Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.517
Filtrar
1.
Microb Cell Fact ; 23(1): 262, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39367393

RESUMEN

D-Xylitol is a naturally occurring sugar alcohol present in diverse plants that is used as an alternative sweetener based on a sweetness similar to sucrose and several health benefits compared to conventional sugar. However, current industrial methods for D-xylitol production are based on chemical hydrogenation of D-xylose, which is energy-intensive and environmentally harmful. However, efficient conversion of L-arabinose as an additional highly abundant pentose in lignocellulosic materials holds great potential to broaden the range of applicable feedstocks. Both pentoses D-xylose and L-arabinose are converted to D-xylitol as a common metabolic intermediate in the native fungal pentose catabolism.To engineer a strain capable of accumulating D-xylitol from arabinan-rich agricultural residues, pentose catabolism was stopped in the ascomycete filamentous fungus Aspergillus niger at the stage of D-xylitol by knocking out three genes encoding enzymes involved in D-xylitol degradation (ΔxdhA, ΔsdhA, ΔxkiA). Additionally, to facilitate its secretion into the medium, an aquaglyceroporin from Saccharomyces cerevisiae was tested. In S. cerevisiae, Fps1 is known to passively transport glycerol and is regulated to convey osmotic stress tolerance but also exhibits the ability to transport other polyols such as D-xylitol. Thus, a constitutively open version of this transporter was introduced into A. niger, controlled by multiple promoters with varying expression strengths. The strain expressing the transporter under control of the PtvdA promoter in the background of the pentose catabolism-deficient triple knock-out yielded the most favorable outcome, producing up to 45% D-xylitol from L-arabinose in culture supernatants, while displaying minimal side effects during osmotic stress. Due to its additional ability to extract D-xylose and L-arabinose from lignocellulosic material via the production of highly active pectinases and hemicellulases, A. niger emerges as an ideal candidate cell factory for D-xylitol production from lignocellulosic biomasses rich in both pentoses.In summary, we are showing for the first time an efficient biosynthesis of D-xylitol from L-arabinose utilizing a filamentous ascomycete fungus. This broadens the potential resources to include also arabinan-rich agricultural waste streams like sugar beet pulp and could thus help to make alternative sweetener production more environmentally friendly and cost-effective.


Asunto(s)
Arabinosa , Aspergillus niger , Ingeniería Metabólica , Xilitol , Aspergillus niger/metabolismo , Aspergillus niger/genética , Arabinosa/metabolismo , Xilitol/metabolismo , Xilitol/biosíntesis , Ingeniería Metabólica/métodos , Xilosa/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
2.
BMC Biotechnol ; 24(1): 69, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334195

RESUMEN

The present study deals with the production of cellulase-free endoxylanase by Aspergillus niger ISL-9 using wheat bran as a solid substrate. Endoxylanase was produced under a solid-state fermentation. Various growth parameters were optimized for the improved production of the enzyme. The Substrate level of 15 g was optimized as it provided the fungus with balanced aeration and nutrition. Among the six moisture contents investigated, Moisture Content 5 (MC5) was optimized (g/l: malt extract, 10; (NH4)2HPO4, 2.5; urea, 1.0) and 10 mL of MC5 was found to give the highest production of endoxylanase. The pH and time of incubation were optimized to 6.2 and 48 h respectively. The Inoculum size of 2 mL (1.4 × 106 spores/mL) gave the maximum enzyme production. After optimization of these growth parameters, a significantly high endoxylanase activity of 21.87 U/g was achieved. Very negligible Carboxymethylcellulase (CMCase) activity was observed indicating the production of cellulase-free endoxylanase. The notable finding is that the endoxylanase activity was increased by 1.4-fold under optimized conditions (p ≤ 0.05). The overall comparison of kinetic parameters for enhanced production of endoxylanase by A. niger ISL-9 under Solid State Fermentation (SSF) was also studied. Different kinetic variables which included specific growth rate, product yield coefficients, volumetric rates and specific rates were observed at 48, 72 and 96 h incubation time and were compared for MC1 and MC5. Among the kinetic parameters, the most significant result was obtained with volumetric rate constant for product formation (Qp) that was found to be optimum (1.89 U/h) at 72 h incubation period and a high value of Qp i.e.1.68 U/h was also observed at 48 h incubation period. Thus, the study demonstrates a cost-effective and environmentally sustainable process for xylanase production and exhibits scope towards successful industrial applications.


Asunto(s)
Aspergillus niger , Fibras de la Dieta , Endo-1,4-beta Xilanasas , Fermentación , Aspergillus niger/enzimología , Aspergillus niger/metabolismo , Fibras de la Dieta/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/biosíntesis , Cinética , Concentración de Iones de Hidrógeno , Medios de Cultivo/metabolismo , Medios de Cultivo/química
3.
Microb Biotechnol ; 17(9): e70012, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39269439

RESUMEN

Filamentous fungi with their diverse inventory of carbohydrate-active enzymes promise a holistic usage of lignocellulosic residues. A major challenge for application is the inherent repression of enzyme production by carbon catabolite repression (CCR). In the presence of preferred carbon sources, the transcription factor CreA/CRE-1 binds to specific but conserved motifs in promoters of genes involved in sugar metabolism, but the status of CCR is notoriously difficult to quantify. To allow for a real-time evaluation of CreA/CRE-1-mediated CCR at the transcriptional level, we developed a luciferase-based construct, representing a dynamic, highly responsive reporter system that is inhibited by monosaccharides in a quantitative fashion. Using this tool, CreA/CRE-1-dependent CCR triggered by several monosaccharides could be measured in Neurospora crassa, Aspergillus niger and Aspergillus nidulans over the course of hours, demonstrating distinct and dynamic regulatory processes. Furthermore, we used the reporter to visualize the direct impacts of multiple CreA truncations on CCR induction. Our reporter thus offers a widely applicable quantitative approach to evaluate CreA/CRE-1-mediated CCR across diverse fungal species and will help to elucidate the multifaceted effects of CCR on fungal physiology for both basic research and industrial strain engineering endeavours.


Asunto(s)
Represión Catabólica , Genes Reporteros , Luciferasas , Neurospora crassa , Luciferasas/genética , Luciferasas/metabolismo , Neurospora crassa/genética , Neurospora crassa/metabolismo , Aspergillus niger/genética , Aspergillus niger/metabolismo , Regulación Fúngica de la Expresión Génica , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hongos/genética , Hongos/metabolismo , Carbono/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Represoras
4.
Bioprocess Biosyst Eng ; 47(11): 1815-1831, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39150531

RESUMEN

An adhesive solid-state fermentation (adSSF) mode was developed to produce Aspergillus niger conidia, which used a stainless-steel Dixon ring as the support and water-retaining adhesive to load nutritional media on its surface. To obtain high conidia yields, the components of the water-retaining adhesive were screened, optimized by single-factor optimization and response surface methodology, and the optimal dosages of the main components were: wheat bran powder 0.023 g·cm-3bed, cassava starch 0.0022 g·cm-3bed, and xanthan gum 0.0083 g·cm-3bed. The experimentally tested conidia yield was 4.2-fold that without water-retaining adhesive but was 3.7% lower than the maximum yield predicted by the model. The observed double-side growth of A. niger on the Dixon ring supports improved space utilization of the fermentation bed, and the void fraction can increase with the shrinkage of the gel layer. In 1.6 L tray reactors with three-point online temperature monitoring, the inner-bed temperature of adSSF was at most 4 °C lower than the adsorbed carrier solid-state fermentation (ACSSF) mode, and the conidia yield was 1.68 × 108 conidia.cm-3bed, 61.5% higher than that of the ACSSF bed at the same time, but when the fermentation time was extended to 168 h, the conidia yield of the adSSF bed and ACSSF bed were close to each other. The results revealed that the high voidage of the adSSF bed was the main reason for low bed temperature, which can benefit the inner-bed natural convection and water evaporation.


Asunto(s)
Aspergillus niger , Esporas Fúngicas , Acero Inoxidable , Aspergillus niger/metabolismo , Aspergillus niger/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Fermentación , Reactores Biológicos
5.
Bioresour Technol ; 409: 131240, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39122129

RESUMEN

To promote the sustainability of hydrothermal liquefaction (HTL) for biofuel production, fungal fermentation was investigated to treat HTL aqueous phase (HTLAP) from corn stover. The most promising fungus, Aspergillus niger demonstrated superior tolerance to HTLAP and capability to produce oxalic acid as a value-added product. The fungal-bacterial co-culture of A. niger and Rhodococcus jostii was beneficial at low COD (chemical oxygen demand) loading of 3800 mg/L in HTLAP, achieving 69% COD removal while producing 0.5 g/L oxalic acid and 11% lipid content in microbial biomass. However, higher COD loading of 4500, 6040, and 7800 mg/L significantly inhibited R. jostii, but promoted A. niger growth with increased oxalic acid production while COD removal remained similar (58-65%). Additionally, most total organic carbon (TOC) in HTLAP was transformed into oxalic acid, representing 46-56% of the consumed TOC. These findings highlighted the potential of fungi for bio-upcycling of HTLAP into value-added products.


Asunto(s)
Aspergillus niger , Técnicas de Cocultivo , Zea mays , Zea mays/química , Aspergillus niger/metabolismo , Agua/química , Rhodococcus/metabolismo , Ácido Oxálico , Análisis de la Demanda Biológica de Oxígeno , Fermentación , Biomasa , Hongos/metabolismo , Biocombustibles
6.
Microb Cell Fact ; 23(1): 229, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152399

RESUMEN

Epothilones are one of the common prescribed anticancer drugs for solid tumors, for their exceptional binding affinity with ß-tubulin microtubule, stabilizing their disassembly, causing an ultimate arrest to the cellular growth. Epothilones were initially isolated from Sornagium cellulosum, however, their extremely slow growth rate and low yield of epothilone is the challenge. So, screening for a novel fungal endophyte dwelling medicinal plants, with higher epothilone productivity and feasibility of growth manipulation was the objective. Aspergillus niger EFBL-SR OR342867, an endophyte of Latania loddegesii, has been recognized as the heady epothilone producer (140.2 µg/L). The chemical structural identity of the TLC-purified putative sample of A. niger was resolved from the HPLC, FTIR and LC-ESI-MS/MS analyses, with an identical molecular structure of the authentic epothilone B. The purified A. niger epothilone B showed a resilient activity against MCF-7 (0.022 µM), HepG-2 (0.037 µM), and HCT-116 (0.12 µM), with selectivity indices 21.8, 12.9 and 4, respectively. The purified epothilone B exhibited a potential anti-wound healing activity to HepG-2 and MCF-7 cells by ~ 54.07 and 60.0%, respectively, after 24 h, compared to the untreated cells. The purified epothilone has a significant antiproliferative effect by arresting the cellular growth of MCF-7 at G2/M phase by ~ 2.1 folds, inducing the total apoptosis by ~ 12.2 folds, normalized to the control cells. The epothilone B productivity by A. niger was optimized by the response surface methodology, with ~ 1.4 fold increments (266.9 µg/L), over the control. The epothilone productivity by A. niger was reduced by ~ 2.4 folds by 6 months storage as a slope culture at 4 °C, however, the epothilone productivity was slightly restored with ethylacetate extracts of L. loddegesii, confirming the plant-derived chemical signals that partially triggers the biosynthetic genes of A. niger epothilones. So, this is the first report emphasizing the metabolic potency of A. niger, an endophyte of L. loddegesii, to produce epothilone B, that could be a new platform for industrial production of this drug.


Asunto(s)
Antineoplásicos , Aspergillus niger , Endófitos , Epotilonas , Cicatrización de Heridas , Epotilonas/farmacología , Epotilonas/biosíntesis , Epotilonas/química , Epotilonas/metabolismo , Humanos , Endófitos/metabolismo , Endófitos/química , Aspergillus niger/efectos de los fármacos , Aspergillus niger/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Cicatrización de Heridas/efectos de los fármacos , Células MCF-7 , Células Hep G2 , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos
7.
N Biotechnol ; 83: 91-100, 2024 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-39053684

RESUMEN

Oat (Avena sativa) processing generates a large amount of by-products, especially oat bran. These by-products are excellent sources of bioactive compounds such as polyphenols and essential fatty acids. Therefore, enhancing the extraction of these bioactive substances and incorporating them into the human diet is critical. This study investigates the effect of acid pretreatment on the solid-state fermentation of oat bran with Aspergillus niger, with an emphasis on the bioaccessibility of phenolic acids and lipid profile. The results showed a considerable increase in reducing sugars following acid pretreatment. On the sixth day, there was a notable increase in the total phenolic content, reaching 58.114 ± 0.09 mg GAE/g DW, and the vanillic acid level significantly rose to 77.419 ± 0.27 µg/g DW. The lipid profile study revealed changes ranging from 4.66 % in the control to 7.33 % on the sixth day of SSF. Aside from biochemical alterations, antioxidant activity measurement using the DPPH technique demonstrated the maximum scavenging activity on day 4 (83.33 %). This study highlights acid pretreatment's role in enhancing bioactive compound accessibility in solid-state fermentation and its importance for functional food development.


Asunto(s)
Aspergillus niger , Avena , Fermentación , Lípidos , Fenoles , Aspergillus niger/metabolismo , Avena/metabolismo , Avena/química , Fenoles/metabolismo , Lípidos/biosíntesis , Lípidos/química , Antioxidantes/metabolismo , Fibras de la Dieta/metabolismo
8.
PeerJ ; 12: e17151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026538

RESUMEN

Background: The booming palm oil industry is in line with the growing population worldwide and surge in demand. This leads to a massive generation of palm oil mill effluent (POME). POME is composed of sterilizer condensate (SC), separator sludge (SS), and hydro-cyclone wastewater (HCW). Comparatively, SS exhibits the highest organic content, resulting in various environmental impacts. However, past studies mainly focused on treating the final effluent. Therefore, this pioneering research investigated the optimization of pollutant removal in SS via different aspects of bioremediation, including experimental conditions, treatment efficiencies, mechanisms, and degradation pathways. Methods: A two-level factorial design was employed to optimize the removal of chemical oxygen demand (COD) and turbidity using Aspergillus niger. Bioremediation of SS was performed through submerged fermentation (SmF) under several independent variables, including temperature (20-40 °C), agitation speed (100-200 RPM), fermentation duration (72-240 h), and initial sample concentration (20-100%). The characteristics of the treated SS were then compared to that of raw sludge. Results: Optimal COD and turbidity removal were achieved at 37 °C 100 RPM, 156 h, and 100% sludge. The analysis of variance (ANOVA) revealed a significant effect of selective individual and interacting variables (p < 0.05). The highest COD and turbidity removal were 97.43% and 95.11%, respectively, with less than 5% error from the predicted values. Remarkably, the selected optimized conditions also reduced other polluting attributes, namely, biological oxygen demand (BOD), oil and grease (OG), color, and carbon content. In short, this study demonstrated the effectiveness of A. niger in treating SS through the application of a two-level factorial design.


Asunto(s)
Aspergillus niger , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Fermentación , Aguas del Alcantarillado , Aspergillus niger/metabolismo , Aguas del Alcantarillado/microbiología , Aguas del Alcantarillado/química , Aguas Residuales/química , Aguas Residuales/microbiología , Eliminación de Residuos Líquidos/métodos , Aceite de Palma/química , Residuos Industriales
9.
Bioresour Technol ; 408: 131165, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39069142

RESUMEN

This study explores the enhancement of phosphate rock (PR) solubilization through solid-state fermentation (SSF) by optimizing oxalic acid production using Aspergillus niger. Key process parameters, including the use of agro-industrial by-products (sugarcane bagasse (SCB), wheat bran (WB), soybean bran (SB)), pH levels, sucrose supplementation, and methanol addition, were systematically evaluated through sequential experimental designs. The results identified SCB and SB in a 1:1 ratio as the most effective substrate. Remarkably, the inclusion of methanol (7 %) and sucrose (0.5 %) resulted in a 3-fold increase in oxalic acid production. Under these optimized conditions, significant phosphorus solubilization of Bayóvar, Itafós, and Registro PRs was achieved, with Bayóvar rock releasing up to 12.1 g/kgds of soluble P (63.8 % efficiency). Additionally, the SSF process effectively released organic phosphorus from the agro-industrial substrates. These findings hold promise for advancing the bio-based economy and developing future industrial biofertilizers.


Asunto(s)
Aspergillus niger , Fermentación , Ácido Oxálico , Fosfatos , Solubilidad , Ácido Oxálico/química , Fosfatos/química , Aspergillus niger/metabolismo , Concentración de Iones de Hidrógeno , Celulosa/química , Glycine max/metabolismo , Metanol/química , Sacarosa/metabolismo , Saccharum/química
10.
Molecules ; 29(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38998931

RESUMEN

Eucommiae Cortex (EC) is frequently used alone or in combination with other active ingredients to treat a range of illnesses. An efficient technical instrument for changing cheap or plentiful organic chemicals into rare or costly counterparts is biotransformation. It combines EC with biotransformation techniques with the aim of producing some novel active ingredients, using different strains of bacteria that were introduced to biotransform EC in an aseptic environment. The high-quality strains were screened for identification after the fermentation broth was found using HPLC, and the primary unidentified chemicals were separated and purified in order to be structurally identified. Strain 1 was identified as Aspergillus niger and strain 2 as Actinomucor elegans; the main transformation product A was identified as pinoresinol (Pin) and B as dehydrodiconiferyl alcohol (DA). The biotransformation of EC utilizing Aspergillus niger and Actinomucor elegans is reported for the first time in this study's conclusion, resulting in the production of Pin and DA.


Asunto(s)
Aspergillus niger , Biotransformación , Eucommiaceae , Fermentación , Lignanos , Mucor , Extractos Vegetales , Aspergillus niger/metabolismo , Mucor/metabolismo , Lignanos/química , Lignanos/metabolismo , Eucommiaceae/química , Extractos Vegetales/química , Furanos/metabolismo , Furanos/química , Cromatografía Líquida de Alta Presión
11.
BMC Plant Biol ; 24(1): 642, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38972980

RESUMEN

Among the several threats to humanity by anthropogenic activities, contamination of the environment by heavy metals is of great concern. Upon entry into the food chain, these metals cause serious hazards to plants and other organisms including humans. Use of microbes for bioremediation of the soil and stress mitigation in plants are among the preferred strategies to provide an efficient, cost-effective, eco-friendly solution of the problem. The current investigation is an attempt in this direction where fungal strain PH1 was isolated from the rhizosphere of Parthenium hysterophorus which was identified as Aspergillus niger by sequence homology of the ITS 1 and ITS 4 regions of the rRNA. The strain was tested for its effect on growth and biochemical parameters as reflection of its potential to mitigate Pb stress in Zea mays exposed to 100, 200 and 500 µg of Pb/g of soil. In the initial screening, it was revealed that the strain has the ability to tolerate lead stress, solubilize insoluble phosphate and produce plant growth promoting hormones (IAA and SA) and other metabolites like phenolics, flavonoids, sugar, protein and lipids. Under 500 µg of Pb/g of soil, Z. mays exhibited significant growth retardation with a reduction of 31% in root length, 30.5% in shoot length, 57.5% in fresh weight and 45.2% in dry weight as compared to control plants. Inoculation of A. niger to Pb treated plants not only restored root and shoot length, rather promoted it to a level significantly higher than the control plants. Association of the strain modulated the physio-hormonal attributes of maize plants that resulted in their better growth which indicated a state of low stress. Additionally, the strain boosted the antioxidant defence system of the maize there by causing a significant reduction in the ascorbic acid peroxidase (1.5%), catalase (19%) and 1,1-diphenyl-2 picrylhydrazyl (DPPH) radical scavenging activity (33.3%), indicating a lower stress condition as compared to their non-inoculated stressed plants. Based on current evidence, this strain can potentially be used as a biofertilizer for Pb-contaminated sites where it will improve overall plant health with the hope of achieving better biological and agricultural yields.


Asunto(s)
Antioxidantes , Aspergillus niger , Plomo , Fosfatos , Fotosíntesis , Zea mays , Zea mays/crecimiento & desarrollo , Zea mays/microbiología , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Aspergillus niger/metabolismo , Plomo/metabolismo , Antioxidantes/metabolismo , Fotosíntesis/efectos de los fármacos , Fosfatos/metabolismo , Contaminantes del Suelo/metabolismo , Estrés Fisiológico , Biodegradación Ambiental
12.
SLAS Technol ; 29(4): 100153, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844138

RESUMEN

Probiotic fermentation studies are vital in many areas, particularly when it comes to feeding applications. This work examines probiotic fermentation in oil tea crops. The assessment of tea saponin-degrading bacteria and optimization of fermentation conditions using fermented oil tea cake under natural conditions, screening out six strains with strong ability to degrade tea saponin; selection of the best tea saponin degradation strain L.2 and recognition of its morphological features and ITS sequence to obtain L.2 strain is Aspergillus Niger. Oil tea is rich in tea saponin. Aspergillus Niger degraded tea saponins in oil teacakes at a rate of 93.96 % under the ideal conditions of 31.3 oC, 103.5 h, and 4.57 mL of initial acid addition. This has been accomplished via solid-state fermentation of L.2 using single factor studies and surface response optimization experiments. Moreover, Aspergillus Niger degraded tea saponins in oil tea cakes at a rate of 93.96% at the ideal circumstances of 31.3 C, 103.5 h, and 4.57 mL of initial acid addition.


Asunto(s)
Aspergillus niger , Fermentación , Probióticos , Saponinas , Aspergillus niger/metabolismo , Probióticos/metabolismo , Saponinas/metabolismo , Té/química
13.
Int J Biol Macromol ; 273(Pt 2): 133224, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38897518

RESUMEN

In recent years, with the booming of the edible mushroom industry, chitin production has become increasingly dependent on fungi and other non-traditional sources. Fungal chitin has advantages including superior performance, simpler separation processes, abundant raw materials, and the absence of shellfish allergens. As a kind of edible mushroom, flammulina velutipes (F. velutipes) also has the advantages of wide source and large annual yield. This provided the possibility for the extraction of chitin. Here, a procedure to extract chitin from F. velutipes waste be presented. This method comprises low-concentration acid pretreatment coupled with consolidated bioprocessing with Aspergillus niger. Characterization by SEM, FTIR, XRD, NMR, and TGA confirmed that the extracted chitin was ß-chitin. To achieve optimal fermentation of F. velutipes waste (80 g/L), ammonium sulfate and glucose were selected as nitrogen and carbon sources (5 g/L), with a fermentation time of 5 days. The extracted chitin could be further deacetylated and purified to obtain high-purity chitosan (99.2 % ± 1.07 %). This chitosan exhibited a wide degree of deacetylation (50.0 % ± 1.33 % - 92.1 % ± 0.97 %) and a molecular weight distribution of 92-192 kDa. Notably, the yield of chitosan extracted in this study was increased by 56.3 % ± 0.47 % compared to the traditional chemical extraction method.


Asunto(s)
Aspergillus niger , Quitina , Fermentación , Flammulina , Aspergillus niger/metabolismo , Flammulina/química , Quitina/química , Quitina/aislamiento & purificación , Residuos , Ácidos/química , Peso Molecular
14.
Food Res Int ; 190: 114628, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945581

RESUMEN

Aromatic compounds serve as the primary source of floral and fruity aromas in sauce-flavor (Maotai flavor) baijiu, constituting the skeleton components of its flavor profile. Nevertheless, the formation mechanism of these compounds and key aroma-producing enzymes in sauce-flavor Daqu (fermentation agent, SFD) remain elusive. Here, we combined metagenomics, metaproteomics, metabolomics, and key enzyme activity to verify the biosynthesis pathway of aromatic compounds and to identify key enzymes, genes, and characteristic microorganisms in SFD. The results showed that the later period of fermentation was critical for the generation of aromatic compounds in SFD. In-situ verification was conducted on the potential key enzymes and profiles in various metabolites, providing comprehensive evidence for the main synthetic pathways of aromatic compounds in SFD. Notably, our results showed that primary amine oxidase (PrAO) and aldehyde dehydrogenase (ALDH) emerged as two key enzymes promoting aromatic compound synthesis. Additionally, two potential key functional genes regulating aromatics generation were identified during SFD fermentation through correlation analysis between proteins and relevant metabolites, coupled with in vitro amplification test. Furthermore, original functional strains (Aspergillus flavus-C10 and Aspergillus niger-IN2) exhibiting high PrAO and ALDH production were successfully isolated from SFD, thus validating the results of metagenomics and metaproteomics analyses. This study comprehensively elucidates the pathway of aromatic compound formation in SFD at the genetic, proteomic, enzymatic, and metabolomic levels, providing new ideas for the investigation of key flavor substances in baijiu. Additionally, these findings offer valuable insights into the regulatory mechanisms of aromatic compounds generation.


Asunto(s)
Fermentación , Aromatizantes , Aromatizantes/metabolismo , Odorantes/análisis , Proteómica , Aspergillus niger/enzimología , Aspergillus niger/genética , Aspergillus niger/metabolismo , Aspergillus flavus/enzimología , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Metagenómica , Metabolómica , Alimentos Fermentados/microbiología
15.
Fungal Biol ; 128(4): 1868-1875, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38876539

RESUMEN

In the development of fungal based materials for applications in construction through to biomedical materials and fashion, understanding how to regulate and direct growth is key for gaining control over the form of material generated. Here, we show how simple 'chemical food' cues can be used to manipulate the growth of fungal networks by taking Aspergillus niger as an exemplar species. Chemotrophic responses towards a range of nitrogen and carbon containing biomolecules including amino acids, sugars and sugar alcohols were quantified in terms of chemotrophic index (CI) under a range of basal media compositions (low and high concentrations of N and C sources). Growth of filamentous networks was followed using fluorescence microscopy at single time points and during growth by an AI analytical approach to explore chemo sensing behaviour of the fungus when exposed to pairs (C-C, C-N, N-N) of biomolecules simultaneously. Data suggests that the directive growth of A. niger can be controlled towards simple biomolecules with CI values giving a good approximation for expected growth under a range of growth conditions. This is a first step towards identifying conditions for researcher-led directed growth of hyphae to make mycelial mats with tuneable morphological, physicochemical, and mechanical characteristics.


Asunto(s)
Aspergillus niger , Medios de Cultivo , Hifa , Nitrógeno , Aspergillus niger/crecimiento & desarrollo , Aspergillus niger/metabolismo , Hifa/crecimiento & desarrollo , Medios de Cultivo/química , Nitrógeno/metabolismo , Carbono/metabolismo , Aminoácidos/metabolismo , Microscopía Fluorescente
16.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1909-1923, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38914500

RESUMEN

Galactitol, a rare sugar alcohol, has promising potential in the food industry and pharmaceutical field. The available industrial production methods rely on harsh hydrogenation processes, which incur high costs and environmental concerns. It is urgent to develop environmentally friendly and efficient biosynthesis technologies. In this study, a xylose reductase named AnXR derived from Aspergillus niger CBS 513.88 was identified and characterized for the enzymatic properties. AnXR exhibited the highest activity at 25 ℃ and pH 8.0, and it belonged to the NADPH-dependent aldose reductase family. To engineer a strain for galactitol production, we deleted the galactokinase (GAL1) gene in Saccharomyes cerevisiae by using the recombinant gene technology, which significantly reduced the metabolic utilization of D-galactose by host cells. Subsequently, we introduced the gene encoding AnXR into this modified strain, creating an engineered strain capable of catalyzing the conversion of D-galactose into galactitol. Furthermore, we optimized the whole-cell catalysis conditions for the engineered strain, which achieved a maximum galactitol yield of 12.10 g/L. Finally, we tested the reduction ability of the strain for other monosaccharides and discovered that it could produce functional sugar alcohols such as xylitol and arabinitol. The engineered strain demonstrates efficient biotransformation capabilities for galactitol and other functional sugar alcohols, representing a significant advancement in environmentally sustainable production practices.


Asunto(s)
Aldehído Reductasa , Aspergillus niger , Galactitol , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aldehído Reductasa/metabolismo , Aldehído Reductasa/genética , Galactitol/metabolismo , Galactitol/genética , Aspergillus niger/metabolismo , Aspergillus niger/genética , Galactosa/metabolismo , Ingeniería Metabólica/métodos , Fermentación , Microbiología Industrial , Galactoquinasa/genética , Galactoquinasa/metabolismo
17.
Sci Total Environ ; 933: 173171, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38740208

RESUMEN

Phosphogypsum (PG) is the produced solid waste during phosphorus (P) extraction from phosphate rocks. PG is featured by its abundant PO43- and SO42-. This study investigated the utilization of PG as a material for lead (Pb) remediation, with the assistance of functional fungus. Aspergillus niger (A. niger) is a typical phosphate-solubilizing fungi (PSF), which has high ability to secret organic acids. Oxalic acid is its major secreted organic acid, which is often applied to enhance the P release from phosphate minerals. In this study, synthetic oxalic acid increased the immobilization rate of Pb2+ up to >99 % with the addition of PG. Then, it was observed that biogenic oxalic acid from A. niger can achieve comparable remediation effects. This was due to that PG could provide sufficient P for fungal growth, which allowed sustainable remediation. Subsequently, oxalic acid secreted by A. niger significantly increased the release of active P from PG, and then induced the formation of PPb minerals. In addition, other metabolites of A. niger (such as tyrosine-like substance) can also be complexed with Pb2+. Simultaneously, A. niger did not induce evidently elevation water-soluble fluorine (F) as PG contained abundant Ca2+. Moreover, this study elucidated that oversupply of PG promoted the formation of anglesite (Ksp = 1.6 × 10-8, relatively unstable), whereas the formation of lead oxalate (Ksp = 4.8 × 10-10, relatively stable) was reduced. This study hence shed a bright light on the sustainable utilization of PG for fungus-assisted remediation of heavy metals.


Asunto(s)
Aspergillus niger , Biodegradación Ambiental , Sulfato de Calcio , Plomo , Fosfatos , Fósforo , Contaminantes del Suelo , Plomo/metabolismo , Fósforo/metabolismo , Aspergillus niger/metabolismo , Fosfatos/metabolismo , Contaminantes del Suelo/metabolismo , Restauración y Remediación Ambiental/métodos
18.
Biotechnol J ; 19(5): e2400014, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38719614

RESUMEN

Microbial production of L-malic acid from renewable carbon sources has attracted extensive attention. The reduced cofactor NADPH plays a key role in biotransformation because it participates in both biosynthetic reactions and cellular stress responses. In this study, NADPH or its precursors nicotinamide and nicotinic acid were added to the fermentation medium of Aspergillus niger RG0095, which significantly increased the yield of malic acid by 11%. To further improve the titer and productivity of L-malic acid, we increased the cytoplasmic NADPH levels of A. niger by upregulating the NAD kinases Utr1p and Yef1p. Biochemical analyses demonstrated that overexpression of Utr1p and Yef1p reduced oxidative stress, while also providing more NADPH to catalyze the conversion of glucose into malic acid. Notably, the strain overexpressing Utr1p reached a malate titer of 110.72 ± 1.91 g L-1 after 108 h, corresponding to a productivity of 1.03 ± 0.02 g L-1 h-1. Thus, the titer and productivity of malate were increased by 24.5% and 44.7%, respectively. The strategies developed in this study may also be useful for the metabolic engineering of fungi to produce other industrially relevant bulk chemicals.


Asunto(s)
Aspergillus niger , Fermentación , Malatos , Ingeniería Metabólica , NADP , Aspergillus niger/metabolismo , Aspergillus niger/genética , Malatos/metabolismo , Ingeniería Metabólica/métodos , NADP/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucosa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
19.
Nat Commun ; 15(1): 4486, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802389

RESUMEN

Bacterial-fungal interactions influence microbial community performance of most ecosystems and elicit specific microbial behaviours, including stimulating specialised metabolite production. Here, we use a co-culture experimental evolution approach to investigate bacterial adaptation to the presence of a fungus, using a simple model of bacterial-fungal interactions encompassing the bacterium Bacillus subtilis and the fungus Aspergillus niger. We find in one evolving population that B. subtilis was selected for enhanced production of the lipopeptide surfactin and accelerated surface spreading ability, leading to inhibition of fungal expansion and acidification of the environment. These phenotypes were explained by specific mutations in the DegS-DegU two-component system. In the presence of surfactin, fungal hyphae exhibited bulging cells with delocalised secretory vesicles possibly provoking an RlmA-dependent cell wall stress. Thus, our results indicate that the presence of the fungus selects for increased surfactin production, which inhibits fungal growth and facilitates the competitive success of the bacterium.


Asunto(s)
Adaptación Fisiológica , Aspergillus niger , Bacillus subtilis , Lipopéptidos , Bacillus subtilis/fisiología , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Aspergillus niger/metabolismo , Aspergillus niger/fisiología , Aspergillus niger/crecimiento & desarrollo , Lipopéptidos/metabolismo , Péptidos Cíclicos/metabolismo , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Interacciones Microbianas/fisiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Técnicas de Cocultivo , Mutación , Pared Celular/metabolismo
20.
PLoS One ; 19(5): e0302185, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38805421

RESUMEN

In this investigation, we explore the harnessing of bamboo shoot residues (BSR) as a viable source for ruminant feed through fungal treatment, with the overarching objective of elevating feed quality and optimizing bamboo shoot utilization. The white-rot fungi (Wr.fungi), Aspergillus niger (A.niger), and its co-cultures (A.niger&Wr.fungi) were employed to ferment BSR. And the impact of different fermentation methods and culture time on the chemical composition (Crude protein Ash, neutral detergent fibre and acid detergent fibers), enzyme activity (Cellulase, Laccase, Filter paperase and Lignin peroxidase activities), and rumen digestibility in vitro were assessed. The findings reveal a nota ble 30.39% increase in crude protein in fermented BSR, accompanied by respective decreases of 13.02% and 17.31% in acid detergent fiber and neutral detergent fibre content. Enzyme activities experienced augmentation post-fermentation with A.niger&Wr.fungi. Specifically, the peak Cellulase, Laccase, and Lignin peroxidase activities for BSR with Wr.fungi treatment reached 748.4 U/g, 156.92 U/g, and 291.61 U/g, respectively, on the sixth day of fermentation. Concurrently, NH3-N concentration exhibited an upward trend with prolonged fermentation time. Total volatile fatty acids registered a decline, and the Acetate/Propionate ratio reached its nadir after 6 days of fermentation under the A.niger&Wr.fungi treatment. These outcomes furnish a theoretical foundation for the development of ruminant feeds treated via fungal co-culture.


Asunto(s)
Alimentación Animal , Fermentación , Rumiantes , Animales , Alimentación Animal/análisis , Aspergillus niger/metabolismo , Brotes de la Planta/química , Rumen/microbiología , Hongos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA