Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
1.
Environ Sci Technol ; 58(36): 16225-16235, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39189336

RESUMEN

In this study, we proposed a moderate oxidation strategy for accelerating the oxidative dissolution of zerovalent iron (ZVI) using sulfite (S(IV)), thereby improving the removal of As(V) and As(III). Results revealed that, in the presence of 2.0 mM S(IV), both As(V) and As(III) were selectively converted into scorodite at pH0 3.0-7.0, while As(III) oxidation and As(V) immobilization were impressed over pH0 8.0-10.0. Batch experiments, radical quenching experiments, and electron spin resonance (ESR) measurements demonstrated that ZVI initially boosted S(IV) activation to generate SO4•-, •OH, and protons, and in turn, ZVI was further oxidized more intensely by these radicals than by oxygen. Concurrently, substantial protons derived from S(IV) oxidation neutralized hydroxyls produced by ZVI oxidation, maintaining an acidic environment conducive to the generation of scorodite rather than iron (hydr)oxides. Characterizations of X-ray diffraction (XRD), Raman, attenuated total reflectance-Fourier transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), X-ray absorption fine structure (XAFS), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM) confirmed that scorodite was formed in situ and then exfoliated from the surface of ZVI, and approximately 75% of ZVI could still be recovered, which contributed to efficient As removal in successive runs and real As-polluted wastewater. The application of S(IV) achieved a balance among ZVI reactivity improvement, As(V)/As(III) removal, and raw material consumption, making it a promising approach for addressing arsenic contamination in wastewater treatment.


Asunto(s)
Hierro , Oxidación-Reducción , Sulfitos , Hierro/química , Sulfitos/química , Arseniatos/química , Arsenitos/química , Contaminantes Químicos del Agua/química
2.
Environ Sci Pollut Res Int ; 31(39): 52293-52305, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39145906

RESUMEN

The utilization of biowastes for producing biochar to remove potentially toxic elements from water represents an important pathway for aquatic ecosystem decontamination. Here we explored the significance of thiol-functionalization on sugarcane bagasse biochar (Th/SCB-BC) and rice husk biochar (Th/RH-BC) to enhance arsenite (As(III)) removal capacity from water and compared their efficiency with both pristine biochars (SCB-BC and RH-BC). The maximum As(III) sorption was found on Th/SCB-BC and Th/RH-BC (2.88 and 2.51 mg g-1, respectively) compared to the SCB-BC and RH-BC (1.51 and 1.40 mg g-1). Relatively, a greater percentage of As(III) removal was obtained with Th/SCB-BC and Th/RH-BC (92% and 83%, respectively) at a pH 7 compared to pristine SCB-BC and RH-BC (65% and 55%) at 6 mg L-1 initial As(III) concentration, 2 h contact time and 1 g L-1 sorbent dose. Langmuir (R2 = 0.99) isotherm and pseudo-second-order kinetic (R2 = 0.99) models provided the best fits to As(III) sorption data. Desorption experiments indicated that the regeneration ability of biochars decreased and it was in the order of Th/SCB-BC (88%) > Th/RH-BC (82%) > SCB-BC (77%) > RH-BC (69%) up to three sorption-desorption cycles. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy results demonstrated that the thiol (-S-H) functional groups were successfully grafted on the surface of two biochars and as such contributed to enhance As(III) removal from water. Spectroscopic data indicated that the surface functional moieties, such as -S-H, - OH, - COOH, and C = O were involved to increase As(III) sorption on thiol-functionalized biochars. This study highlights that thiol-grafting on both biochars, notably on SCB-BC, enhanced their ability to remove As(III) from water, which can be used as an effective technique for the treatment of As from drinking water.


Asunto(s)
Arsenitos , Celulosa , Carbón Orgánico , Oryza , Saccharum , Contaminantes Químicos del Agua , Carbón Orgánico/química , Saccharum/química , Oryza/química , Adsorción , Arsenitos/química , Contaminantes Químicos del Agua/química , Celulosa/química , Compuestos de Sulfhidrilo/química
3.
Environ Res ; 260: 119660, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39048066

RESUMEN

The knowledge about co-transport of goethite and As3+ to investigate the effect of goethite colloids on As3+ transport under various degrees of seawater intrusion, particular extremely conditions, in groundwater environment is still limited. The main objective is to investigate the influence of seawater intrusion on the sorption, migration, and reaction of As3+and goethite colloids into sand aquifer media under anoxic conditions by using the bench-scale and reactive geochemical modeling. The research consisted of two parts as follows: 1) column transport experiments consisting of 8 columns, which were packed by using synthesis groundwater at IS of 0.5, 50, 200, and 400 mM referring to the saline of seawater system in the study area, and 2) reactive transport modeling, the mathematical model (HYDRUS-1D) was applied to describe the co-transport of As3+ and goethite. Finally, to explain the interaction of goethite and As3+, the Derjaguin-Landau-Verwey-Overbeek (DLVO) calculation was considered to support the experimental results and HYDRUS-1D model. The results of column experiments showed goethite colloids can significantly inhibit the mobility of As3+ under high IS conditions (>200 mM). The Rf of As3+ bound to goethite grows to higher sizes (47.5 and 65.0 µm for 200 and 400 mM, respectively) of goethite colloid, inhibiting As3+ migration through the sand columns. In contrast, based on Rf value, goethite colloids transport As3+ more rapidly than a solution with a lower IS (0.5 and 50 mM). The knowledge gained from this study would help to better understand the mechanisms of As3+ contamination in urbanized coastal groundwater aquifers and to assess the transport of As3+ in groundwater, which is useful for groundwater management, including the optimum pumping rate and long-term monitoring of groundwater quality.


Asunto(s)
Arsenitos , Coloides , Compuestos de Hierro , Minerales , Compuestos de Hierro/química , Coloides/química , Minerales/química , Concentración Osmolar , Arsenitos/química , Arsenitos/análisis , Agua Subterránea/química , Arena/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Modelos Químicos , Modelos Teóricos , Agua de Mar/química
4.
Water Res ; 262: 122128, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053206

RESUMEN

Iron-based adsorbents are commonly used to remove arsenic (As) from water for drinking water purposes. Here, we study the role of biological As(III) oxidation on iron-based adsorbents in filters and its effect on overall As uptake. A lab-scale filter with iron oxide coated sand (IOCS), a commonly used adsorbent, was operated with water containing As(III) and As(V), while water samples were taken periodically over its height. As(III) oxidation initiated after approximately 10 days and increased to a first order rate constant of 0.09 s-1 after 57 days resulting in full oxidation of As(III) in <50 s. Consequently, the filter shifted from an As(III) to an As(V) adsorbing filter. Oxidation was not observed after inhibiting the microbial activity using sodium azide confirming its biogenic nature. This implies that As(III) oxidizing biomass can grow on iron-based adsorbents in water filters without requiring inoculation. As the experimental conditions were similar to full-scale As treatment plants, we believe that biological As(III) oxidation is widely overlooked in these systems. Occurrence of biological oxidation is, however, beneficial for removal, as at pH <8 the adsorption capacity for As(V) can be up to 10-fold higher than for As(III). With these new insights, arsenic treatment using iron-based adsorbents can be further optimized. We suggest a more robust new design with a biological active As(III) oxidizing top layer and an As(V) adsorbing bottom layer.


Asunto(s)
Arsenitos , Filtración , Agua Subterránea , Hierro , Oxidación-Reducción , Contaminantes Químicos del Agua , Purificación del Agua , Arsenitos/química , Agua Subterránea/química , Adsorción , Purificación del Agua/métodos , Hierro/química , Contaminantes Químicos del Agua/química , Dióxido de Silicio/química
5.
Water Res ; 259: 121876, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38852391

RESUMEN

This study investigated the coexistence and contamination of manganese (Mn(II)) and arsenite (As(III)) in groundwater and examined their oxidation behavior under different equilibrating parameters, including varying pH, bicarbonate (HCO3-) concentrations, and sodium hypochlorite (NaClO) oxidant concentrations. Results showed that if the molar ratio of NaClO: As(III) was >1, the oxidation of As(III) could be achieved within a minute with an extremely high oxidation rate of 99.7 %. In the binary system, the removal of As(III) prevailed over Mn(II). The As(III) oxidation efficiency increased from 59.8 ± 0.6 % to 70.8 ± 1.9 % when pH rose from 5.7 to 8.0. The oxidation reaction between As(III) and NaClO releases H+ ions, decreasing the pH from 6.77 to 6.19 and reducing the removal efficiency of Mn(II). The presence of HCO3- reduced the oxidation rate of Mn(II) from 63.2 % to 13.9 % within four hours. Instead, the final oxidation rate of Mn(II) increased from 68.1 % to 87.7 %. This increase can be attributed to HCO3- ions competing with the free Mn(II) for the adsorption sites on the sediments, inhibiting the formation of H+. Moreover, kinetic studies revealed that the oxidation reaction between Mn(II) and NaClO followed first-order kinetics based on their R2 values. The significant factors affecting the Mn(II) oxidation efficiency were the initial concentration of NaClO and pH. Applying an artificial neural network (ANN) model for data analysis proved to be an effective tool for predicting Mn(II) oxidation rates under different experimental conditions. The actual Mn(II) oxidation data and the predicted values obtained from the ANN model showed significant consistency. The training and validation data sets yielded R2 values of 0.995 and 0.992, respectively. Moreover, the ANN model highlights the importance of pH and NaClO concentrations in influencing the oxidation rate of Mn(II).


Asunto(s)
Arsenitos , Manganeso , Redes Neurales de la Computación , Oxidación-Reducción , Manganeso/química , Arsenitos/química , Cinética , Halogenación , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Purificación del Agua , Bicarbonatos/química
6.
Environ Sci Pollut Res Int ; 31(30): 42574-42592, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38890252

RESUMEN

Arsenic poisoning of groundwater is one of the most critical environmental hazards on Earth. Therefore, the practical and proper treatment of arsenic in water requires more attention to ensure safe drinking water. The World Health Organization (WHO) sets guidelines for 10 µg/L of arsenic in drinking water, and direct long-term exposure to arsenic in drinking water beyond this value causes severe health hazards to individuals. Numerous studies have confirmed the adverse effects of arsenic after long-term consumption of arsenic-contaminated water. Here, technologies for the remediation of arsenic from water are highlighted for the purpose of understanding the need for a single-point solution for the treatment of As(III)-contaminated water. As(III) species are neutral at neutral pH; the solution requires transformation technology for its complete removal. In this critical review, emphasis was placed on single-step technologies with multiple functions to remediate arsenic from water.


Asunto(s)
Arsénico , Oxidación-Reducción , Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Químicos del Agua/química , Arsénico/química , Purificación del Agua/métodos , Agua Subterránea/química , Arsenitos/química , Agua Potable/química , Adsorción
7.
Chemosphere ; 358: 142083, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701859

RESUMEN

Dissolve organic matters (DOM) usually showed negative effect on the removal of inorganic arsenic (As) in groundwater by electrochemical approaches, yet which parts of sub-component within DOM played the role was lack of evidence. Herein, we investigated the effects of land-source humic-like acid (HA) on groundwater As(III) removal using air cathode iron electrocoagulation, based on the parallel factor analysis of three-dimensional excitation-emission matrix and statistical methods. Our results showed that the land-source HA contained five kinds of components and all components presented significantly negative correlations with the removal of both As(III) and As(V). However, the high aromatic fulvic-like acid and low aromatic humic-like acid components of land-source HA presented the opposite correlations with the concentration of As(III) during the reaction. The high aromaticity fulvic-like components of land-source HA (Sigma-Aldrich HA, SAHA) produced during the reaction facilitated the oxidation of As(III) due to its high electron transfer capacities and good solubility in wide pH range, but the low aromaticity humic-like ones worked against the oxidation of As(III). Our findings offered the novel insights for the flexible activities of DOM in electron Fenton system.


Asunto(s)
Arsenitos , Electrodos , Agua Subterránea , Sustancias Húmicas , Hierro , Contaminantes Químicos del Agua , Agua Subterránea/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Hierro/química , Sustancias Húmicas/análisis , Arsenitos/química , Oxidación-Reducción , Electrocoagulación/métodos , Purificación del Agua/métodos
8.
J Mass Spectrom ; 59(5): e5020, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38659191

RESUMEN

Exposure to arsenic can cause various biological effects by increasing the production of reactive oxygen species (ROS). Selenium acts as a beneficial element by regulating ROS and limiting heavy metal uptake and translocation. There are studies on the interactive effects of As and Se in plants, but the antagonistic and synergistic effects of these elements based on their binding to glutathione (GSH) molecules have not been studied yet. In this study, we aimed to investigate the antagonistic or synergistic effects of As and Se on the binding mechanism of Se and As with GSH at pH 3.0, 5.0, or 6.5. The interaction of As and Se in Se(SG)2 + As(III) or As(SG)3 + Se(IV) binary systems and As(III) + Se(IV) + GSH ternary system were examined depending on their ratios via liquid chromatography diode array detector/electrospray mass spectrometry (LC-DAD/MS) and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The results showed that the formation of As(GS)3 was not detected in the As(III) + Se(SG)2 binary system, indicating that As(III) did not affect the stability of Se(SG)2 complex antagonistically. However, in the Se(IV) + As(SG)3 binary system, the addition of Se(IV) to As(SG)3 affected the stability of As(SG)3 antagonistically. Se(IV) reacted with GSH, disrupting the As(SG)3 complex, and consequently, Se(SG)2 formation was measured using LC-MS/DAD. In the Se(IV) + GSH + As(III) ternary system, Se(SG)2 formation was detected upon mixing As(III), Se(IV), and GSH. The increase in the concentration of As(III) did not influence the stability of the Se(SG)2 complex. Additionally, Se(IV) has a higher affinity than As(III) to the GSH, regardless of the pH of the solution. In both binary and ternary systems, the formation of the by-product glutathione trisulfide (GSSSG) was detected using LC-ESI-MS/MS.


Asunto(s)
Arsenitos , Glutatión , Ácido Selenioso , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Glutatión/química , Glutatión/metabolismo , Arsenitos/química , Ácido Selenioso/química , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía Liquida/métodos
9.
J Biol Chem ; 300(5): 107230, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537699

RESUMEN

Arsenite-induced stress granule (SG) formation can be cleared by the ubiquitin-proteasome system aided by the ATP-dependent unfoldase p97. ZFAND1 participates in this pathway by recruiting p97 to trigger SG clearance. ZFAND1 contains two An1-type zinc finger domains (ZF1 and ZF2), followed by a ubiquitin-like domain (UBL); but their structures are not experimentally determined. To shed light on the structural basis of the ZFAND1-p97 interaction, we determined the atomic structures of the individual domains of ZFAND1 by solution-state NMR spectroscopy and X-ray crystallography. We further characterized the interaction between ZFAND1 and p97 by methyl NMR spectroscopy and cryo-EM. 15N spin relaxation dynamics analysis indicated independent domain motions for ZF1, ZF2, and UBL. The crystal structure and NMR structure of UBL showed a conserved ß-grasp fold homologous to ubiquitin and other UBLs. Nevertheless, the UBL of ZFAND1 contains an additional N-terminal helix that adopts different conformations in the crystalline and solution states. ZFAND1 uses the C-terminal UBL to bind to p97, evidenced by the pronounced line-broadening of the UBL domain during the p97 titration monitored by methyl NMR spectroscopy. ZFAND1 binding induces pronounced conformational heterogeneity in the N-terminal domain of p97, leading to a partial loss of the cryo-EM density of the N-terminal domain of p97. In conclusion, this work paved the way for a better understanding of the interplay between p97 and ZFAND1 in the context of SG clearance.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Modelos Moleculares , Gránulos de Estrés , Proteína que Contiene Valosina , Humanos , Arsenitos/metabolismo , Arsenitos/química , Cristalografía por Rayos X , Unión Proteica , Dominios Proteicos , Gránulos de Estrés/metabolismo , Ubiquitina/metabolismo , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/química , Proteína que Contiene Valosina/genética , Dedos de Zinc , Pliegue de Proteína , Imagen por Resonancia Magnética , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
10.
Biotechnol Bioeng ; 121(1): 250-265, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881108

RESUMEN

The performance of combined reduction of nitrate (NO3 - ) to dinitrogen gas (N2 ) and oxidation of arsenite (As[III]) to arsenate (As[V]) by a bioelectrochemical system was assessed, supported by ecotoxicity characterization. For the comprehensive toxicity characterization of the untreated model groundwater and the treated reactor effluents, a problem-specific ecotoxicity test battery was established. The performance of the applied technology in terms of toxicity and target pollutant elimination was compared and analyzed. The highest toxicity attenuation was achieved under continuous flow mode with hydraulic retention time (HRT) = 7.5 h, with 95%, nitrate removal rate and complete oxidation of arsenite to arsenate. Daphnia magna proved to be the most sensitive test organism. The results of the D. magna lethality test supported the choice of the ideal operational conditions based on chemical data analysis. The outcomes of the study demonstrated that the applied technology was able to improve the groundwater quality in terms of both chemical and ecotoxicological characteristics. The importance of ecotoxicity evaluation was also highlighted, given that significant target contaminant elimination did not necessarily lower the environmental impact of the initial, untreated medium, in addition, anomalies might occur during the technology operational process which in some instances, could result in elevated toxicity levels.


Asunto(s)
Arsenitos , Agua Subterránea , Contaminantes Químicos del Agua , Arseniatos/análisis , Nitratos/toxicidad , Biodegradación Ambiental , Arsenitos/toxicidad , Arsenitos/análisis , Arsenitos/química , Agua Subterránea/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
11.
Chemosphere ; 336: 139276, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37343632

RESUMEN

Phosphate is the biggest competitor for arsenic removal. Nanoscale metal oxides (NMOs) are commonly used to treat arsenic-contaminated water, yet their selective adsorption mechanisms for arsenic and phosphate are poorly understood. We quantified the selectivity of iron oxide (Fe2O3), zinc oxide (ZnO), and titanium dioxide (TiO2) nanosheets for arsenic in systems containing arsenic and phosphate, and determined the interaction of phosphate and arsenate/arsenite on metal oxide surfaces through batch experiments, spectroscopic techniques, and DFT calculations. We found that Fe2O3, TiO2, and ZnO nanosheets exhibit selectivity for arsenate/arsenite in the presence of phosphate, with Fe2O3 the most selective, followed by TiO2 and ZnO. The bonding mechanism on these metallic oxide surfaces dominates the selectivity. The more stable inner-sphere complexes of arsenate on the surfaces of Fe2O3 (bidentate binuclear), TiO2 (bidentate binuclear), and ZnO nanosheets (tridentate trinuclear) contribute to their preference for arsenate over phosphate. This difference in arsenate selectivity can be reflected in the difference in adsorption energy, net electron transfer number, and M - O bond length of the most stable inner sphere complexes. Overall, our study elucidated the selective adsorption mechanisms of arsenate/arsenite on Fe2O3, TiO2, and ZnO surfaces and highlighted the need to consider the competition between arsenate and phosphate during their removal from contaminated water.


Asunto(s)
Arsénico , Fosfatos , Contaminantes Químicos del Agua , Adsorción , Arseniatos/química , Arsénico/química , Arsenitos/química , Teoría Funcional de la Densidad , Concentración de Iones de Hidrógeno , Óxidos/química , Fosfatos/química , Agua , Óxido de Zinc
12.
Water Res ; 232: 119683, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36739662

RESUMEN

Surface complexation of arsenite (As(III)) on colloidal ferric hydroxide (CFH) plays an important role not only in the adsorptive immobilization of As(III) but also in the subsequent oxidation of As(III) to arsenate (As(V)) through light-induced ligand-to-metal charge transfer (LMCT) in water at near-neutral pH. However, the effects of natural organic matter (NOM), especially humic substances (HSs) and low molecular weight carboxylic acids (CAs), on the photochemistry of the CFH-As(III) system have not been sufficiently understood. In this work, the inhibition of photooxidation of As(III) in terms of the observed apparent rate constant (kobs) by six HSs (below 16 mg L-1) and seven CAs (below 2.5 mM) has been observed in water containing 66 µM Fe(III) and 5 µM As(III) at pH 7 under simulated solar irradiation consisting of UVA (λmax 365 nm) and UVB (λmax 313 nm) lights. Total inhibition factors (T) have been determined from the combined effect of light-screening factor (S) and competitive complexation factor (C), wherein both S and C varied with NOM concentration. S was obtained by determining the absorbance of NOM, and C was obtained by fitting modified Langmuir or Freundlich models to the amount of As(III) desorbed from CFH upon the addition of NOM. Statistical analysis between the experimental Texp and the calculated one according to Tcal = S × C showed that the Freundlich model (RMSE for HS 0.1609 and for CA 0.1771) was better than the Langmuir model and was statistically robust (QLOO2= 0.691 > 0.5). This work provided an estimation method for the effects of NOM on As(III) photooxidation in the presence of CFH as well as a deeper understanding of the transformation of arsenic species in sunlit water.


Asunto(s)
Arsenitos , Compuestos Férricos , Compuestos Férricos/química , Arsenitos/química , Agua , Sustancias Húmicas , Ácidos Carboxílicos , Oxidación-Reducción
13.
Water Res ; 223: 119007, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36044797

RESUMEN

Groundwater contaminated with arsenic (As) must be treated prior to drinking, as human exposure to As at toxic levels can cause various diseases including cancer. Conventional aeration-filtration applied to anaerobic arsenite (As(III)) contaminated groundwater can remove As(III) by co-oxidizing native iron (Fe(II)) and As(III) with oxygen (O2). However, the As(III) removal efficiency of conventional aeration can be low, in part, because of incomplete As(III) oxidation to readily-sorbed arsenate (As(V)). In this work, we investigated a new approach to enhance As(III) co-removal with native Fe(II) by the anaerobic addition of hydrogen peroxide (H2O2) prior to aeration. Experiments were performed to co-oxidize Fe(II) and As(III) with H2O2 (anaerobically), O2 (aerobically), and by sequentially adding of H2O2 and O2. Aqueous As(III) and As(V) measurements after the reaction were coupled with solid-phase speciation by Fe and As K-edge X-ray absorption spectroscopy (XAS). We found that complete anaerobic oxidation of 100 µM Fe(II) with 100 µM H2O2 resulted in co-removal of 95% of 7 µM As(III) compared to 44% with 8.0-9.0 mg/L dissolved O2. Furthermore, we found that with 100 µM Fe(II), the initial Fe(II):H2O2 ratio was a critical parameter to remove 7 µM As(III) to below the 10 µg/L (0.13 µM) WHO guideline, where ratios of 1:4 (mol:mol) Fe(II):H2O2 led to As(III) removal matching that of 7 µM As(V). The improved As(III) removal with H2O2 was found to occur partly because of the well-established enhanced efficiency of As(III) oxidation in Fe(II)+H2O2 systems relatively to Fe(II)+O2 systems. However, the XAS results unambiguously demonstrated that a large factor in the improved As(III) removal was also due to a systematic decrease in crystallinity, and thus increase in specific surface area, of the generated Fe(III) (oxyhydr)oxides from lepidocrocite in the Fe(II)+O2 system to poorly-ordered Fe(III) precipitates in the Fe(II)+H2O2 system. The combined roles of H2O2 (enhanced As(III) oxidation and structural modification) can be easily overlooked when only aqueous species are measured, but this dual impact must be considered for accurate predictions of As removal in groundwater treatment.


Asunto(s)
Arsénico , Arsenitos , Agua Subterránea , Contaminantes Químicos del Agua , Arseniatos , Arsénico/química , Arsenitos/química , Compuestos Férricos/química , Compuestos Ferrosos/química , Agua Subterránea/química , Humanos , Peróxido de Hidrógeno/química , Hierro/química , Oxidación-Reducción , Óxidos/química , Oxígeno , Contaminantes Químicos del Agua/química
14.
Chem Res Toxicol ; 35(9): 1589-1597, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35994080

RESUMEN

Arsenic contamination in food and groundwater constitutes a public health concern for more than 200 million people worldwide. Individuals chronically exposed to arsenic through drinking and ingestion exhibit a higher risk of developing cancers and cardiovascular diseases. Nevertheless, the underlying mechanisms of arsenic toxicity are not fully understood. Arsenite is known to bind to and deactivate RING finger E3 ubiquitin ligases; thus, we reason that a systematic interrogation about how arsenite exposure modulates global protein ubiquitination may reveal novel molecular targets for arsenic toxicity. By employing liquid chromatography-tandem mass spectrometry, in combination with stable isotope labeling by amino acids in cell culture (SILAC) and immunoprecipitation of di-glycine-conjugated lysine-containing tryptic peptides, we assessed the alterations in protein ubiquitination in GM00637 human skin fibroblast cells upon arsenite exposure at the entire proteome level. We observed that arsenite exposure led to altered ubiquitination of many proteins, where the alterations in a large majority of ubiquitination events are negatively correlated with changes in expression of the corresponding proteins, suggesting their modulation by the ubiquitin-proteasomal pathway. Moreover, we observed that arsenite exposure confers diminished ubiquitination of a rate-limiting enzyme in cholesterol biosynthesis, HMGCR, at Lys248. We also revealed that TRC8 is the major E3 ubiquitin ligase for HMGCR ubiquitination in HEK293T cells, and the arsenite-induced diminution of HMGCR ubiquitination is abrogated upon genetic depletion of TRC8. In summary, we systematically characterized arsenite-induced perturbations in a ubiquitinated proteome in human cells and found that the arsenite-elicited attenuation of HMGCR ubiquitination in HEK293T cells involves TRC8.


Asunto(s)
Arsénico , Arsenitos , Arsénico/metabolismo , Arsenitos/química , Arsenitos/toxicidad , Colesterol , Glicina/metabolismo , Células HEK293 , Humanos , Lisina/metabolismo , Péptidos/metabolismo , Proteoma/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
15.
Chemosphere ; 306: 135530, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35792212

RESUMEN

A sensitive electroanalytical method for the determination of arsenite, based on a heterostructure of aminated multiwalled carbon nanotubes and gold nanoparticles, was applied in an electrocoagulation (EC) treatment for the elimination of arsenite. A sensitive quantitative response was obtained in the determination of As3+ in a secondary effluent from a wastewater treatment plant from Santiago (Chile). The preconcentration stage was optimized through a Central Composite Face design, and the most sensitive peak current was obtained at 200 s and -600 mV of time and accumulation potential, respectively, after a differential pulse voltammetry sweep. Electroanalytical determination was possible in an interval between 42.89 and 170.00 µg L-1 with a detection limit of 0.39 µg L-1, obtaining recoveries over 99.1%. The developed method was successfully applied in an electrocoagulation treatment to remove 250 µg L-1 of arsenite from a polluted effluent in a batch system. Complete arsenite removal was achieved using a steel EC system with a current density of 6.0 mA cm-2 in less than 3 min of treatment.


Asunto(s)
Arsenitos , Nanopartículas del Metal , Nanotubos de Carbono , Arsenitos/química , Técnicas Electroquímicas , Electrocoagulación/métodos , Electrodos , Oro/química
16.
J Environ Manage ; 317: 115497, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35751289

RESUMEN

The adsorption of inorganic arsenic (As) plays an important role in the mobility and transport of As in the river environment. In this work, the adsorption and desorption of arsenite [As(III)] and arsenate [As(V)] on river sediment were conducted under different pH, initial As concentrations, river water and sediment composition to assess As adsorption behavior and mechanism. Both adsorption kinetics and equilibrium results showed higher adsorption capacity of sediment for As(V) than As(III). Adsorption of As(III) and As(V) on river sediment was favored in acidic to neutral conditions and on finer sediment particles, while sediment organic matter marginally reduced adsorption capacity. In addition, higher adsorption affinity of As(III) and As(V) in river sediment was observed in deionised water than in river water. For the release process, the desorption of both As(III) and As(V) followed nonlinear kinetic models well, showing higher amount of As(III) release from sediment than As(V). Adsorption isotherm was well described by both Langmuir and Freundlich models, demonstrating higher maximum adsorption capacity of As(V) at 298.7 mg/kg than As(III) at 263.3 mg/kg in deionised water, and higher maximum adsorption capacity of As(III) of 234.3 mg/kg than As(V) of 206.2 mg/kg in river water. The XRD showed the changes in the peaks of mineral groups of sediment whilst FTIR results revealed the changes related to surface functional groups before and after adsorption, indicating that Fe-O/Fe-OH, Si(Al)-O, hydroxyl and carboxyl functional groups were predominantly involved in As(III) and As(V) adsorption on sediment surface. XPS analysis evidenced the transformation between these As species in river sediment after adsorption, whilst SEM-EDS revealed higher amount of As(V) in river sediment than As(III) due to the lower signal of Al.


Asunto(s)
Arsénico , Arsenitos , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Arseniatos/química , Arsénico/química , Arsenitos/química , Concentración de Iones de Hidrógeno , Cinética , Ríos , Agua , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
17.
Chemosphere ; 304: 135269, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35691398

RESUMEN

Arsenic contamination is an increasing global environmental problem, especially in mining industry wastewater where both arsenite (As(III)) and arsenate (As(V)) have been routinely detected. In this paper, a novel porous metal-organic framework material (ZIF-8) was composited with iron nanoparticles (FeNPs) to form a functional material (ZIF-8@FeNPs) for the simultaneous removal of As(III)/(V) from wastewater. The material effectively removed both As(III) and As(V) with removal efficiencies of 99.9 and 71.2%, respectively. Advanced characterization techniques including X-ray photoelectron spectroscopy (XPS) and Fourier infrared (FTIR) indicated that removal of As(III) and As(V) involved complex formation. Adsorption kinetics followed a pseudo-second order kinetics indicating adsorption involved chemisorption. After four cycles of reuse the he removal rate of As species was still relatively high at > 60% When ZIF-8@FeNPs were used to remove As from real wastewater from acid mines the removal efficiency was 94.27%. Finally, a As(III) and As(V) removal mechanism was proposed.


Asunto(s)
Arsénico , Arsenitos , Nanopartículas , Contaminantes Químicos del Agua , Adsorción , Arseniatos , Arsénico/química , Arsenitos/química , Hierro/química , Cinética , Minería , Aguas Residuales , Contaminantes Químicos del Agua/química
18.
Environ Sci Pollut Res Int ; 29(50): 76417-76431, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35670936

RESUMEN

To facilitate removing As(III) from water through an "oxidation-adsorption" process, the double-shell CuOx@MnOy hollow spheres (DCMHS) have been fabricated via a two-step co-precipitation route combined with the soft-template method. The surface characterization results showed that Mn oxides were formed without segregation and uniformly distributed on the surface of CuOx hollow spheres. DCMHS could achieve outstanding performance to remove As(III) with an As maximum adsorption capacity of 32.15 mg/g. Meanwhile, the kinetics results illustrated that the oxidative activity of DCMHS was strengthened due to its specific structure, and part of As(III) was converted to As(V) during the adsorption process. Also, air aeration could further enhance As(III) oxidation and thus improving As removal. The As(III) removal performance could be maintained under neutral and weak alkaline conditions. Phosphate, silicate, and carbonate anions could depress the removal performance, while chloride ions and sulfate anions barely influenced As removal. Moreover, DCMHS could be regenerated using NaOH and KMnO4 solutions without breaking the hollow sphere structure. Based on the spectroscopic analysis results, As(III) molecules were converted to As(V) via two pathways, including the oxidation by Mn oxides or superoxide radicals. The Cu-Mn synergistic effect could not only enhance the oxidative activity of Mn oxides but also produce superoxide radicals via the activation of surface-adsorbed oxygen molecules. Afterwards, the newly formed As(V) could be attached to the hydroxyl groups through surface complexation. Therefore, this work has provided insights into the morphology design of Mn-oxide-containing adsorbents and supplemented the interface reaction mechanisms for enhancing As(III) removal.


Asunto(s)
Arsénico , Arsenitos , Contaminantes Químicos del Agua , Adsorción , Aniones , Arsénico/química , Arsenitos/química , Cloruros , Cobre , Compuestos de Manganeso/química , Oxidación-Reducción , Óxidos/química , Oxígeno , Fosfatos , Hidróxido de Sodio , Sulfatos , Superóxidos , Agua , Contaminantes Químicos del Agua/análisis
19.
Chemosphere ; 302: 134770, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35500636

RESUMEN

The speciation and fate of arsenic (As) in soil-water systems is a topic of great interest, in part due to growing awareness of As uptake into rice as an important human exposure pathway to As. Rice paddy and other wetland soils are rich in dissolved organic matter (DOM), leading to As/DOM ratios that are typically lower than those in groundwater aquifers or that have been used in many laboratory studies of As-DOM interactions. In this contribution, we evaluate arsenite (As(III)) binding to seven different DOM samples at As/DOM ratios relevant for wetland pore waters, and explore the chemical properties of the DOM samples associated with high levels of As(III)-DOM complexation. We integrate data from wet chemical analysis of DOM chemical properties, dialysis equilibrium experiments, and two-site ligand binding models to show that in some DOM samples, 15-60% of As(III) can be bound to DOM at environmentally-relevant As/DOM ratios of 0.0032-0.016 µmol As/mmol C. Binding decreases as the As(III)/DOM ratio increases. The organic sulfur (Sorg) content of the DOM samples was strongly correlated with levels of As(III)-DOM complexation and "strong" binding site densities, consistent with theories that thiols are strong binding ligands for As(III) in natural organic matter. Finally, a whole-cell E. coli biosensor assay was used to show that DOM samples most effective at complexing As(III) also led to decreased microbial As(III) uptake at low As/DOC ratios. This work demonstrates that naturally-occurring variations in the Sorg content of DOM has a significant impact on As(III) binding to DOM, and has implications for As(III) availability to microorganisms.


Asunto(s)
Arsénico , Arsenitos , Arsénico/análisis , Arsenitos/química , Materia Orgánica Disuelta , Escherichia coli , Humanos , Diálisis Renal , Suelo/química , Azufre
20.
Chemosphere ; 303(Pt 1): 134925, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35561766

RESUMEN

The manganese is successfully induced as a "bridge joint" to fabricate a new adsorbent (CNC-Mn-PEI) connecting cellulose nanocrystal (CNC) and polyethyleneimine (PEI) respectively. It was used to remove As (III) from waste water. It has been proved that the incompact CNC and PEI were successfully connected by Mn ions, which induced the formation of O-Mn-O bonds and the removal efficiency is maintained in the broad pH range of 4-8, even with the influence of NO3- and CO32-. The CNC-Mn-PEI was characterized by Brunauer-Emmett-Telley (BET) method and the results showed that the nanoparticle of the specific surface area was 106.5753 m2/g, it has a significant improvement, compared with CNC-Mn-DW (0.1918 m2/g). The isotherm and kinetic parameters of arsenic removal on CNC-Mn-PEI were well-fitted by the Langmuir and pseudo-second-order models. The maximum adsorption capacities toward As (III) was 78.02 mg/g. After seven regeneration cycles, the removal of As (III) by the adsorbent decreased from 80.78% to 68.2%. Additionally, the hypothetical adsorption mechanism of "bridge joint" effect was established by FTIR and XPS, which provided the three activated sites from CNC-Mn-PEI can improve the arsenic removal efficiency, and providing a new stratagem for the arsenic pollution treatment.


Asunto(s)
Arsénico , Arsenitos , Nanocompuestos , Nanopartículas , Contaminantes Químicos del Agua , Adsorción , Arsénico/química , Arsenitos/química , Celulosa/química , Concentración de Iones de Hidrógeno , Iones , Cinética , Manganeso/química , Nanopartículas/química , Polietileneimina/química , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA