. Intelligent detection of high-throughput stoma is a key issue. Nevertheless, currently available methods usually suffer from detection errors or cumbersome operations when facing densely and unevenly arranged stomata. The proposed RotatedStomataNet innovatively regards stomata detection as rotated object detection, enabling an end-to-end, real-time, and intelligent phenotype analysis of stomata and apertures. The system is constructed based on the Arabidopsis and maize stomatal data sets acquired destructively, and the maize stomatal data set acquired in a non-destructive way, enabling the one-stop automatic collection of phenotypic, such as the location, density, length, and width of stomata and apertures without step-by-step operations. The accuracy of this system to acquire stomata and apertures has been well demonstrated in monocotyledon and dicotyledon, such as Arabidopsis, soybean, wheat, and maize. The experimental results that the prediction results of the method are consistent with those of manual labeling. The test sets, the system code, and their usage are also given ( https://github.com/AITAhenu/RotatedStomataNet ).


Asunto(s)
Arabidopsis , Fenotipo , Estomas de Plantas , Zea mays , Estomas de Plantas/fisiología , Zea mays/genética , Zea mays/fisiología , Zea mays/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/fisiología
11.
BMC Plant Biol ; 24(1): 318, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38654190

RESUMEN

BACKGROUND: Class III peroxidases (PODs) perform crucial functions in various developmental processes and responses to biotic and abiotic stresses. However, their roles in wheat seed dormancy (SD) and germination remain elusive. RESULTS: Here, we identified a wheat class III POD gene, named TaPer12-3A, based on transcriptome data and expression analysis. TaPer12-3A showed decreasing and increasing expression trends with SD acquisition and release, respectively. It was highly expressed in wheat seeds and localized in the endoplasmic reticulum and cytoplasm. Germination tests were performed using the transgenic Arabidopsis and rice lines as well as wheat mutant mutagenized with ethyl methane sulfonate (EMS) in Jing 411 (J411) background. These results indicated that TaPer12-3A negatively regulated SD and positively mediated germination. Further studies showed that TaPer12-3A maintained H2O2 homeostasis by scavenging excess H2O2 and participated in the biosynthesis and catabolism pathways of gibberellic acid and abscisic acid to regulate SD and germination. CONCLUSION: These findings not only provide new insights for future functional analysis of TaPer12-3A in regulating wheat SD and germination but also provide a target gene for breeding wheat varieties with high pre-harvest sprouting resistance by gene editing technology.


Asunto(s)
Germinación , Latencia en las Plantas , Triticum , Triticum/genética , Triticum/enzimología , Triticum/fisiología , Latencia en las Plantas/genética , Germinación/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrógeno/metabolismo , Giberelinas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Peroxidasas/genética , Peroxidasas/metabolismo , Plantas Modificadas Genéticamente , Ácido Abscísico/metabolismo , Genes de Plantas
12.
New Phytol ; 242(6): 2453-2463, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38567702

RESUMEN

CO2 release in the light (RL) and its presumed source, oxidative pentose phosphate pathways, were found to be insensitive to CO2 concentration. The oxidative pentose phosphate pathways form glucose 6-phosphate (G6P) shunts that bypass the nonoxidative pentose phosphate reactions of the Calvin-Benson cycle. Using adenosine diphosphate glucose and uridine diphosphate glucose as proxies for labeling of G6P in the stroma and cytosol respectively, it was found that only the cytosolic shunt was active. Uridine diphosphate glucose, a proxy for cytosolic G6P, and 6-phosphogluconate (6PG) were significantly less labeled than Calvin-Benson cycle intermediates in the light. But ADP glucose, a proxy for stromal G6P, is labeled to the same degree as Calvin-Benson cycle intermediates and much greater than 6PG. A metabolically inert pool of sedoheptulose bisphosphate can slowly equilibrate keeping the label in sedoheptulose lower than in other stromal metabolites. Finally, phosphorylation of fructose 6-phosphate (F6P) in the cytosol can allow some unlabeled carbon in cytosolic F6P to dilute label in phosphenolpyruvate. The results clearly show that there is oxidative pentose phosphate pathway activity in the cytosol that provides a shunt around the nonoxidative pentose phosphate pathway reactions of the Calvin-Benson cycle and is not strongly CO2-sensitive.


Asunto(s)
Dióxido de Carbono , Oxidación-Reducción , Vía de Pentosa Fosfato , Fotosíntesis , Dióxido de Carbono/metabolismo , Glucosa-6-Fosfato/metabolismo , Citosol/metabolismo , Luz , Arabidopsis/metabolismo , Arabidopsis/fisiología
13.
J Evol Biol ; 37(5): 555-565, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38596851

RESUMEN

The warm edges of species' distributions are vulnerable to global warming. Evidence is the recent range retraction from there found in many species. It is unclear why populations cannot easily adapt to warmer, drier, or combined hot and dry conditions and locally persist. Here, we assessed the ability to adapt to these stressors in the temperate species Arabidopsis lyrata. We grew plants from replicate seed families of a central population with high genetic diversity under a temperature and precipitation regime typical of the low-latitude margin or under hotter and/or drier conditions within naturally occurring amplitudes. We then estimated genetic variance-covariance (G-) matrices of traits depicting growth and allocation as well as selection vectors to compare the predicted adaptation potential under the different climate-stress regimes. We found that the sum of genetic variances and genetic correlations were not significantly different under stress as compared to benign conditions. However, under drought and heat drought, the predicted ability to adapt was severely constrained due to strong selection and selection pointing in a direction with less multivariate genetic variation. The much-reduced ability to adapt to dry and hot-dry conditions is likely to reduce the persistence of populations at the low-latitude margin of the species' distribution and contribute to the local extinction of the species under further warming.


Asunto(s)
Arabidopsis , Evolución Biológica , Sequías , Calor , Arabidopsis/genética , Arabidopsis/fisiología , Variación Genética , Estrés Fisiológico , América del Norte , Adaptación Fisiológica/genética
14.
Plant Sci ; 344: 112087, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38599247

RESUMEN

The circadian clock plays a critical role in regulating plant physiology and metabolism. However, the way in which the clock impacts the regulation of lipid biosynthesis in seeds is partially understood. In the present study, we characterized the seed fatty acid (FA) and glycerolipid (GL) compositions of pseudo-response regulator mutants. Among these mutants, toc1 (timing of cab expression 1) exhibited the most significant differences compared to control plants. These included an increase in total FA content, characterized by elevated levels of linolenic acid (18:3) along with a reduction in linoleic acid (18:2). Furthermore, our findings revealed that toc1 developing seeds showed increased expression of genes related to FA metabolism. Our results show a connection between TOC1 and lipid metabolism in Arabidopsis seeds.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Semillas , Ácido alfa-Linolénico , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Semillas/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Ácido alfa-Linolénico/metabolismo , Regulación de la Expresión Génica de las Plantas , Relojes Circadianos/genética , Ácidos Grasos/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Metabolismo de los Lípidos
15.
J Plant Physiol ; 297: 154242, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614048

RESUMEN

Roots are essential to terrestrial plants, as their growth and morphology are crucial for plant development. The growth of the roots is affected and regulated by several internal and external environmental signals and metabolic pathways. Among them, chromatin modification plays an important regulatory role. In this study, we explore the potential roles of the histone deacetylase AtHD2D in root development and lay the foundation for further research on the biological processes and molecular mechanisms of AtHD2D in the future. Our study indicates that AtHD2D affects the root tip microenvironment homeostasis by affecting the gene transcription levels required to maintain the root tip microenvironment. In addition, we confirmed that AtHD2D is involved in regulating Arabidopsis lateral root development and further explained the possible role of AtHD2D in auxin-mediated lateral root development. AtHD2D can effectively enhance the resistance of Arabidopsis thaliana to abiotic stress. We believe that AtHD2D is involved in coping with abiotic stress by promoting the development of lateral roots. Overexpression of AtHD2D promotes the accumulation of reactive oxygen species (ROS) in roots, indicating that AtHD2D is also involved in developing lateral roots mediated by ROS. Previous studies have shown that the overexpression of AtHD2D can effectively enhance the resistance of Arabidopsis thaliana to abiotic stress. Based on our data, we believe that AtHD2D participates in the response to abiotic stress by promoting the development of lateral roots. AtHD2D-mediated lateral root development provides new ideas for studying the mechanism of HDAC protein in regulating root development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Histona Desacetilasas , Raíces de Plantas , Estrés Fisiológico , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo
16.
J Plant Physiol ; 297: 154256, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657393

RESUMEN

Basic helix-loop-helix (bHLH) transcription factors play various important roles in plant growth and development. In this study, a AabHLH48 was identified in the floral organ of Adonis amurensis, a perennial herb that can naturally complete flowering at extreme low temperatures. AabHLH48 was widely expressed in various tissues or organs of A. amurensis and was localized in the nucleus. Overexpression of AabHLH48 promotes early flowering in Arabidopsis under both photoperiod (12 h light/12 h dark and 16 h light/8 h dark) and temperature (22 and 18 °C) conditions. Transcriptome sequencing combined with quantitative real-time PCR analysis showed that overexpression of AabHLH48 caused a general upregulation of genes involved in floral development in Arabidopsis, especially for AtAGAMOUS-LIKE 8/FRUITFULL (AtAGL8/FUL). The yeast one-hybrid assay revealed that AabHLH48 has transcriptional activating activity and can directly bind to the promoter region of AtAGL8/FUL. These results suggest that the overexpression of AabHLH48 promoting early flowering in Arabidopsis is associated with the upregulated expression of AtAGL8/FUL activated by AabHLH48. This indicates that AabHLH48 can serve as an important genetic resource for improving flowering-time control in other ornamental plants or crops.


Asunto(s)
Adonis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adonis/genética , Adonis/metabolismo , Fotoperiodo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética
17.
J Plant Physiol ; 297: 154257, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38688043

RESUMEN

The chemical form and physiological activity of iron (Fe) in soil are dependent on soil pH and redox potential (Eh), and Fe levels in soils are frequently elevated to the point of causing Fe toxicity in plants, with inhibition of normal physiological activities and of growth and development. In this review, we describe how iron toxicity triggers important physiological changes, including nitric-oxide (NO)-mediated potassium (K+) efflux at the tips of roots and accumulation of reactive oxygen species (ROS) and reactive nitrogen (RNS) in roots, resulting in physiological stress. We focus on the root system, as the first point of contact with Fe in soil, and describe the key processes engaged in Fe transport, distribution, binding, and other mechanisms that are drawn upon to defend against high-Fe stress. We describe the root-system regulation of key physiological processes and of morphological development through signaling substances such as ethylene, auxin, reactive oxygen species, and nitric oxide, and discuss gene-expression responses under high Fe. We especially focus on studies on the physiological and molecular mechanisms in rice and Arabidopsis under high Fe, hoping to provide a valuable theoretical basis for improving the ability of crop roots to adapt to soil Fe toxicity.


Asunto(s)
Hierro , Raíces de Plantas , Hierro/metabolismo , Hierro/toxicidad , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico/metabolismo , Arabidopsis/fisiología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Oryza/fisiología , Oryza/metabolismo , Oryza/genética , Oryza/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
18.
Plant Cell Physiol ; 65(4): 576-589, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38591870

RESUMEN

In the last years, plant organelles have emerged as central coordinators of responses to internal and external stimuli, which can induce stress. Mitochondria play a fundamental role as stress sensors being part of a complex communication network between the organelles and the nucleus. Among the different environmental stresses, salt stress poses a significant challenge and requires efficient signaling and protective mechanisms. By using the why2 T-DNA insertion mutant and a novel knock-out mutant prepared by CRISPR/Cas9-mediated genome editing, this study revealed that WHIRLY2 is crucial for protecting mitochondrial DNA (mtDNA) integrity during salt stress. Loss-of-function mutants show an enhanced sensitivity to salt stress. The disruption of WHIRLY2 causes the impairment of mtDNA repair that results in the accumulation of aberrant recombination products, coinciding with severe alterations in nucleoid integrity and overall mitochondria morphology besides a compromised redox-dependent response and misregulation of antioxidant enzymes. The results of this study revealed that WHIRLY2-mediated structural features in mitochondria (nucleoid compactness and cristae) are important for an effective response to salt stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ADN Mitocondrial , Mitocondrias , Estrés Salino , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Estrés Salino/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Regulación de la Expresión Génica de las Plantas , Sistemas CRISPR-Cas
19.
BMC Plant Biol ; 24(1): 351, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38684962

RESUMEN

BACKGROUND: Rose (Rosa hybrida) is a globally recognized ornamental plant whose growth and distribution are strongly limited by drought stress. The role of Mediator, a multiprotein complex crucial for RNA polymerase II-driven transcription, has been elucidated in drought stress responses in plants. However, its physiological function and regulatory mechanism in horticultural crop species remain elusive. RESULTS: In this study, we identified a Tail module subunit of Mediator, RhMED15a-like, in rose. Drought stress, as well as treatment with methyl jasmonate (MeJA) and abscisic acid (ABA), significantly suppressed the transcript level of RhMED15a-like. Overexpressing RhMED15a-like markedly bolstered the osmotic stress tolerance of Arabidopsis, as evidenced by increased germination rate, root length, and fresh weight. In contrast, the silencing of RhMED15a-like through virus induced gene silencing in rose resulted in elevated malondialdehyde accumulation, exacerbated leaf wilting, reduced survival rate, and downregulated expression of drought-responsive genes during drought stress. Additionally, using RNA-seq, we identified 972 differentially expressed genes (DEGs) between tobacco rattle virus (TRV)-RhMED15a-like plants and TRV controls. Gene Ontology (GO) analysis revealed that some DEGs were predominantly associated with terms related to the oxidative stress response, such as 'response to reactive oxygen species' and 'peroxisome'. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment highlighted pathways related to 'plant hormone signal transduction', in which the majority of DEGs in the jasmonate (JA) and ABA signalling pathways were induced in TRV-RhMED15a-like plants. CONCLUSION: Our findings underscore the pivotal role of the Mediator subunit RhMED15a-like in the ability of rose to withstand drought stress, probably by controlling the transcript levels of drought-responsive genes and signalling pathway elements of stress-related hormones, providing a solid foundation for future research into the molecular mechanisms underlying drought tolerance in rose.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Virus de Plantas , Rosa , Rosa/genética , Rosa/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Estrés Fisiológico/genética , Arabidopsis/genética , Arabidopsis/fisiología , Acetatos/farmacología , Plantas Modificadas Genéticamente
20.
Sci Total Environ ; 928: 172476, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38621536

RESUMEN

The potential applications of nanomaterials in agriculture for alleviating diverse biotic and abiotic stresses have garnered significant attention. The reported mechanisms encompass promoting plant growth and development, alleviating oxidative stress, inducing defense responses, modulating plant-microbe interactions, and more. However, individual studies may not fully uncover the common pathways or distinguish the effects of different nanostructures. We examined Arabidopsis thaliana transcriptomes exposed to biotic, abiotic, and metal or carbon-based nanomaterials, utilizing 24 microarray chipsets and 17 RNA-seq sets. The results showed that: 1) from the perspective of different nanostructures, all metal nanomaterials relieved biotic/abiotic stresses via boosting metal homeostasis, particularly zinc and iron. Carbon nanomaterials induce hormone-related immune responses in the presence of both biotic and abiotic stressors. 2) Considering the distinct features of various nanostructures, metal nanomaterials displayed unique characteristics in seed priming for combating abiotic stresses. In contrast, carbon nanomaterials exhibited attractive features in alleviating water deprivation and acting as signaling amplifiers during biotic stress. 3) For shared pathway analysis, response to hypoxia emerges as the predominant and widely shared regulatory mechanism governing diverse stress responses, including those induced by nanomaterials. By deciphering shared and specific pathways and responses, this research opens new avenues for precision nano-agriculture, offering innovative strategies to optimize plant resilience, improve stress management, and advance sustainable crop production practices.


Asunto(s)
Arabidopsis , Nanoestructuras , Estrés Fisiológico , Transcriptoma , Arabidopsis/genética , Arabidopsis/fisiología , Nanoestructuras/toxicidad , Transcriptoma/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA