Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.221
Filtrar
1.
BMC Microbiol ; 24(1): 381, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354382

RESUMEN

BACKGROUND: Indonesia is a country that uses half or more aquatic foods as protein intake. The increased production in aquaculture industries might cause several problems, such as bacterial disease resulting in mass mortality and economic losses. Antibiotics are no longer effective because aquaculture pathogens can form biofilm. Biofilm is a microbial community that aggregates and firmly attaches to living or non-living surfaces. Biofilm formation can be caused by environmental stress, the presence of antibiotics, and limited nutrients. Therefore, it is important to explore antibiofilm to inhibit biofilm formation and/or eradicate mature biofilm. Phyllosphere bacteria can produce bioactive compounds for antimicrobial, antibiofilm, and anti-quorum sensing. Three aquaculture pathogens were used in this study, such as Aeromonas hydrophila, Streptococcus agalactiae, and Vibrio harveyi. RESULTS: Pseudomonas fluorescens JB3B and Morganella morganii JB8F extracts could disrupt single and multi-species biofilms. Both extracts could inhibit single biofilm formation from one to seven days of incubation time. We confirmed the destruction activity on multi-species biofilm using light microscope and scanning electron microscope. Using GC-MS analysis, indole was the most active fraction of the P. fluorescens JB3B extracts and octacosane from the M. morganii JB8F extract. We also conducted a toxicity test using brine shrimp lethality assay on P. fluorescens JB3B and M. morganii JB8F extracts. P. fluorescens JB3B, M. morganii JB8F, and a mixture of both extracts were confirmed non-toxic according to the LC50 value of the brine shrimp lethality test. CONCLUSIONS: P. fluorescens JB3B and M. morganii JB8F phyllosphere extracts had antibiofilm activity to inhibit single biofilm and disrupt single and multi-species biofilm of aquaculture pathogens. Both extracts could inhibit single species biofilm until seven days of incubation. Bioactive compounds that might contribute to antibiofilm properties were found in both extracts, such as indole and phenol. P. fluorescens JB3B, M. morganii JB8F extracts, and mixture of both extracts were non-toxic against Artemia salina.


Asunto(s)
Antibacterianos , Acuicultura , Biopelículas , Morganella morganii , Pseudomonas fluorescens , Biopelículas/efectos de los fármacos , Pseudomonas fluorescens/efectos de los fármacos , Pseudomonas fluorescens/fisiología , Antibacterianos/farmacología , Morganella morganii/efectos de los fármacos , Morganella morganii/fisiología , Animales , Vibrio/efectos de los fármacos , Vibrio/fisiología , Aeromonas hydrophila/efectos de los fármacos , Aeromonas hydrophila/fisiología , Artemia/efectos de los fármacos , Artemia/microbiología
2.
Bull Environ Contam Toxicol ; 113(4): 49, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394353

RESUMEN

Aqueous film-forming foams (AFFF), containing perfluorinated surfactants, can reach the environment. The objective of this study was to determine the ecotoxicity of AFFF, according to the type of fire to be fought (A1: 1.05 g.L- 1, A2: 3.15 g.L- 1 and A3: 6.30 g.L- 1), to bioindicators of different trophic levels. For Artemia salina a toxic effect was observed at sample A1 (at concentrations of 100%), A2 (at concentrations above 25%) and A3 (at concentrations above 12.5%). For Lactuca sativa all samples affected the number of germinated seeds, speed and percentage of germination and root length. To the Eisenia fetida earthworm, samples A2 and A3 were considered toxic due to the percent avoidance being 70% and 100%, respectively. In Macaca mullata renal cell culture test, none of the samples were toxic by the MTT test. Therefore, it is necessary to develop methods for the safe use of AFFF by professionals.


Asunto(s)
Artemia , Tensoactivos , Contaminantes Químicos del Agua , Animales , Tensoactivos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Artemia/efectos de los fármacos , Oligoquetos/efectos de los fármacos , Incendios , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Fluorocarburos/toxicidad , Pruebas de Toxicidad
3.
Nutrients ; 16(19)2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39408335

RESUMEN

Background/Objectives:Persicaria hydropiper (L.) Delarbre, commonly known as water pepper, possesses multifunctional potential. Our research focuses on its complex phenolic composition, bioactivity, safety evaluation and utilization in a sustainable manner. Moreover, a survey was conducted among the Serbian population to gain insight into the attitude towards traditional wild-growing herbs (i.e., P. hydropiper), the level of familiarity with their zero-waste culture, and to assess eating behaviors. Methods: A survey was conducted with 168 participants to assess attitudes towards traditional herbs, zero-waste culture, and eating behaviors, while cytotoxicity, in vivo toxicity, chemical analysis of secondary metabolites, and probiotic viability assays were performed to evaluate the effects of the PH extract. Results: Notably, P. hydropiper extract (PH) exhibits a diverse phenolic profile, including quinic acid (3.68 ± 0.37 mg/g DW), gallic acid (1.16 ± 0.10 mg/g DW), quercetin (2.34 ± 0.70 mg/g DW) and kaempferol-3-O-glucoside (4.18 ± 0.17 mg/g DW). These bioactive compounds have been linked to anticancer effects. The tested extract demonstrated a cytotoxic effect on the human neuroblastoma cell line, opening questions for the further exploration of its mechanisms for potential therapeutic applications. Based on the toxicity assessment in the Artemia salina model, the PH could be characterized with good safety, especially for the lower concentrations (LC50 = 0.83 mg/mL, 24 h). The utilization of the spent PH material supports the viability of psychobiotic strains (up to 9.26 ± 0.54 log CFU/mL). Based on the conducted survey, 63.7% (n = 107) of respondents mainly prefer traditional instead of imported herbs. The respondents were skeptical about zero-waste edibles; 51.2% (n = 86) would not try them, and a bit more than half were not familiar with zero-waste culture (57.7%; n = 97). Only 8.3% (n = 14) followed a flexitarian diet as a dietary pattern. Conclusions: The use of underutilized traditional plants and their spent material could potentially contribute to the acceptance of a zero-waste culture in Serbia. Reinventing the use of neglected traditional plants and addressing ways for spent material valorization could contribute to the acceptance of a zero-waste strategy and encourage healthier eating behavior.


Asunto(s)
Extractos Vegetales , Plantas Comestibles , Plantas Medicinales , Humanos , Extractos Vegetales/farmacología , Masculino , Femenino , Plantas Medicinales/química , Serbia , Plantas Comestibles/química , Animales , Adulto , Polygonaceae/química , Persona de Mediana Edad , Línea Celular Tumoral , Adulto Joven , Fenoles/análisis , Fenoles/farmacología , Artemia/efectos de los fármacos , Encuestas y Cuestionarios
4.
Mar Drugs ; 22(9)2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39330303

RESUMEN

We describe five new isolates of two Gambierdiscus species from Bahía de La Paz in the southern Gulf of California. Batch cultures of Gambierdiscus were established for morphological characterization using light microscopy (LM) and scanning electron microscopy (SEM). Pigment and amino acid profiles were also analyzed using high-performance liquid chromatography (HPLC-UV and HPLC-DAD). Finally, toxicity (CTX-like and MTX-like activity) was evaluated using the Artemia salina assay (ARTOX), mouse assay (MBA), marine fish assay (MFA), and fluorescent receptor binding assay (fRBA). These strains were identified as Gambierdiscus cf. caribaeus and Gambierdiscus cf. carpenteri. Toxicity for CTX-like and MTX-like activity was confirmed in all evaluated clones. Seven pigments were detected, with chlorophyll a, pyridine, Chl2, and diadinoxanthin being particularly noteworthy. For the first time, a screening of the amino acid profile of Gambierdiscus from the Pacific Ocean was conducted, which showed 14 amino acids for all strains except histidine, which was only present in G. cf. caribeaus. We report the presence of Gambierdiscus and Fukuyoa species in the Mexican Pacific, where ciguatera fish poisoning (CFP) cases have occurred.


Asunto(s)
Dinoflagelados , Animales , Ratones , Dinoflagelados/química , Aminoácidos/análisis , Cromatografía Líquida de Alta Presión , Artemia/efectos de los fármacos , Ciguatoxinas/toxicidad , Intoxicación por Ciguatera , Peces/parasitología
5.
Sci Rep ; 14(1): 22200, 2024 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333327

RESUMEN

Bryophyllum pinnatum is used to cure infections worldwide. Although the flavonoids of this plant are well known, it is still unknown how much of the plant's Ag and ZnO nanoparticles are beneficial. In the current research work, silver and zinc oxide nanoparticles were prepared using Bryophyllum pinnatum extract. The synthesized particles were characterized by UV-visible spectroscopy, SEM, EDS, XRD and FTIR. Synthesized particles were subjected to evaluation of their bactericidal and antifungal activity at various doses. Uv vis spectra at 400 nm corresponding to AgNPs confirmed their synthesis. Strong peaks in the EDS spectra of Ag and ZnO indicate the purity of the sample. The scanning electron microscopic images of ZnONPs showed a size of about 60 nm ± 3 nm, which demonstrated the presence of triangular-shaped ZnO nanoparticles. Green synthesized nanoparticles showed bactericidal activity against both Gram-positive (Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Agrobacterium tumifaciens, Salmonella setubal, Enterobacter aerogenes) strains. AgNPs proved to be more effective against Gram-negative bacterial strains compared to Gram-positive owing to MIC values (10 ppm and 20 ppm respectively). Whereas, ZnONPs were found more effective against Gram-positive bacteria with lower MIC values (10 ppm) as compared to Gram-negative ones (20 ppm). Also, the synthesized nanoparticles exhibited moderate dose-dependent antifungal activity against tested fungal strains ranging from 10 to 70%. Cytotoxicity of nanoparticles was found significant using Brine shrimp's lethality assay with IC50 values of 4.09 ppm for AgNPs, 13.72 ppm for ZnONPs, and 24.83 ppm for plant extract. Conclusively, Ag and ZnO nanoparticles were more effective than plant extract and AgNPs had higher activities than those of ZnONPs. Further research is warranted to explore the precise mechanism of action and the potential applications of these nanoparticles in the medical field.


Asunto(s)
Kalanchoe , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Plata , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Nanopartículas del Metal/química , Kalanchoe/química , Plata/química , Plata/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Antibacterianos/farmacología , Antibacterianos/química , Antifúngicos/farmacología , Antifúngicos/química , Artemia/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Bacterias Grampositivas/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos
6.
Molecules ; 29(18)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39339473

RESUMEN

Atraphaxis pyrifolia, a native medicinal plant of Central Asia, has a long history of traditional medicinal use; however, scientific research on its phytochemical and biological properties remains scarce. This paper aims to elucidate its chemical profile and assess its pharmacological potential through a comprehensive investigation of the phytochemical composition of stems and leaves using Liquid Chromatography-Mass Spectrometry (LC-MS), in conjunction with the assessment of its antioxidant (DPPH and ABTS) and cytotoxicity test on Artemia salina. Predominantly, glycosylated flavonoids were detected in stems and leaves extracts, notably including 8-Acetoxy-3',4',5,5'-tetrahydroxy-7-methoxy-3-α-L-rhamno-pyranosyloxyflavone, pyrifolin, and dehydroxypyrifolin. While the latter compound is exclusive to A. pyrifolia, the former compounds serve as shared chemical markers with other Atraphaxis species. The methanolic extracts of A. pyrifolia leaves exhibited significant antioxidant capacity without toxicity against Artemia salina. This study contributes to current research through providing valuable insights into the chemical diversity and potential medicinal properties of this plant species.


Asunto(s)
Antioxidantes , Artemia , Fitoquímicos , Extractos Vegetales , Hojas de la Planta , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/toxicidad , Antioxidantes/farmacología , Antioxidantes/química , Fitoquímicos/química , Fitoquímicos/farmacología , Fitoquímicos/análisis , Artemia/efectos de los fármacos , Hojas de la Planta/química , Cromatografía Liquida/métodos , Animales , Espectrometría de Masas/métodos , Metanol/química , Flavonoides/química , Flavonoides/análisis , Tallos de la Planta/química , Cromatografía Líquida con Espectrometría de Masas
7.
Int J Biol Macromol ; 279(Pt 4): 135564, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39270906

RESUMEN

In this study, polysaccharide fraction (PFFNC) derived from Neolamarckia cadamba fruits showed remarkable antioxidant activity. The PFFNC was successfully extracted from the fruits by the hot water extraction process, followed by decolorization, defatting, and deproteinization. The chemical composition of PFFNC was effectively characterized by the use of UV-Vis, FT-IR, CHN, GC-MS, and 13C NMR spectroscopy. The findings indicated that PFFNC had an average molecular weight of 292 kDa and was predominantly composed of carbohydrates (76 %), with notable contributions from uronic acids (37.22 %) and proteins (12.35 %). The primary components of the sugar content were glucose (19.24 %), galactose (10.19 %), mannose (4.09 %), and glucuronic acid (2.8 %). The tertiary structural study verified the existence of a triple-helical structure. PFFNC exhibited a strong reducing power in vitro as determined by ABTS (IC50: 121 ± 0.12 µg/mL), DPPH (IC50: 146.065 ± 0.54 µg/mL), FRAP (677.788 ± 24.189 mM Fe (II)/g), hydroxyl radical scavenging (IC50: 78.736 ± 0.32 µg/mL), and phosphomolybdate assay (90.7 ± 0.43 mg AAE/g). In addition, the PFFNC furthermore showed significant in vivo antioxidant capacity, as determined using the brine shrimp (Bsmp) (Artemia salina Leach) model. The PFFNC exhibits significant antioxidant potential, suggesting broad spectrum applications in pharmaceuticals, nutraceuticals, and oxidative stress-related disorders.


Asunto(s)
Antioxidantes , Frutas , Polisacáridos , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Frutas/química , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Animales , Peso Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/aislamiento & purificación , Artemia/efectos de los fármacos
8.
Luminescence ; 39(9): e4893, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39254155

RESUMEN

The study investigates the potential of Rhizoclonium hieroglyphicum as a novel source for synthesizing nickel oxide nanoparticles (RH-NiONPs) and evaluates its biological applications. Phytochemicals in the algal extract serve as capping, reducing and stabilizing agent for nickel oxide nanoparticles. The process variables were optimized using BBD based RSM to obtain maximum RH-NiONPs. Characterization of RH-NiONPs using UV-Vis and FT-IR spectroscopy reveals the plasmon resonance peak at 340 nm and the functional groups responsible for reduction and stabilization. XRD confirmed the crystalline nature while the stability and size of the RH-NiONPs were determined by DLS and zeta potential. Toxicity assessments demonstrated the effect of RH-NiONPs against Vigna radiata, Allium cepa and Artemia salina was low. RH-NiONPs revealed significant zone of inhibition against the selected bacteria and fungi. The results of larvicidal activity showed that RH-NiONPs are toxic to 4th instar larvae of Daphnis nerii. Also, RH-NiONPs efficiently decolorized Reactive Violet 13 (92%) under sunlight irradiation and the experimental data well fits to Langmuir isotherm along with pseudo second order kinetic model. The thermodynamic studies enunciate the exothermic and non-spontaneous photocatalytic decolorization of reactive violet 13. Thus, the current study assesses the eco-friendly and cost-effective nature of RH-NiONPs along with its biological applications.


Asunto(s)
Artemia , Nanopartículas del Metal , Níquel , Extractos Vegetales , Níquel/química , Níquel/farmacología , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Nanopartículas del Metal/química , Artemia/efectos de los fármacos , Cebollas/química , Cebollas/efectos de los fármacos , Daphnia/efectos de los fármacos , Vigna/química , Propiedades de Superficie , Larva/efectos de los fármacos , Tamaño de la Partícula , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química
9.
Curr Microbiol ; 81(10): 347, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240321

RESUMEN

Management of urinary tract infections (UTI) is a highly challenging process due to the biofilm-forming ability of human-pathogenic bacteria. Here, we designed to fabricate an effective nanogel with a combination of chitosan bio-polymer and nalidixic acid to prevent biofilm-forming bacterial pathogens. Chitosan-coated nalidixic acid nanogel (NA@CS) exhibits outstanding inhibition potential against bacterial strains. In vitro, anti-bacterial analysis methods (well diffusion, colony-forming assay, and anti-biofilm assay) were performed to study the bacterial inhibition potential of prepared nanogel, which reveals that NA@CS nanogel have greater inhibition potential against selected pathogens. The combination of nalidixic acid with chitosan biopolymer decreases the virulence and pathogenicity of biofilm-forming pathogens due to their ability to membrane phospholipids penetration. Furthermore, the fabricated NA@CS nanogel showed reliable in vitro bio-compatibility on L929 fibroblast cells and in vivo compatibility with Artemia salina animal model. Overall, the results demonstrate that NA@CS nanogel could be an effective therapeutic for treating urinary tract infections and urine bladder wound healing.


Asunto(s)
Antibacterianos , Biopelículas , Quitosano , Ácido Nalidíxico , Nanogeles , Infecciones Urinarias , Infecciones Urinarias/microbiología , Infecciones Urinarias/prevención & control , Infecciones Urinarias/tratamiento farmacológico , Quitosano/química , Quitosano/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Animales , Nanogeles/química , Ácido Nalidíxico/farmacología , Biopelículas/efectos de los fármacos , Ratones , Línea Celular , Bacterias/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Humanos , Artemia/efectos de los fármacos , Artemia/microbiología
10.
Narra J ; 4(2): e791, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39280285

RESUMEN

Coal plays a crucial role in Indonesia's foreign exchange and East Kalimantan's revenue sharing, yet its environmental impacts, including soil acidification, raises concerns. Reclamation measures involve revegetation with pioneer plants such as Macaranga sp., known for their medicinal properties. However, the pharmacological properties of these plants are influenced by secondary metabolites, which depend on soil parameters such as pH and nutrient levels. The aim of this study was to evaluate the acute toxicity, secondary metabolites, and antioxidant activities of Macaranga tanarius leaf extracts from post-coal mining area (MTPCMA) and non-mining area (MTNMA) alongside soil parameters. Acute toxicity of M. tanarius leaf extracts and soils were assessed using the brine shrimp lethality test (BSLT). Phytochemical screening was done using thin-layer chromatography (TLC), determining total phenolic (TPC) and flavonoid content (TFC). The DPPH radical scavenging assay was used to assess the antioxidant activity. A comparative analysis between MTPCMA and MTNMA was conducted using Student t-test. The data showed no significant difference in toxicity between MTPCMA and MTNMA leaf extracts (LC50 of 100-1000 µg/mL) (p=0.062), and soils from both areas were non-toxic (LC50 of >1000 µg/mL). Although heavy metal concentrations were higher in PCMA than in NMA soil (p<0.001), secondary metabolite compounds and TFC in both extracts were not significantly different (p=0.076). Both extracts contained flavonoids and polyphenols with antioxidant activity and terpenoids without antioxidant activities. The DPPH radical scavenging test suggested insignificant antioxidant activity between MTPCMA and MTNMA extracts (p=0.237). In conclusion, non-toxic soils in post-mining land and insignificant differences between MTPCMA and MTNMA extracts suggest good soil nutrient availability, highlighting the success of land recovery after 10 years of revegetation with M. tanarius.


Asunto(s)
Antioxidantes , Artemia , Extractos Vegetales , Indonesia , Antioxidantes/metabolismo , Animales , Extractos Vegetales/química , Extractos Vegetales/toxicidad , Extractos Vegetales/farmacología , Artemia/efectos de los fármacos , Hojas de la Planta/química , Minas de Carbón , Suelo/química , Pruebas de Toxicidad Aguda , Fitoquímicos/análisis , Fitoquímicos/toxicidad , Flavonoides/análisis , Flavonoides/metabolismo , Metabolismo Secundario
11.
Braz J Biol ; 84: e286419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39292142

RESUMEN

Immunosuppressed individuals, including those undergoing cancer treatment, are more vulnerable to fungal infections, such as oral candidiasis, impacting their quality of life. Given the limitations of current therapies, the discovery of new antifungal agents, including those of natural origin, is crucial for the proper managing of these infections. We investigated the phytochemical profile and antifungal activity of both the essential oil and crude ethanolic extract (CEE) obtained from Eugenia luschnathiana against reference strains and clinical isolates of Candida from oncology patients. Toxicological characterization was also conducted. Gas chromatography coupled to mass spectrometry (GC-MS) and 1H Nuclear Magnetic Resonance (NMR) were used for phytochemical analysis. Antifungal evaluation was conducted to determine the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC); evaluation of potential mechanisms of action; activity on a fungal biofilm; evaluation of the cytotoxic effect on human keratinocytes of the HaCat lineage by the MTT method; determination of lethality for Artemia salina larvae. GC-MS identified a predominance of sesquiterpenes in the essential oil, notably (E)-Caryophyllene. The 1H NMR spectrum identified aliphatic, osidic, and aromatic compounds in the crude ethanolic extract. The essential oil showed no antifungal activity. However, the CEE exhibited fungicidal activity, with MIC and MFC ranging from 1.95 µg/mL to 3.90 µg/mL. The antifungal effect was affected by sorbitol, indicating a possible mechanism targeting fungal cell wall structures. At low concentration (19.5 µg/mL), the CEE inhibited 62,78% of C. albicans biofilm. The CEE demonstrated a promising toxicity profile, with an LC50 of 142.4 µg/mL against Artemia salina. In conclusion, the CEE from Eugenia luschnathiana exhibited potent antifungal activity, likely through cell wall disruption, biofilm inhibition, and a favorable toxicity profile for further exploration.


Asunto(s)
Antifúngicos , Candida , Eugenia , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Aceites Volátiles , Extractos Vegetales , Antifúngicos/farmacología , Aceites Volátiles/farmacología , Aceites Volátiles/química , Humanos , Eugenia/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Candida/efectos de los fármacos , Animales , Artemia/efectos de los fármacos , Biopelículas/efectos de los fármacos , Neoplasias , Syzygium/química
12.
Chemosphere ; 364: 143159, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39178963

RESUMEN

The present study focused on Rosmarinus officinalis Linn. leaves extract (ROE) mediated synthesis of silver nanoparticles (AgNPs), selenium nanoparticles (SeNPs), reduced graphene oxide (rGO) and silver and selenium nanoparticles decorated on rGO nanomaterials (Ag&SeNPs@rGONM's) for its antibacterial and antifungal in silico mechanistic insight applications. In addition, the toxicity of the synthesized nanomaterials was evaluated using Artemia salina. The formation of AgNPs, SeNPs, rGO and Ag&SeNPs@rGONM's was completed within 1.0, 140, 120 and 144 h, respectively. Various optical and microscopic examinations were evident in the nanomaterial's synthesis. Further, the average size and stability of the synthesized nanomaterials were conformed through dynamic light scattering (DLS) and zeta potential analyzer, respectively. The synthesized Ag&SeNPs@rGONM's were pronounced promising results against Gram-negative bacteria of Escherichia coli and the results achieved from the route of entry and action, reactive oxygen species (ROS), and antioxidant nature of nanoparticles were evidence of its properties. Computational studies further supported these findings, indicating much of the phytochemicals present in ROE well interact with the bacterial surface proteins. Similarly, the synthesized Ag&SeNPs@rGONM's was effective against Fusarium graminearum and Alternaria alternata in a dose dependent manner than its original nanomaterials. In addition, the docking study also confirmed that rosmarinic acid and caffeic acid prominently interacted with the fungal proteins. Interestingly, Ag&SeNPs@rGONM's pronounced less toxic effect compared to AgNPs and SeNPs against Artemia salina, which shows its biocompatibility.


Asunto(s)
Antibacterianos , Artemia , Nanopartículas del Metal , Plata , Plata/química , Plata/toxicidad , Animales , Artemia/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Antibacterianos/toxicidad , Antibacterianos/química , Grafito/toxicidad , Grafito/química , Selenio/química , Selenio/toxicidad , Extractos Vegetales/química , Extractos Vegetales/toxicidad , Antioxidantes/química , Rosmarinus/química , Escherichia coli/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Hojas de la Planta/química , Tecnología Química Verde , Simulación por Computador , Antifúngicos/toxicidad , Antifúngicos/química
13.
J Hazard Mater ; 478: 135596, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39178784

RESUMEN

Although irregularly-shaped label-free microplastics (MPs) are predominantly distributed in the environment, non-destructive analysis of environmentally relevant MPs in organisms is still challenging. The purpose of the study is to suggest in vivo visual evidence of the uptake and effect of environmentally relevant MPs in organism. Transparent irregularly-shaped high-density polyethylene was selected as an environmentally relevant model MP and exposed to brine shrimp (Artemia franciscana). As a result, we suggest the application of SEM/EDX and coherent anti-Stokes Raman scattering (CARS) microspectroscopy as complementary tools to secure in vivo visual evidence of irregularly-shaped unlabeled MPs in living organisms without chemical digestion for biodistribution observations. Biological transmission electron microscopy also provides how ingested MPs physically affects the digestive tract in the brine shrimp which is rarely reported. In terms of environmental implications, this study would advance ecotoxicological research on microplastic pollution by providing a cutting-edge tool for investigating the bioavailability and ecotoxicity of environmentally relevant MPs in ecosystems.


Asunto(s)
Artemia , Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Artemia/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/farmacocinética , Polietileno/toxicidad , Polietileno/química , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Espectrometría Raman , Microscopía Electrónica de Transmisión
14.
Int J Biol Macromol ; 278(Pt 3): 134893, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39168213

RESUMEN

Clinacanthus nutans (C. nutans) is a plant in tropical Asia with proven biological activities. The optimized extraction method of C. nutans crude polysaccharide (CNP) uses water in the presence of an ultrasound-assisted mechanical method (UL_CNP). However, the use of UL_CNP for the synthesis and optimization of silver nanoparticles (AgNP), particularly their anticancer and photocatalytic properties, remains unexplored. Hence, this research aimed to employ a green method using UL_CNP and silver nitrate to produce AgNP (UL_AgNP) with a small size and assess its potential toxicity, anticancer, and photocatalytic activities. The synthesis condition was optimized using the Box-Behnken design method. The synthesized UL_AgNP showed the surface plasmon resonance peak at 458 nm. The optimized synthesis condition produced spherically shaped UL_AgNP with a size of 5.21 ± 1.92 nm and a zeta potential of -26.33 ± 0.93 mV. An X-ray diffraction analysis exhibited intense Bragg's reflection peaks at (111), (200), (220), and (311), having a face-centered cubic structure of AgNP. Attenuated total reflectance-Fourier-transform infrared spectroscopy and energy-dispersive X-ray spectroscopy further confirmed the presence of silver in the synthesized UL_AgNP. The brine shrimp lethality test of UL_AgNP reported a lethal concentration 50 value of <7.8 µg/mL after 24 h. The UL_AgNP exhibited antiproliferative activity against MCF-7 cells with a half-maximal inhibitory concentration value of 4.96 ± 0.31 µg/mL by inducing S-phase cell cycle arrest, apoptotic effect, and reduction of cell migration. Furthermore, UL_AgNP proved its efficient photocatalytic activity against methylene blue dye (50.22 % ± 0.06 %, after 10 min at a concentration of 50 µg/mL). Therefore, the UL_AgNP exhibited promising antiproliferative activity against MCF-7 cells, highlighting their potential as a therapeutic agent. Further investigations are needed to elucidate the precise mechanism of their action.


Asunto(s)
Acanthaceae , Tecnología Química Verde , Nanopartículas del Metal , Microondas , Extractos Vegetales , Polisacáridos , Plata , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Polisacáridos/química , Polisacáridos/farmacología , Humanos , Acanthaceae/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Células MCF-7 , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Artemia/efectos de los fármacos
15.
BMC Complement Med Ther ; 24(1): 301, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143605

RESUMEN

BACKGROUND: In recent years, antibiotic resistance has emerged as a global health concern in bacterial infections such as urinary tract infections (UTIs). Uropathogenic Escherichia coli is the most frequent organism responsible for both simple and complex UTIs. Staphylococcus aureus and Pseudomonas aeruginosa are frequently associated with complicated UTIs. Sri Lanka has significant resources of medicinal plants used to cure UTIs in Ayurvedic and traditional medicine. METHODS: Agar well diffusion and broth microdilution methods were used to determine the antibacterial activity of the methanolic extract of ten medicinal plants against P. aeruginosa ATCC27853, S.aureus ATCC25923, E.coli ATCC25922 and their UTI positive strains extracted from positive culture plates. As a preliminary toxicity assay, the Brine Shrimp Lethality Assay (BSLA) was used to determine its cytotoxicity. RESULTS: The methanolic fruits extract of P. emblica demonstrated the highest antibacterial activity against both E. coli ATCC25922 and E. coli UTI-positive strains. B. diffusa roots extract exhibited the highest activity against S. aureus ATCC25923, while T. chebula fruits extract showed the highest activity against the S. aureus UTI-positive strain. T. involucrata roots extract displayed the highest activity against P. aeruginosa ATCC27853, and Z. officinale rhizomes extract showed the highest activity against the P. aeruginosa UTI-positive strain. Moreover, the plant mixture showed the most substantial antibacterial effect against P. aeruginosa ATCC27853. However, the methanolic seed extract of C. melo did not exhibit any antimicrobial effects against the selected organisms. All plant material, including the plant mixture, showed cytotoxicity according to the BSLA. CONCLUSION: All the methanolic extracts including P. emblica fruits, O. tenuiflorum whole plant, T. chebula fruits, Z. officinale rhizome, T. terrestris roots, T. involucrata roots, A. lanata whole plant. B. diffusa roots and A. falcatus roots showed antimicrobial effects against selected strains except C. melo seed extract. The results of the present study evidently supports the traditional and ayurvedic use of these plants for the treatment of UTIs. This paves the way for another praise for new plant-based therapeutic product development for the treatment of UTIs. However, further toxicity studies are needed for medicinal dose determination.


Asunto(s)
Antibacterianos , Artemia , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Plantas Medicinales , Pseudomonas aeruginosa , Animales , Artemia/efectos de los fármacos , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Staphylococcus aureus/efectos de los fármacos , Sri Lanka
16.
Artículo en Inglés | MEDLINE | ID: mdl-39087887

RESUMEN

Artemia is a brine shrimp genus adapted to extreme habitats like ranges salinity from 5-25 g/L and in temperatures from 9 to 35 °C. It is widely distributed and used as an environmental quality biomarker. Artemia franciscana and Artemia salina species are commonly used in ecotoxicological studies and genotoxicity assays due to their short life cycle, high fecundity rate, easy culture, and availability. Thus, considering the importance of these tests in ecotoxicological studies, the present study aimed to present Artemia genus as a biological model in genotoxicity research. To this end, we reviewed the literature, analyzing data published until July 2023 in the Web of Science, SCOPUS, Embase, and PubMed databases. After screening, we selected 34 studies in which the genotoxicity of Artemia for various substances. This review presents the variability of the experimental planning of assays and biomarkers in genotoxicity using Artemia genus as a biological model for ecotoxicological studies and show the possibility of monitoring biochemical alterations and genetic damage effects. Also highlight innovative technologies such as transcriptomic and metabolomic analysis, as well as studies over successive generations to identify changes in DNA and consequently in gene expression.


Asunto(s)
Artemia , Ecotoxicología , Pruebas de Mutagenicidad , Artemia/efectos de los fármacos , Animales , Daño del ADN , Contaminantes Químicos del Agua/toxicidad , Mutágenos/toxicidad
17.
Lett Appl Microbiol ; 77(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39198017

RESUMEN

Biofilms are responsible for over 60% of nosocomial infections. The focus of this study was to investigate the antioxidant, antibacterial, antibiofilm, and anti-motility activities of Gardenia volkensii, Carissa bispinosa, Peltophorum africanum, and Senna petersiana. Antioxidant activity was evaluated using free radical (DPPH) scavenging and ferric reducing power assays. Antibacterial and antibiofilm activities were evaluated using the broth micro-dilution and the crystal violet assays, respectively. Anti-motility was evaluated using anti-swarming activities, and the brine shrimp lethality assay was used for cytotoxicity. Gardenia volkensii and C. bispinosa acetone extracts had low EC50 values of 9.59 and 9.99 µg ml-1on the free-radical scavenging activity, respectively. All the plant extracts demonstrated broad-spectrum antibacterial activity against Klebsiella pneumoniae, Pseudomonasa aeruginosa, Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus [minimum inhibitory concentration (MIC) < 0.63 mg ml-1]. The initial cell adherence stage of P. aeruginosa and E. coli was the most susceptible stage where sub-MICs resulted in inhibitions >50%. Peltophorum africanum had the least cytotoxic effects. All extracts had anti-motility activity against P. aeruginosa and E. coli. This study showed that not only do the plants have strong antibacterial activity but had noteworthy inhibition (>50%) of initial cell adherence and may be suitable candidates for the treatment of nosocomial pathogens.


Asunto(s)
Antibacterianos , Antioxidantes , Biopelículas , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/química , Infección Hospitalaria/microbiología , Artemia/efectos de los fármacos , Bacterias/efectos de los fármacos , Animales , Pseudomonas aeruginosa/efectos de los fármacos
18.
Molecules ; 29(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065009

RESUMEN

Volatile oils or essential oils (EOs) were extracted from three V. sebifera samples (labeled as A, B, and C) in September 2018 and February 2019; the extraction process involved hydrodistillation of the leaves. The chemical compositions of the EOs were analyzed using gas chromatography-mass spectrometry (GC/MS). The volatile components were identified by comparing their retention indices and mass spectra with standard substances documented in the literature (ADAMS). The antioxidant activity of the EOs was evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), while their toxicity was assessed using Artemia salina Leach. Molecular docking was utilized to examine the interaction between the major constituents of V. sebifera EO and acetylcholinesterase (AChE), a molecular target linked to toxicity in A. salina models. The EO obtained from specimen A, collected in September 2018, was characterized by being primarily composed of (E,E)-α-farnesene (47.57%), (E)-caryophyllene (12.26%), and α-pinene (6.93%). Conversely, the EO from specimen A, collected in February 2019, was predominantly composed of (E,E)-α-farnesene (42.82%), (E)-caryophyllene (16.02%), and bicyclogermacrene (8.85%), the EO from specimen B, collected in September 2018, primarily contained (E,E)-α-farnesene (47.65%), (E)-caryophyllene (19.67%), and α-pinene (11.95%), and the EO from the leaves collected in February 2019 was characterized by (E,E)-α-farnesene (23.57%), (E)-caryophyllene (19.34%), and germacrene D (7.33%). The EO from the leaves collected in September 2018 contained (E,E)-α-farnesene (26.65%), (E)-caryophyllene (15.7%), and germacrene D (7.72%), while the EO from the leaves collected in February 2019 was primarily characterized by (E,E)-α-farnesene (37.43%), (E)-caryophyllene (21.4%), and α-pinene (16.91%). Among these EOs, sample B collected in February 2019 demonstrated the highest potential for inhibiting free radicals, with an inhibition rate of 34.74%. Conversely, the EOs from specimen A exhibited the highest toxic potentials, with an lethal concentration 50 (LC50) value of 57.62 ± 1.53 µg/mL, while specimen B had an LC50 value of 74.72 ± 2.86 µg/mL. Molecular docking results suggested that hydrophobic interactions significantly contributed to the binding of the major compounds in the EO from sample B to the binding pocket of AChE.


Asunto(s)
Antioxidantes , Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles , Aceites Volátiles/química , Aceites Volátiles/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Animales , Artemia/efectos de los fármacos , Simulación del Acoplamiento Molecular , Hojas de la Planta/química , Acetilcolinesterasa/metabolismo
19.
Ecotoxicol Environ Saf ; 282: 116760, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39029223

RESUMEN

The study on the influence of Natural Organic Matter (NOM) over the individual and combined effects of different nanomaterials on marine species is pertinent. The current study explores the role of Extracellular Polymeric Substances (EPS) in influencing the individual and combined toxic effects of polystyrene nanoplastics (PSNPs) viz. aminated (NH2-PSNPs), carboxylated (COOH-PSNPs), and plain PSNPs and TiO2 NPs in the marine crustacean, Artemia salina. A. salina was interacted with pristine PSNPs, pristine TiO2 NPs, EPS incubated PSNPs, EPS incubated TiO2 NPs, binary mixture of PSNPs and TiO2 NPs, and EPS adsorbed binary mixture of PSNPs and TiO2 NPs for 48 h. The present study proves that, when compared to the pristine toxicity of PSNPs and TiO2 NPs, the coexposure of TiO2 NPs with PSNPs resulted in increased toxicity. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. It was observed that with an increase in the hydrodynamic diameter of the particles, the mortality, oxidative stress, and ingestion of the NMs by A. salina increased. The uptake of Ti by A. salina from 8 mg/L TiO2 NPs, EPS adsorbed 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs and the EPS adsorbed mixture of 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs was observed to be 0.043, 0.047, 0.186, and 0.307 mg/g of A. salina. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. The major outcomes from the current study highlight the role of EPS in exacerbating the toxicity of NMs in marine crustaceans.


Asunto(s)
Artemia , Poliestirenos , Titanio , Contaminantes Químicos del Agua , Animales , Artemia/efectos de los fármacos , Titanio/toxicidad , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Matriz Extracelular de Sustancias Poliméricas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Nanopartículas/toxicidad , Adsorción , Microplásticos/toxicidad
20.
Sci Total Environ ; 948: 174758, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39025152

RESUMEN

Over the past decade, deep eutectic systems (DES) have become popular, yet their potential toxicity to living organisms is not well understood. This study fills this gap by examining the toxicity, antibacterial activity and biodegradability of p-toluenesulfonic acid monohydrate (PTSA)-based DESs prepared from ammonium or phosphonium salts. Brine shrimp assays revealed varying toxicity levels of PTSA and salts. Allyltriphenylphosphonium bromide showing the longest survival time among all tested salts while PTSA exhibited a significantly longer duration of cell survival compared to other hydrogen bond donors. PTSA and ammonium salts (N,N-diethylethanolammonium chloride and choline chloride) as individual components showed non-toxic behavior for Gram-negative and Gram-positive bacteria while different PTSA-based DESs showed significant inhibition zones. Fish acute ecotoxicity tests indicated moderately toxicity for individual components and DESs, though higher concentrations increased fish mortality, highlighting the need for careful handling and disposal of PTSA-based DESs to the environment. Biodegradability analyses found all tested DESs to be readily biodegradable and it was reported that, DES 3 prepapred form PTSA and choline chloride has the highest biodegradability level. Notably, all tested DESs showed over 60 % biodegradability after 28 days. This groundbreaking study explores PTSA-based DESs, highlighting their biodegradability and potential use as antibacterial agents. Results revealed that PTSA as individual component is much better from toxicity point of view in comparison with PTSA-based DESs for any further industrial applications.


Asunto(s)
Artemia , Biodegradación Ambiental , Disolventes Eutécticos Profundos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Animales , Artemia/efectos de los fármacos , Disolventes Eutécticos Profundos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA