Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 782
Filtrar
1.
Metabolomics ; 20(5): 89, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095669

RESUMEN

INTRODUCTION: Breeding for oil palm resistance against basal stem rot caused by Ganoderma boninense is challenging and time-consuming. Advanced oil palm gene pools are very limited, hence it is assumed that parental palms have experienced genetic drift and lost their resistance genes against Ganoderma. High-throughput selection criteria should be developed. Metabolomic analysis using 1H nuclear magnetic resonance (NMR) spectroscopy is easy, and the resulting metabolite can be used as a diagnostic tool for detecting disease in various host-pathogen combinations. OBJECTIVES: The objective of this study was to identify metabolite variations in Dura (D) and Pisifera (P) parental palms with different resistance levels against Ganoderma and moderately resistant DxP using 1H NMR analysis. METHODS: Leaf tissues of seven different oil palm categories consisting of: resistant, moderate, and susceptible Dura (D); moderate and susceptible Pisifera (P); resistant Tenera/Pisifera (T/P) parental palms; and moderately resistant DxP variety progenies, were sampled and their metabolites were determined using NMR spectroscopy. RESULTS: Twenty-nine types of metabolites were identified, and most of the metabolites fall in the monosaccharides, amino acids, and fatty acids compound classes. The PCA, PLS-DA, and heatmap multivariate analysis indicated two identified groups of resistance based on their metabolites. The first group consisted of resistant T/P, moderate P, resistant D, and moderately resistant DxP. In contrast, the second group consisted of susceptible P, moderate D, and susceptible D. Glycerol and ascorbic acid were detected as biomarker candidates by OPLS-DA to differentiate moderately resistant DxP from susceptible D and P. The pathway analysis suggested that glycine, serine, and threonine metabolism and taurine and hypotaurine metabolism were involved in the oil palm defense mechanism against Ganoderma. CONCLUSION: A metabolomic study with 1H NMR was able to describe the metabolite composition that could differentiate the characteristics of oil palm resistance against basal stem rot (BSR) caused by G. boninense. These metabolites revealed in this study have enormous potential to become support tools for breeding new oil palm varieties with higher resistance against BSR.


Asunto(s)
Arecaceae , Resistencia a la Enfermedad , Ganoderma , Metabolómica , Enfermedades de las Plantas , Hojas de la Planta , Ganoderma/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Enfermedades de las Plantas/microbiología , Arecaceae/metabolismo , Arecaceae/química , Metabolómica/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos , Metaboloma
2.
Environ Sci Pollut Res Int ; 31(33): 45887-45912, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38980479

RESUMEN

This study investigates the synthesize of activated carbon for carbon dioxide adsorption using palm kernel shell (PKS), a by-product of oil palm industry. The adsorbent synthesis involved a simple two-step carbonization method. Firstly, PKS was activated with potassium oxide (KOH), followed by functionalization with magnesium oxide (MgO). Surface analysis revealed that KOH activated PKS has resulted in a high specific surface area of 1086 m2/g compared to untreated PKS (435 m2/g). However, impregnation of MgO resulted in the reduction of surface area due to blockage of pores by MgO. Thermogravimetric analysis (TGA) demonstrated that PKS-based adsorbents exhibited minimal weight loss of less than 30% up to 500 °C, indicating their suitability for high-temperature applications. CO2 adsorption experiments revealed that PKS-AC-MgO has achieved a higher adsorption capacity of 155.35 mg/g compared to PKS-AC (149.63 mg/g) at 25 °C and 5 bars. The adsorption behaviour of PKS-AC-MgO was well fitted by both the Sips and Langmuir isotherms, suggesting a combination of both heterogeneous and homogeneous adsorption and indicating a chemical reaction between MgO and CO2. Thermodynamic analysis indicated a spontaneous and thermodynamically favourable process for CO2 capture by PKS-AC-MgO, with negative change in enthalpy (- 0.21 kJ/mol), positive change in entropy (2.44 kJ/mol), and negative change in Gibbs free energy (- 729.61 J/mol, - 790.79 J/mol, and - 851.98 J/mol) across tested temperature. Economic assessment revealed that the cost of PKS-AC-MgO is 21% lower than the current market price of commercial activated carbon, indicating its potential for industrial application. Environmental assessment shows a significant reduction in greenhouse gas emissions (381.9 tCO2) through the utilization of PKS-AC-MgO, underscoring its environmental benefits. In summary, the use of activated carbon produced from PKS and functionalised with MgO shows great potential for absorbing CO2. This aligns with the ideas of a circular economy and sustainable development.


Asunto(s)
Arecaceae , Dióxido de Carbono , Dióxido de Carbono/química , Adsorción , Arecaceae/química , Carbono/química , Óxido de Magnesio/química , Carbón Orgánico/química , Aceite de Palma/química
3.
J Food Sci ; 89(8): 5101-5112, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39030756

RESUMEN

Macauba (Acrocomia aculeata) is a Brazilian palm tree whose oil in the pulp is rich in oleic acid and carotenoids. However, its physiological function remains unknown. This study aimed to investigate the effects of macauba pulp oil (MPO) on the metabolic link between lipid metabolism and lifespan using Caenorhabditis elegans (C. elegans). C. elegans were treated with 5.0 mg/mL of MPO for analyzing triglyceride and glycerol accumulation, fatty acid profile, gene expression of lipid and oxidative metabolism proteins under cold (4°C) stress conditions, and lifespan analysis under stress conditions such as cold (4°C), heat (37°C), and oxidative (paraquat) stress. MPO significantly suppressed fat accumulation and increased glycerol (a lipolysis index) and the lifespan of C. elegans at low temperature (4°C). This was accompanied by decreased mRNA levels of the genes involved in lipogenesis (spb-1 and pod-2) and increased levels of the genes involved in fatty acid ß-oxidation (acs-2 and nhr-49) and fat mobilization genes (hosl-1 and aak-2). Additionally, MPO treatment modulated fatty acid pools in C. elegans at low temperatures in that MPO treatment decreased saturated fatty acid levels and shifted the fatty acid profile to long-chain fatty acids. Moreover, the effect of MPO on fat accumulation at low temperatures was abolished in fat-7 mutants, whereas both fat-1 and fat-7 contribute, at least in part, to MPO-elevated survival of C. elegans under cold conditions. PRACTICAL APPLICATION: The results obtained in the present study may contribute to the understanding of the health benefits of consuming macauba pulp oil and consequently stimulate economic growth and the industrial application of this new type of oil, which may result in the creation of new jobs and increased value of small producers.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Frío , Metabolismo de los Lípidos , Longevidad , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Longevidad/efectos de los fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Metabolismo de los Lípidos/efectos de los fármacos , Aceites de Plantas/farmacología , Arecaceae/química , Ácidos Grasos/metabolismo , Triglicéridos/metabolismo , Glicerol/metabolismo , Glicerol/farmacología , Estrés Oxidativo/efectos de los fármacos , Aceite de Palma/farmacología
4.
An Acad Bras Cienc ; 96(3): e20230435, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985028

RESUMEN

This study evaluated the oil content obtained from andiroba seeds by pressurized n-propane at different conditions of temperature (25, 35, and 45 °C) and pressure (40, 60, and 80 bar), and conventional extraction technique using n-hexane as the solvent. Kinetic extraction curves were fitted using Sovová's mathematical model. The chemical characterization of the oil was reported as well as the protein content in the extraction by-product. Pressurized extractions conducted at 25 °C provided the highest oil recovery (~45 wt%) from the seeds. The increase in pressure at 25 ºC favored obtaining oil with higher Stigmasterol contents, however, the Squalene content was higher in the oil obtained at 40 bar. The oils with the highest concentration phenolic compounds and antioxidant activity were obtained at 80 bar. Extraction with n-propane provided oils with higher levels of phenolic compounds, however, with antioxidant activity similar to conventional extraction. For all evaluated extractions, the product showed a predominance of oleic and palmitic acids, with similar values of oxidative stability. The extraction of the by-product with the highest soluble protein content was obtained under mild processing conditions (25 °C and 40 bar) with n-propane.


Asunto(s)
Antioxidantes , Aceites de Plantas , Semillas , Semillas/química , Antioxidantes/análisis , Antioxidantes/aislamiento & purificación , Aceites de Plantas/química , Temperatura , Presión , Arecaceae/química , Hexanos/química
5.
J Food Sci ; 89(8): 5031-5046, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38992871

RESUMEN

Nanofibrillated cellulose (NFC) from plant biomass is becoming popular, attributed to the protective encapsulation of bioactive compounds in Pickering emulsion, preventing degradation and stabilizing the emulsion. NFC, as a natural dietary fiber, is a prominent fat replacer, providing a quality enhancement to reduced-fat products. In this study, NFC Pickering emulsions were prepared at NFC concentrations of 0.2%, 0.4%, 0.6%, 0.8%, and 1% to encapsulate carotenoids. The NFC Pickering emulsions at NFC concentrations of 0.4%, 0.6%, 0.8%, and 1% were incorporated into margarine-like reduced fat (3%) spreads as the aqueous phase. Characterization of both NFC Pickering emulsion and the incorporated NFC Pickering emulsion, margarine-like reduced fat spreads, was conducted with mastersizer, rheometer, spectrophotometer, and texture analyzer. The particle size (73.67 ± 0.35 to 94.73 ± 2.21 nm), viscosity (138.36 ± 3.35 to 10545.00 ± 567.10 mPa s), and creaming stability (25% to 100% stable) of the NFC Pickering emulsions were increased significantly when increasing the NFC concentration, whereas the encapsulation efficiency was highest at NFC 0.4% and 0.6%. Although imitating the viscoelastic solid-like behavior of margarine was difficult, the NFC Pickering emulsion properties were still able to enhance hardness, slip melting point, and color of the reduced fat spreads compared to the full-fat margarine, especially at 0.6% of NFC. Overall, extensive performances of NFC can be seen in encapsulating carotenoids, especially at NFC concentrations of 0.4% and 0.6%, with the enhancement of Pickering emulsion stability while portraying futuristic possibilities as a fat replacer in margarine optimally at 0.6% of NFC concentration. PRACTICAL APPLICATION: Nanocellulose extracted from palm dried long fiber was utilized to encapsulate carotenoids and replace fats in margarine-like reduced fat (3%) spreads. Our study portrayed high encapsulation efficiency and successful fat replacement with promising stability performances. Hence, nanocellulose displayed extensive potential as encapsulating agents and fat replacers while providing quality and sustainability enhancements in reduced-fat food.


Asunto(s)
Carotenoides , Celulosa , Nanofibras , Aceite de Palma , Aceite de Palma/química , Margarina , Celulosa/química , Nanofibras/química , Nanofibras/ultraestructura , Carotenoides/química , Tamaño de la Partícula , Emulsiones/química , Viscosidad , Temperatura , Elasticidad , Oxidación-Reducción , Color , Sustitutos de Grasa/química , Cápsulas/química , Arecaceae/química
6.
Environ Sci Pollut Res Int ; 31(31): 44272-44288, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38941052

RESUMEN

One of the hottest research topics over the last decades was the valorization or/and recycling of agro-industrial wastes into different valuable liquid or solid products, which is considered a sustainable and low-cost approach. In this study, we developed zero-valent iron nanoparticles from Palm Petiole Extract (P-NZVI) using a green and straightforward approach. The as-synthesized P-NZVI was used to adsorb Cr(VI) in water. The physico-chemical characterizations of P-NZVI, including the particle size, crystalline structure, surface area, morphology, and functional groups, were investigated via several techniques such as UV-vis spectroscopy, SEM, TEM, XRD, FTIR, AFM, DLS, pHZPC measurement, and BET analysis. The adsorption performance of P-NZVI was studied under different operational parameters, including pollutant concentration, pH, temperature, and adsorbent mass. The adsorption rate was found to be 89.3% within 40 min, corresponding to the adsorption capacity of 44.47 mg/g under the following conditions: initial Cr(VI) concentration of 40 mg/L, pH 5, and a P-NZVI dosage of 1 g/L. It was found that the adsorption pattern follows the Langmuir and the pseudo-second-order kinetic models, indicating a combination of monolayer adsorption and chemisorption mechanisms. The thermodynamic study shows that the adsorption process is endothermic and spontaneous. The reusability of P-NZVI was carried out four times, showing a slight decrease from 89.3 to 87%. These findings highlight that P-NZVI's could be an effective green adsorbent for removing Cr(VI) or other types of toxic pollutants from water.


Asunto(s)
Cromo , Hierro , Nanopartículas del Metal , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Hierro/química , Adsorción , Cromo/química , Nanopartículas del Metal/química , Purificación del Agua/métodos , Arecaceae/química , Cinética , Tecnología Química Verde , Extractos Vegetales/química
7.
Food Chem ; 457: 140134, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901335

RESUMEN

This study investigated the potential of a novel sustainable ingredient composed of rapeseed oil, linseed meal and beta-glucan (PALM-ALT) to mimic palm shortening functionality in cake. The combined functional properties of linseed meal and beta-glucan led to stable semi-solid emulsion-gels (20-31 µm oil droplet size, 105-115 Pa.s viscosity and 60-65 Pa yield stress). PALM-ALT contained 25 and 88% less total and saturated fat than palm shortening, whilst PALM-ALT cakes contained 26 and 75% less total and saturated fat than the palm-based control. PALM-ALT cakes matched the flavour profile of the palm-based control, while rapeseed oil cakes tasted more sour and less sweet than the control (p < 0.05). PALM-ALT cakes proved less hard and more cohesive than the control (p < 0.05), with 100% of the consumer panel preferring PALM-ALT formulations. This study demonstrated the unique potential of PALM-ALT as healthier, sustainable and competitive alternative to palm shortening.


Asunto(s)
Lino , Aceite de Brassica napus , beta-Glucanos , Aceite de Brassica napus/química , beta-Glucanos/química , Lino/química , Humanos , Gusto , Arecaceae/química , Viscosidad
8.
Bioresour Technol ; 406: 130969, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38879052

RESUMEN

Inorganic elements in palm empty fruit bunch (EFB) are problematic in boiler operation, causing slagging and fouling deposits. The first pilot-scale hydrothermal treatment (HTT) system was commenced in a palm oil mill to remove undesirable elements. Fuel properties, combustion behavior, and fouling deposition of HTT-EFB were investigated. Liquid temperatures and treatment times in the HTT system significantly altered EFB-fuel properties. At ≥ 60 °C, potassium removals of at least 78 % were achieved, generating EFB-fuel containing potassium below 0.5 %wt. Later, a series of EFB combustion experiments were conducted in a specially designed fixed-bed reactor to simulate the tube surface of industrial boilers. Fouling deposition from HTT-EFB combustion reduced to below half of untreated EFB at all HTT conditions and combustion temperatures studied. The deposit-to-fuel ratio of HTT-EFB combusted at 1,000 °C was 37.3 % lower than untreated EFB combusted at a typical EFB boiler at 800 °C. Results demonstrated great potential for HTT-EFB in industrial applications.


Asunto(s)
Arecaceae , Frutas , Proyectos Piloto , Frutas/química , Arecaceae/química , Aceite de Palma/química , Temperatura , Agua/química , Reactores Biológicos , Aceites de Plantas/química , Calor , Incrustaciones Biológicas
9.
Int J Biol Macromol ; 274(Pt 2): 133169, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885854

RESUMEN

In this study, acylated porous Canna edulis starch with varying degrees of substitution (DS) were prepared and employed for stabilizing Pickering emulsions. Subsequently, the fermentation characteristics of them were investigated. Enzymatically produced porous starch (PS) was esterified with acetic, propionic, butyric, or valeric anhydrides, yielding acetylated (PSA-0.116), propionylated (PSP-0.163), butyrylated (PSB-0.304), and valerylated PS (PSV-0.462) with different DS. Scanning electron microscopy revealed the presence of pores and surface micro-particles in the modified PS, confirming successful esterification through characteristic peaks in 1H NMR and a CO peak at 1736 cm-1 in the FT-IR spectrum. With increasing DS, starch exhibited reduced crystallinity (PSV, 26.61 %), elevated resistant starch content (PSV, 91.63 %), and a higher contact angle (PSV, 87.13°). Acylated PS particles effectively stabilized Pickering emulsions. Pickering emulsions stabilized by acylated PS with higher DS exhibited higher emulsification index and smaller droplet sizes. In vitro fermentation of acylated PS and corresponding stabilized Pickering emulsions fostered short-chain fatty acid production, boosted the relative abundance of beneficial bacteria (Bifidobacterium, Prevotella, etc.) while inhibited the growth of harmful bacteria (Escherichia-Shigella, Comamonas, etc.), maintaining the intestinal microbiota balance. These findings support the potential applications of acylated PS and corresponding stabilized Pickering emulsions in functional foods and drug delivery.


Asunto(s)
Emulsiones , Heces , Fermentación , Almidón , Almidón/química , Almidón/metabolismo , Porosidad , Acilación , Heces/microbiología , Arecaceae/química
10.
PLoS One ; 19(6): e0299312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843202

RESUMEN

This research presents a comprehensive study of sequential oxidative extraction (SOE) consisting of alkaline and acidic oxidation processes to extract nanocellulose from plant biomass. This proposed process is advantageous as its operation requires a minimum process with mild solvents, and yet successfully isolated high-quality nanofibrillated cellulose (NFC) from raw OPEFB. The SOE involved ammonium hydroxide (NH4OH, 2.6 M) and formic acid (HCOOH, 5.3 M) catalyzed by hydrogen peroxide (H2O2, 3.2 M). This approach was used to efficiently solubilize the lignin and hemicellulose from Oil Palm Empty Fruit Bunch (OPEFB) at the temperature of 100°C and 1 h extraction time, which managed to retain fibrous NFC. The extracted solid and liquor at each stage were studied extensively through physiochemical analysis. The finding indicated that approximately 75.3%dwb of hemicellulose, 68.9%dwb of lignin, and 42.0%dwb of extractive were solubilized in the first SOE cycle, while the second SOE cycle resulted in 92.3%dwb, 99.6%dwb and 99.8%dwb of solubilized hemicellulose, lignin, and extractive/ash, respectively. High-quality NFC (75.52%dwb) was obtained for the final extracted solid with 76.4% crystallinity, which is near the crystallinity of standard commercial NFC. The proposed process possesses an effective synergy in producing NFC from raw OPEFB with less cellulose degradation, and most of the degraded hemicellulose and lignin are solubilized in the liquor.


Asunto(s)
Arecaceae , Celulosa , Frutas , Lignina , Oxidación-Reducción , Celulosa/química , Frutas/química , Arecaceae/química , Lignina/química , Nanofibras/química , Aceite de Palma/química , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Peróxido de Hidrógeno/química
11.
J Ethnopharmacol ; 331: 118283, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38734393

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Syagrus coronata, a palm tree found in northeastern Brazil, popularly known as licuri, has socioeconomic importance for the production of vegetable oil rich in fatty acids with nutritional and pharmacological effects. Licuri oil is used in traditional medicine to treat inflammation, wound healing, mycosis, back discomfort, eye irritation, and other conditions. AIM OF THE STUDY: The study aimed to evaluate the antinociceptive, anti-inflammatory, and antipyretic effects of treatment with Syagrus coronata fixed oil (ScFO), as well as to determine the safety of use in mice. MATERIALS AND METHODS: Initially, the chemical characterization was performed by gas chromatography-mass spectrometry. Acute single-dose oral toxicity was evaluated in mice at a dose of 2000 mg/kg. Antinociceptive activity was evaluated through abdominal writhing, formalin, and tail dipping tests, and the anti-inflammatory potential was evaluated through the model of acute inflammation of ear edema, peritonitis, and fever at concentrations of 25, 50, and 100 mg/kg from ScFO. RESULTS: In the chemical analysis of ScFO, lauric (43.64%), caprylic (11.7%), and capric (7.2%) acids were detected as major. No mortality or behavioral abnormalities in the mice were evidenced over the 14 days of observation in the acute toxicity test. ScFO treatment decreased abdominal writhing by 27.07, 28.23, and 51.78% at 25, 50, and 100 mg/kg. ScFO demonstrated central and peripheral action in the formalin test, possibly via opioidergic and muscarinic systems. In the tail dipping test, ScFO showed action from the first hour after treatment at all concentrations. ScFO (100 mg/kg) reduced ear edema by 63.76% and leukocyte and neutrophil migration and IL-1ß and TNF-α production in the peritonitis test. CONCLUSION: Mice treated with ScFO had a reduction in fever after 60 min at all concentrations regardless of dose. Therefore, the fixed oil of S. coronata has the potential for the development of new pharmaceutical formulations for the treatment of pain, inflammation, and fever.


Asunto(s)
Analgésicos , Antiinflamatorios , Edema , Aceites de Plantas , Animales , Analgésicos/farmacología , Analgésicos/aislamiento & purificación , Analgésicos/toxicidad , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Aceites de Plantas/farmacología , Masculino , Edema/tratamiento farmacológico , Edema/inducido químicamente , Dolor/tratamiento farmacológico , Peritonitis/tratamiento farmacológico , Antipiréticos/farmacología , Arecaceae/química , Femenino , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Fiebre/tratamiento farmacológico , Fiebre/inducido químicamente , Administración Oral , Modelos Animales de Enfermedad
12.
Food Funct ; 15(11): 5752-5784, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38753200

RESUMEN

Brazil has a broad geographic biodiversity spread across its six different biomes. However, it has been suffering from the abusive exploitation of its resources, which poses a threat to the local fauna and flora. The Amazon and Atlantic Forest, for example, are birthplaces to rare and edible native species, such as bacaba (Oenocarpus bacaba, Arecaceae) and camu-camu (Myrciaria dubia, Myrtaceae), and cereja-do-Rio Grande (Eugenia involucrata, Myrtaceae) and grumixama (Eugenia brasiliensis, Myrtaceae), respectively. These plants produce fruits which are sources of macro and micronutrients, including sugars, dietary fibers, vitamins, minerals, and/or lipids. Nutritionally, their consumption have the ability to reach partially or totally the daily recommendations for adults of some nutrients. More recently, these fruits have also been exposed as interesting sources of minor bioactive compounds, such as carotenoids, terpenes, and/or polyphenols, the latter which include anthocyanins, phenolic acids, and tannins. Particularly, bacaba stands out for being a rich source of polyunsaturated fatty acids (around 22%, dry weight) and dietary fibers (6.5-21%, dry weight); camu-camu has very high contents of vitamin C (up to 5000 mg per 100 g of pulp, dry basis); and cereja-do-Rio-Grande and grumixama are abundant sources of anthocyanins. Although they are still underexplored, several in vitro and in vivo studies with different parts of the fruits, including the peel, seed, and pulp, indicate their health potential through anti-oxidative, anti-obesity, antihyperglycemic, antidyslipidemic, antimicrobial, and/or anticancer effects. All things considered, the focus of this research was to highlight the bioactive potential and health impact of native fruits from the Amazon and Atlantic Forest biomes.


Asunto(s)
Arecaceae , Bosques , Frutas , Myrtaceae , Frutas/química , Brasil , Humanos , Myrtaceae/química , Arecaceae/química , Eugenia/química , Fitoquímicos/análisis , Antioxidantes/análisis , Antioxidantes/farmacología , Extractos Vegetales/química
13.
Int J Biol Macromol ; 269(Pt 1): 132045, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710254

RESUMEN

Escalating petroleum depletion and environmental crises linked to conventional plastics have fueled interest in eco-friendly alternatives. Natural fibres and biopolymers are garnering increasing attention due to their sustainability. The sago palm (Metroxylon sagu), a tropical tree, holds potential for such materials, with cellulose-rich fibres (42.4-44.12 %) showcasing strong mechanics. Extracted sago palm starch can be blended, reinforced, or plasticised for improved traits. However, a comprehensive review of sago palm fibres, starch, and biocomposites is notably absent. This paper fills this void, meticulously assessing recent advancements in sago palm fibre, cellulose and starch properties, and their eco-friendly composite fabrication. Moreover, it uncovers the latent prospects of sago palm fibres and biopolymers across industries like automotive, packaging, and bioenergy. This review presents a crucial resource for envisaging and realising sustainable materials.


Asunto(s)
Celulosa , Biopolímeros/química , Celulosa/química , Arecaceae/química , Almidón/química , Materiales Biocompatibles/química
14.
Trop Anim Health Prod ; 56(4): 136, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647730

RESUMEN

This study examined the effects of using mushroom mycelium to ferment tigernut and cassava pulp on the growth performance, haematology and immunology of rabbits. Seventy-five New Zealand Bulk grower rabbits were randomly distributed to four treatment groups and a control group in a completely randomized approach. The treatment groups were fed with formulated experimental diets containing one of fermented tigernut drink by-product (FT), fermented cassava sievate (FC), unfermented tigernut drink by-product (UT), or unfermented cassava sievate (UC). The control group was fed a basal diet with no additives. The proximate composition of the fermented feed was analyzed. The weight gain of the animals was, 834.5, 633, 790, 510, and 706 g for control, FT, FC, UT, and UC respectively. The packed cell volume (PCV) for animals in the control group, FT, and FC are 34.33, 37.26, and 32.29% respectively. The red blood cell (RBC) of the FT was favourably improved (5.53 × 1012/L) compared to those of UT (2.28 × 1012/L), while there was a reduction in the red blood cell count of FC group (1.02 × 1012/L). Conclusively, the inclusion of fermented tiger nut drink by-product in rabbit feed improved the PCV and RBC of the rabbits' understudy but did not affect their growth performance.


Asunto(s)
Alimentación Animal , Dieta , Fermentación , Manihot , Animales , Conejos/crecimiento & desarrollo , Conejos/sangre , Manihot/química , Masculino , Alimentación Animal/análisis , Dieta/veterinaria , Distribución Aleatoria , Arecaceae/química , Hematócrito/veterinaria , Aumento de Peso/efectos de los fármacos
15.
Int J Biol Macromol ; 267(Pt 2): 131663, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636760

RESUMEN

Palm seedlings are visually selected from mature fruits in a slow process that leads to nonuniform germination and high embryo mortality. In this study, we determined the levels of monosaccharides, their crystallinity, and their role in the formation of Euterpe edulis endosperm during seed maturation. Seeds harvested from 108 to 262 days after anthesis (DAA) were analyzed morphologically, physiologically, and chemically to measure soluble and insoluble lignins, ashes, structural carbohydrates, degree of crystallinity, and endo-ß-mannanase. The seeds achieved maximum germination and vigor at 164 DAA. During the early stages, only compounds with a low structural order were formed. The contents of soluble and insoluble lignins, ashes, glucans, and galactans decreased during maturation. Those of mannans, the main structural carbohydrate in the endosperm, increased along with the degree of crystallinity, as suggested by a mannan-I-type X-ray diffraction pattern. Similarly, endo-ß-mannanase activity peaked at 262 DAA. The superior physiological outcome of seeds and seedlings at 164 DAA implies a 98-day shorter harvesting time. The state of mannans during seed maturation could be used as a marker to improve seedling production by E. edulis.


Asunto(s)
Arecaceae , Germinación , Mananos , Semillas , Semillas/crecimiento & desarrollo , Semillas/química , Mananos/química , Arecaceae/química , Arecaceae/crecimiento & desarrollo , Árboles , Lignina/química , Lignina/metabolismo , Endospermo/química , Endospermo/metabolismo , Plantones/crecimiento & desarrollo
16.
PeerJ ; 12: e17282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666083

RESUMEN

This study investigated the potential of using steam-exploded oil palm empty fruit bunches (EFB) as a renewable feedstock for producing fumaric acid (FA), a food additive widely used for flavor and preservation, through a separate hydrolysis and fermentation process using the fungal isolate K20. The efficiency of FA production by free and immobilized cells was compared. The maximum FA concentration (3.25 g/L), with 0.034 g/L/h productivity, was observed after incubation with the free cells for 96 h. Furthermore, the production was scaled up in a 3-L air-lift fermenter using oil palm EFB-derived glucose as the substrate. The FA concentration, yield, and productivity from 100 g/L initial oil palm EFB-derived glucose were 44 g/L, 0.39 g/g, and 0.41 g/L/h, respectively. The potential for scaling up the fermentation process indicates favorable results, which could have significant implications for industrial applications.


Asunto(s)
Células Inmovilizadas , Fermentación , Fumaratos , Fumaratos/metabolismo , Células Inmovilizadas/metabolismo , Aceite de Palma , Frutas/microbiología , Frutas/química , Arecaceae/microbiología , Arecaceae/química , Aceites de Plantas/metabolismo , Hidrólisis , Glucosa/metabolismo
17.
Braz J Microbiol ; 55(2): 1179-1187, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38671219

RESUMEN

The hemicellulosic fraction of lignocellulosic biomass is a very important material, due to the significant concentration of pentoses present in its composition and that can be used sustainably in biotechnological processes such as the production of fumaric acid. Research efforts are currently being promoted for the proper disposal and valorization of empty fruit bunches (EFB) from oil palm. In this work, seventeen Rhizopus species were evaluated in a fermentation medium with EFB hydrolyzate, without detoxification, as a carbon source for fumaric acid production. Rhizopus circicans 1475 and Rhizopus 3271 achieved productions of 5.65 g.L-1 and 5.25 g.L-1 of fumaric acid at 30 °C, 120 rpm for 96 h, respectively. The percentage of consumed sugars, mainly pentoses, was 24.88% and 34.02% for R. circicans 1475 and R 3271, respectively. Soy peptone and ammonium sulfate were evaluated as nitrogen sources, where soy peptone stimulated the formation of biomass pellets while ammonium sulfate produced mycelia and clamps.


Asunto(s)
Fermentación , Fumaratos , Rhizopus , Rhizopus/metabolismo , Fumaratos/metabolismo , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Biomasa , Frutas/microbiología , Frutas/química , Frutas/metabolismo , Hidrólisis , Aceite de Palma/metabolismo , Aceite de Palma/química , Arecaceae/metabolismo , Arecaceae/química , Arecaceae/microbiología
18.
Environ Sci Pollut Res Int ; 31(19): 27980-27987, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526713

RESUMEN

The adsorption of ammonium from water was studied on an activated carbon obtained using raw oil palm shell and activated with acetic acid. The performance of this adsorbent was tested at different operating conditions including the solution pH, adsorbent dosage, and initial ammonium concentration. Kinetic and equilibrium studies were carried out, and their results were analyzed with different models. For the adsorption kinetics, the pseudo-first order equation was the best model to correlate this system. Calculated adsorption rate constants ranged from 0.071 to 0.074 g/mg min. The ammonium removal was 70-80% at pH 6-8, and it was significantly affected by electrostatic interaction forces. Ammonium removal (%) increased with the adsorbent dosage, and neutral pH condition favored the adsorption of this pollutant. The best ammonium adsorption conditions were identified with a response surface methodology model where the maximum removal was 91.49% with 2.27 g/L of adsorbent at pH 8.11 for an initial ammonium concentration of 36.90 mg/L. The application of a physical monolayer model developed by statistical physics theory indicated that the removal mechanism of ammonium was multi-ionic and involved physical interactions with adsorption energy of 29 kJ/mol. This activated carbon treated with acetic acid is promising to depollute aqueous solutions containing ammonium.


Asunto(s)
Ácido Acético , Compuestos de Amonio , Contaminantes Químicos del Agua , Adsorción , Ácido Acético/química , Compuestos de Amonio/química , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de Hidrógeno , Arecaceae/química , Carbón Orgánico/química , Purificación del Agua/métodos
19.
J Fish Dis ; 47(6): e13924, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38300462

RESUMEN

Vibrio harveyi and Vibrio parahaemolyticus are species of the Vibrio genus that often cause disease and mass mortality in crustaceans. If not handled quickly and appropriately, these diseases can cause considerable losses to farmers. Therefore, it is necessary to find a solution with safe and environmentally friendly disease prevention technology using natural ingredients, among others from plants, namely oil palm. Some parts of oil palm, namely leaves, fronds, fibres and oil palm pulp, which are palm waste, contain antibacterial compounds. This study aimed to assess the antibacterial activity of palm waste extracts, namely pulp, leaves, fronds and fibres using n-hexane, ethyl acetate, chloroform, ethanol and water maceration solvents against pathogenic bacteria V. harveyi and V. parahaemolyticus, and identify active compounds contained in palm waste. The results of the research are expected to produce innovative and sustainable solutions to control diseases in shrimp farming, contribute to the development of a sustainable fishing industry and open up the potential for utilizing palm waste as a value-added resource in the field of aquatic health. The results of observations on antibacterial activity tests and identifying the content of palm waste extract compounds were analysed descriptively displayed in the form of figures, tables and graphs. The results showed that palm waste extracts (pulp, leaves, fronds and fibres) with ethyl acetate and ethanol maceration solvents had very strong antibacterial potential, namely 20.14 ± 0.31 mm-25.52 ± 1.42 mm on V. harveyi bacteria and 20.41 ± 0.55 mm-25.00 ± 0.51 mm on V. parahaemolyticus bacteria. Palm extracts with n-hexane (>20 mm) and chloroform solvents generally have strong category antibacterial potential (10-20 mm), and palm extracts in water solvents have medium category potential (5-10 mm) against V. harveyi and V. parahemolyticus bacteria. The results of phytochemical tests on palm waste extracts with ethyl acetate and ethanol maceration solvents contain bioactive compounds of flavonoids, saponins, polyphenols and alkaloid tannins, steroids and triterpenoids. Palm extracts with n-hexane and chloroform solvents generally contain saponins, alkaloids, steroids and triterpenoids, while palm waste extracts with water solvents contain saponins.


Asunto(s)
Antibacterianos , Extractos Vegetales , Vibrio parahaemolyticus , Vibrio , Antibacterianos/farmacología , Antibacterianos/química , Vibrio/efectos de los fármacos , Vibrio parahaemolyticus/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Arecaceae/química , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/análisis
20.
Environ Res ; 250: 118366, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38331153

RESUMEN

Numerous fractionation methods have been developed in recent years for separating components such as cellulose, hemicellulose, and lignin from lignocellulosic biomass wastes. Deep eutectic solvents (DES) have recently been widely investigated as captivating green solvents for biomass fractionation. However, most acidic-based deep eutectic solvent fractionation produces condensed lignin with low ß-O-4 content. Besides, most DESs exhibit high viscosity, which results in poor mass transfer properties. This study aimed to address the challenges above by incorporating ethanol into the deep eutectic solvent at various concentrations (10-50 wt%) to fractionate oil palm fronds at a mild condition, i.e., 80 °C, 1 atm. Cellulose residues fractionated with ethanol-assisted deep eutectic solvent showed a maximum glucose yield of 85.8% when 20 wt% of ethanol was incorporated in the deep eutectic solvent, significantly higher than that achieved by pure DES (44.8%). Lignin extracted with ethanol-assisted deep eutectic solvent is lighter in color and higher in ß-O-4 contents (up to 44 ß-O-4 per 100 aromatic units) than pure DES-extracted lignin. Overall, this study has demonstrated that incorporating ethanol into deep eutectic solvents could enhance the applicability of deep eutectic solvents in the complete valorization of lignocellulosic biomass. Highly enzymatic digestible cellulose-rich solid and ß-O-4-rich lignin attained from the fractionation could serve as sustainable precursors for the production of biofuels.


Asunto(s)
Disolventes Eutécticos Profundos , Etanol , Lignina , Lignina/química , Etanol/química , Disolventes Eutécticos Profundos/química , Fraccionamiento Químico/métodos , Biomasa , Arecaceae/química , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA