Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.713
Filtrar
1.
Sci Rep ; 14(1): 10877, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740862

RESUMEN

In chronic stages of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalitis (EAE), connexin (Cx)43 gap junction channel proteins are overexpressed because of astrogliosis. To elucidate the role of increased Cx43, the central nervous system (CNS)-permeable Cx blocker INI-0602 was therapeutically administered. C57BL6 mice with chronic EAE initiated by MOG35-55 received INI-0602 (40 mg/kg) or saline intraperitoneally every other day from days post-immunization (dpi) 17-50. Primary astroglia were employed to observe calcein efflux responses. In INI-0602-treated mice, EAE clinical signs improved significantly in the chronic phase, with reduced demyelination and decreased CD3+ T cells, Iba-1+ and F4/80+ microglia/macrophages, and C3+GFAP+ reactive astroglia infiltration in spinal cord lesions. Flow cytometry analysis of CD4+ T cells from CNS tissues revealed significantly reduced Th17 and Th17/Th1 cells (dpi 24) and Th1 cells (dpi 50). Multiplex array of cerebrospinal fluid showed significantly suppressed IL-6 and significantly increased IL-10 on dpi 24 in INI-0602-treated mice, and significantly suppressed IFN-γ and MCP-1 on dpi 50 in the same group. In vitro INI-0602 treatment inhibited ATP-induced calcium propagations of Cx43+/+ astroglial cells to similar levels of those of Cx43-/- cells. Astroglial Cx43 hemichannels represent a novel therapeutic target for chronic EAE and MS.


Asunto(s)
Astrocitos , Conexina 43 , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental , Ratones Endogámicos C57BL , Esclerosis Múltiple , Animales , Conexina 43/metabolismo , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/patología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Ratones , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Femenino
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(4): 636-643, 2024 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-38708495

RESUMEN

OBJECTIVE: To investigate the effect of Jisuikang formula-medicated serum for promoting spinal cord injury (SCI) repair in rats and explore the possible mechanism. METHODS: Thirty adult SD rats were randomized into sham-operated group, SCI (induced using a modified Allen method) model group, and Jisuikang formula-medicated serum treatment group. After the operations, the rats were treated with normal saline or Jisuikang by gavage on a daily basis for 14 days, and the changes in hindlimb motor function of the rats was assessed with Basso-Beattie-Bresnahan (BBB) scores and inclined-plate test. The injured spinal cord tissues were sampled from the SCI rat models for single-cell RNA sequencing, and bioinformatics analysis was performed to identify the target genes of Jisuikang, spinal cord injury and glycolysis. In the cell experiment, cultured astrocytes from neonatal SD rat cortex were treated with SOX2 alone or in combination with Jisuikang-medicated serum for 21 days, and the protein expressions of PKM2, p-PKM2 and YAP and colocalization of PKM2 and YAP in the cells were analyzed with Western blotting and immunofluorescence staining, respectively. RESULTS: The SCI rats with Jisuikang treatment showed significantly improved BBB scores and performance in inclined-plate test. At the injury site, high PKM2 expression was detected in various cell types. Bioinformatic analysis identified the HIPPO-YAP signaling pathway as the target pathway of Jisuikang. In cultured astrocytes, SOX2 combined with the mediated serum, as compared with SOX2 alone, significantly increased PKM2, p-PKM2 and YAP expressions and entry of phosphorylated PKM2 into the nucleus, and promoted PKM2 and YAP co-localization in the cells. CONCLUSION: Jisuikang formula accelerates SCI repair in rats possibly by promoting aerobic glycolysis of the astrocytes via activating the PKM2/YAP axis to induce reprogramming of the astrocytes into neurons.


Asunto(s)
Astrocitos , Piruvato Quinasa , Ratas Sprague-Dawley , Transducción de Señal , Traumatismos de la Médula Espinal , Proteínas Señalizadoras YAP , Animales , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Ratas , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas de Unión a Hormona Tiroide , Hormonas Tiroideas/metabolismo , Proteínas Portadoras/metabolismo , Medicamentos Herbarios Chinos/farmacología , Modelos Animales de Enfermedad , Proteínas de la Membrana/metabolismo
3.
Cells ; 13(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38727321

RESUMEN

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deficiency of the survival motor neuron (SMN) protein. Although SMA is a genetic disease, environmental factors contribute to disease progression. Common pathogen components such as lipopolysaccharides (LPS) are considered significant contributors to inflammation and have been associated with muscle atrophy, which is considered a hallmark of SMA. In this study, we used the SMNΔ7 experimental mouse model of SMA to scrutinize the effect of systemic LPS administration, a strong pro-inflammatory stimulus, on disease outcome. Systemic LPS administration promoted a reduction in SMN expression levels in CNS, peripheral lymphoid organs, and skeletal muscles. Moreover, peripheral tissues were more vulnerable to LPS-induced damage compared to CNS tissues. Furthermore, systemic LPS administration resulted in a profound increase in microglia and astrocytes with reactive phenotypes in the CNS of SMNΔ7 mice. In conclusion, we hereby show for the first time that systemic LPS administration, although it may not precipitate alterations in terms of deficits of motor functions in a mouse model of SMA, it may, however, lead to a reduction in the SMN protein expression levels in the skeletal muscles and the CNS, thus promoting synapse damage and glial cells' reactive phenotype.


Asunto(s)
Modelos Animales de Enfermedad , Lipopolisacáridos , Atrofia Muscular Espinal , Animales , Lipopolisacáridos/farmacología , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/metabolismo , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Ratones Endogámicos C57BL , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/patología , Inflamación/patología
4.
Theranostics ; 14(7): 2856-2880, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773968

RESUMEN

Cell metabolism reprogramming to sustain energy production, while reducing oxygen and energy consuming processes is crucially important for the adaptation to hypoxia/ischemia. Adaptive metabolic rewiring is controlled by hypoxia-inducible factors (HIFs). Accumulating experimental evidence indicates that timely activation of HIF in brain-resident cells improves the outcome from acute ischemic stroke. However, the underlying molecular mechanisms are still incompletely understood. Thus, we investigated whether HIF-dependent metabolic reprogramming affects the vulnerability of brain-resident cells towards ischemic stress. Methods: We used genetic and pharmacological approaches to activate HIF in the murine brain in vivo and in primary neurons and astrocytes in vitro. Numerous metabolomic approaches and molecular biological techniques were applied to elucidate potential HIF-dependent effects on the central carbon metabolism of brain cells. In animal and cell models of ischemic stroke, we analysed whether HIF-dependent metabolic reprogramming influences the susceptibility to ischemic injury. Results: Neuron-specific gene ablation of prolyl-4-hydroxylase domain 2 (PHD2) protein, negatively regulating the protein stability of HIF-α in an oxygen dependent manner, reduced brain injury and functional impairment of mice after acute stroke in a HIF-dependent manner. Accordingly, PHD2 deficient neurons showed an improved tolerance towards ischemic stress in vitro, which was accompanied by enhanced HIF-1-mediated glycolytic lactate production through pyruvate dehydrogenase kinase-mediated inhibition of the pyruvate dehydrogenase. Systemic treatment of mice with roxadustat, a low-molecular weight pan-PHD inhibitor, not only increased the abundance of numerous metabolites of the central carbon and amino acid metabolism in murine brain, but also ameliorated cerebral tissue damage and sensorimotor dysfunction after acute ischemic stroke. In neurons and astrocytes roxadustat provoked a HIF-1-dependent glucose metabolism reprogramming including elevation of glucose uptake, glycogen synthesis, glycolytic capacity, lactate production and lactate release, which enhanced the ischemic tolerance of astrocytes, but not neurons. We found that strong activation of HIF-1 in neurons by non-selective inhibition of all PHD isoenzymes caused a HIF-1-dependent upregulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 redirecting glucose-6-phosphate from pentose phosphate pathway (PPP) to the glycolysis pathway. This was accompanied by a reduction of NADPH production in the PPP, which further decreased the low intrinsic antioxidant reserve of neurons, making them more susceptible to ischemic stress. Nonetheless, in organotypic hippocampal cultures with preserved neuronal-glial interactions roxadustat decreased the neuronal susceptibility to ischemic stress, which was largely prevented by restricting glycolytic energy production through lactate transport blockade. Conclusion: Collectively, our results indicate that HIF-1-mediated metabolic reprogramming alleviates the intrinsic vulnerability of brain-resident cells to ischemic stress.


Asunto(s)
Astrocitos , Carbono , Subunidad alfa del Factor 1 Inducible por Hipoxia , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Accidente Cerebrovascular Isquémico , Neuronas , Animales , Ratones , Accidente Cerebrovascular Isquémico/metabolismo , Neuronas/metabolismo , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Carbono/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones Endogámicos C57BL , Procolágeno-Prolina Dioxigenasa/metabolismo , Procolágeno-Prolina Dioxigenasa/genética , Modelos Animales de Enfermedad , Isquemia Encefálica/metabolismo , Glucólisis/efectos de los fármacos , Encéfalo/metabolismo , Reprogramación Celular/efectos de los fármacos
5.
Biomolecules ; 14(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38785950

RESUMEN

Limited substrate availability because of the blood-brain barrier (BBB) has made the brain develop specific molecular mechanisms to survive, using lactate synthesized by astrocytes as a source of energy in neurons. To understand if lactate improves cellular viability and susceptibility to glutamate toxicity, primary cortical cells were incubated in glucose- or lactate-containing media and toxic concentrations of glutamate for 24 h. Cell death was determined by immunostaining and lactate dehydrogenase (LDH) release. Mitochondrial membrane potential and nitric oxide (NO) levels were measured using Tetramethylrhodamine, methyl ester (TMRM) and 4-Amino-5-Methylamino-2',7'-Difluorofluorescein Diacetate (DAF-FM) live staining, respectively. LDH activity was quantified in single cells in the presence of lactate (LDH substrate) and oxamate (LDH inhibitor). Nuclei of cells were stained with DAPI and neurons with MAP2. Based on the distance between neurons and glial cells, they were classified as linked (<10 µm) and non-linked (>10 µm) neurons. Lactate increased cell death rate and the mean value of endogenous NO levels compared to glucose incubations. Mitochondrial membrane potential was lower in the cells cultured with lactate, but this effect was reversed when glutamate was added to the lactate medium. LDH activity was higher in linked neurons compared to non-linked neurons, supporting the hypothesis of the existence of the lactate shuttle between astrocytes and at least a portion of neurons. In conclusion, glucose or lactate can equally preserve primary cortical neurons, but those neurons having a low level of LDH activity and incubated with lactate cannot cover high energetic demand solely with lactate and become more susceptible to glutamate toxicity.


Asunto(s)
Glucosa , Ácido Glutámico , L-Lactato Deshidrogenasa , Ácido Láctico , Potencial de la Membrana Mitocondrial , Neuronas , Animales , Ácido Glutámico/metabolismo , Ácido Glutámico/toxicidad , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , L-Lactato Deshidrogenasa/metabolismo , Células Cultivadas , Ácido Láctico/metabolismo , Glucosa/metabolismo , Metabolismo Energético/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/citología , Óxido Nítrico/metabolismo , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ratas , Muerte Celular/efectos de los fármacos
6.
Biomolecules ; 14(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38785974

RESUMEN

Diabetic retinopathy (DR) affects over 140 million people globally. The mechanisms that lead to blindness are still enigmatic but there is evidence that sustained inflammation and hypoxia contribute to vascular damage. Despite efforts to understand the role of inflammation and microglia in DR's pathology, the contribution of astrocytes to hypoxic responses is less clear. To investigate the role of astrocytes in hypoxia-induced retinopathy, we utilized a 7-day systemic hypoxia model using the GFAP-CreERT2:Rosa26iDTR transgenic mouse line. This allows for the induction of inflammatory reactive astrogliosis following tamoxifen and diphtheria toxin administration. We hypothesize that DTx-induced astrogliosis is neuroprotective during hypoxia-induced retinopathy. Glial, neuronal, and vascular responses were quantified using immunostaining, with antibodies against GFAP, vimentin, IBA-1, NeuN, fibrinogen, and CD31. Cytokine responses were measured in both the brain and serum. We report that while both DTx and hypoxia induced a phenotype of reduced microglia morphological activation, DTx, but not hypoxia, induced an increase in the Müller glia marker vimentin. We did not observe that the combination of DTx and hypoxic treatments exacerbated the signs of reactive glial cells, nor did we observe a significant change in the expression immunomodulatory mediators IL-1ß, IL2, IL-4, IL-5, IL-6, IL-10, IL-18, CCL17, TGF-ß1, GM-CSF, TNF-α, and IFN-γ. Overall, our results suggest that, in this hypoxia model, reactive astrogliosis does not alter the inflammatory responses or cause vascular damage in the retina.


Asunto(s)
Modelos Animales de Enfermedad , Células Ependimogliales , Gliosis , Ratones Transgénicos , Microglía , Animales , Gliosis/patología , Gliosis/metabolismo , Gliosis/inducido químicamente , Ratones , Microglía/metabolismo , Microglía/patología , Microglía/efectos de los fármacos , Células Ependimogliales/metabolismo , Células Ependimogliales/patología , Células Ependimogliales/efectos de los fármacos , Retina/metabolismo , Retina/patología , Retina/efectos de los fármacos , Hipoxia/metabolismo , Hipoxia/patología , Astrocitos/metabolismo , Astrocitos/patología , Astrocitos/efectos de los fármacos , Proteína Ácida Fibrilar de la Glía/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Citocinas/metabolismo , Vimentina/metabolismo , Vimentina/genética , Toxina Diftérica
7.
Cells ; 13(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786059

RESUMEN

In recent decades, there has been a dramatic rise in the rates of children being born after in utero exposure to drugs of abuse, particularly opioids. Opioids have been shown to have detrimental effects on neurons and glia in the central nervous system (CNS), but the impact of prenatal opioid exposure (POE) on still-developing synaptic circuitry is largely unknown. Astrocytes exert a powerful influence on synaptic development, secreting factors to either promote or inhibit synapse formation and neuronal maturation in the developing CNS. Here, we investigated the effects of the partial µ-opioid receptor agonist buprenorphine on astrocyte synaptogenic signaling and morphological development in cortical cell culture. Acute buprenorphine treatment had no effect on the excitatory synapse number in astrocyte-free neuron cultures. In conditions where neurons shared culture media with astrocytes, buprenorphine attenuated the synaptogenic capabilities of astrocyte-secreted factors. Neurons cultured from drug-naïve mice showed no change in synapses when treated with factors secreted by astrocytes from POE mice. However, this same treatment was synaptogenic when applied to neurons from POE mice, indicating a complex neuroadaptive response in the event of impaired astrocyte signaling. In addition to promoting morphological and connectivity changes in neurons, POE exerted a strong influence on astrocyte development, disrupting their structural maturation and promoting the accumulation of lipid droplets (LDs), suggestive of a maladaptive stress response in the developing CNS.


Asunto(s)
Analgésicos Opioides , Astrocitos , Neuronas , Efectos Tardíos de la Exposición Prenatal , Transducción de Señal , Sinapsis , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Animales , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Femenino , Embarazo , Ratones , Analgésicos Opioides/farmacología , Analgésicos Opioides/efectos adversos , Efectos Tardíos de la Exposición Prenatal/patología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Transducción de Señal/efectos de los fármacos , Buprenorfina/farmacología , Células Cultivadas , Ratones Endogámicos C57BL
8.
Neuropharmacology ; 253: 109982, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701943

RESUMEN

Perioperative neurocognitive disorders (PND) are cognitive dysfunctions that usually occur in elderly patients after anesthesia and surgery. Microglial overactivation is a key underlying mechanism. Interleukin-33 (IL-33) is a member of the IL-1 family that orchestrates microglial function. In the present study, we explored how IL-33, which regulates microglia, contributes to cognitive improvement in a male mouse model of PND. An exploratory laparotomy was performed to establish a PND model. The expression levels of IL-33 and its receptor ST2 were evaluated using Western blot. IL-33/ST2 secretion, microglial density, morphology, phagocytosis of synapse, and proliferation, and dystrophic microglia were assessed using immunofluorescence. Synaptic plasticity was measured using Golgi staining and long-term potentiation. The Morris water maze and open field test were used to evaluate cognitive function and anxiety. Hippocampal expression of IL-33 and ST2 were elevated on postoperative day 3. We confirmed that IL-33 was secreted by astrocytes and neurons, whereas ST2 mainly colocalized with microglia. IL-33 treatment induced microgliosis after anesthesia and surgery. These microglia had larger soma sizes and shorter and fragmented branches. Compared to the Surgery group, IL-33 treatment reduced the synaptic phagocytosis of microglia and increased microglial proliferation and dystrophic microglia. IL-33 treatment also reversed the impaired synaptic plasticity and cognitive function caused by anesthesia and surgery. In conclusion, these results indicate that IL-33 plays a key role in regulating microglial state and synaptic phagocytosis in a PND mouse model. IL-33 treatment has a therapeutic potential for improving cognitive dysfunction in PND.


Asunto(s)
Interleucina-33 , Ratones Endogámicos C57BL , Microglía , Animales , Microglía/efectos de los fármacos , Microglía/metabolismo , Interleucina-33/metabolismo , Masculino , Ratones , Plasticidad Neuronal/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Complicaciones Cognitivas Postoperatorias/metabolismo , Fagocitosis/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Trastornos Neurocognitivos/metabolismo , Trastornos Neurocognitivos/tratamiento farmacológico , Modelos Animales de Enfermedad , Neuronas/efectos de los fármacos , Neuronas/metabolismo
9.
Mol Pain ; 20: 17448069241256466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716504

RESUMEN

Background: Recent studies have shown that peripheral nerve regeneration process is closely related to neuropathic pain. Toll-like receptor 4 (TLR4) signaling was involved in different types of pain and nerve regeneration. TLR4 induced the recruitment of myeloid differentiation factor-88 adaptor protein (MyD88) and NF-κB-depended transcriptional process in sensory neurons and glial cells, which produced multiple cytokines and promoted the induction and persistence of pain. Our study aimed to investigate procyanidins's effect on pain and nerve regeneration via TLR4-Myd88 signaling. Methods: Spinal nerve ligation (SNL) model was established to measure the analgesic effect of procyanidins. Anatomical measurement of peripheral nerve regeneration was measured by microscopy and growth associated protein 43 (GAP43) staining. Western blotting and/or immunofluorescent staining were utilized to detect TLR4, myeloid differentiation factor-88 adaptor protein (MyD88), ionized calcium-binding adapter molecule 1 (IBA1) and nuclear factor kappa-B-p65 (NF-κB-p65) expression, as well as the activation of astrocyte and microglia. The antagonist of TLR4 (LPS-RS-Ultra, LRU) were intrathecally administrated to assess the behavioral effects of blocking TLR4 signaling on pain and nerve regeneration. Result: Procyanidins reduced mechanical allodynia, thermal hyperalgesia and significantly suppressed the number of nerve fibers regenerated and the degree of myelination in SNL model. Compared with sham group, TLR4, MyD88, IBA1 and phosphorylation of NF-κB-p65 were upregulated in SNL rats which were reversed by procyanidins administration. Additionally, procyanidins also suppressed activation of spinal astrocytes and glial cells. Conclusion: Suppression of TLR4-MyD88 signaling contributes to the alleviation of neuropathic pain and reduction of nerve regeneration by procyanidins.


Asunto(s)
Factor 88 de Diferenciación Mieloide , Regeneración Nerviosa , Neuralgia , Proantocianidinas , Ratas Sprague-Dawley , Transducción de Señal , Receptor Toll-Like 4 , Animales , Proantocianidinas/farmacología , Receptor Toll-Like 4/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Masculino , Extracto de Semillas de Uva/farmacología , Ratas , Microglía/efectos de los fármacos , Microglía/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Nervios Espinales/efectos de los fármacos
10.
CNS Neurosci Ther ; 30(5): e14726, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38715251

RESUMEN

AIMS: The preoptic area (POA) of the hypothalamus, crucial in thermoregulation, has long been implicated in the pain process. However, whether nociceptive stimulation affects body temperature and its mechanism remains poorly studied. METHODS: We used capsaicin, formalin, and surgery to induce acute nociceptive stimulation and monitored rectal temperature. Optical fiber recording, chemical genetics, confocal imaging, and pharmacology assays were employed to confirm the role and interaction of POA astrocytes and extracellular adenosine. Immunofluorescence was utilized for further validation. RESULTS: Acute nociception could activate POA astrocytes and induce a decrease in body temperature. Manipulation of astrocytes allowed bidirectional control of body temperature. Furthermore, acute nociception and astrocyte activation led to increased extracellular adenosine concentration within the POA. Activation of adenosine A1 or A2A receptors contributed to decreased body temperature, while inhibition of these receptors mitigated the thermo-lowering effect of astrocytes. CONCLUSION: Our results elucidate the interplay between acute nociception and thermoregulation, specifically highlighting POA astrocyte activation. This enriches our understanding of physiological responses to painful stimuli and contributes to the analysis of the anatomical basis involved in the process.


Asunto(s)
Astrocitos , Hipotermia , Nocicepción , Área Preóptica , Animales , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Nocicepción/fisiología , Hipotermia/inducido químicamente , Masculino , Ratones , Receptores Purinérgicos P1/metabolismo , Ratones Endogámicos C57BL , Adenosina/metabolismo , Capsaicina/farmacología , Formaldehído/toxicidad , Formaldehído/farmacología
11.
CNS Neurosci Ther ; 30(5): e14740, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38715318

RESUMEN

AIMS: γ-aminobutyric acid (GABA) from reactive astrocytes is critical for the dysregulation of neuronal activity in various neuroinflammatory conditions. While Scutellaria baicalensis Georgi (S. baicalensis) is known for its efficacy in addressing neurological symptoms, its potential to reduce GABA synthesis in reactive astrocytes and the associated neuronal suppression remains unclear. This study focuses on the inhibitory action of monoamine oxidase B (MAO-B), the key enzyme for astrocytic GABA synthesis. METHODS: Using a lipopolysaccharide (LPS)-induced neuroinflammation mouse model, we conducted immunohistochemistry to assess the effect of S. baicalensis on astrocyte reactivity and its GABA synthesis. High-performance liquid chromatography was performed to reveal the major compounds of S. baicalensis, the effects of which on MAO-B inhibition, astrocyte reactivity, and tonic inhibition in hippocampal neurons were validated by MAO-B activity assay, qRT-PCR, and whole-cell patch-clamp. RESULTS: The ethanolic extract of S. baicalensis ameliorated astrocyte reactivity and reduced excessive astrocytic GABA content in the CA1 hippocampus. Baicalin and baicalein exhibited significant MAO-B inhibition potential. These two compounds downregulate the mRNA levels of genes associated with reactive astrogliosis or astrocytic GABA synthesis. Additionally, LPS-induced aberrant tonic inhibition was reversed by both S. baicalensis extract and its key compounds. CONCLUSIONS: In summary, baicalin and baicalein isolated from S. baicalensis reduce astrocyte reactivity and alleviate aberrant tonic inhibition of hippocampal neurons during neuroinflammation.


Asunto(s)
Astrocitos , Flavanonas , Flavonoides , Lipopolisacáridos , Neuronas , Extractos Vegetales , Scutellaria baicalensis , Ácido gamma-Aminobutírico , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Flavanonas/farmacología , Scutellaria baicalensis/química , Ratones , Ácido gamma-Aminobutírico/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Masculino , Flavonoides/farmacología , Extractos Vegetales/farmacología , Lipopolisacáridos/toxicidad , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Monoaminooxidasa/metabolismo , Inhibición Neural/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo
12.
J Neurosci Res ; 102(5): e25339, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38741550

RESUMEN

Diets rich in saturated fats are more detrimental to health than those containing mono- or unsaturated fats. Fatty acids are an important source of energy, but they also relay information regarding nutritional status to hypothalamic metabolic circuits and when in excess can be detrimental to these circuits. Astrocytes are the main site of central fatty acid ß-oxidation, and hypothalamic astrocytes participate in energy homeostasis, in part by modulating hormonal and nutritional signals reaching metabolic neurons, as well as in the inflammatory response to high-fat diets. Thus, we hypothesized that how hypothalamic astrocytes process-specific fatty acids participates in determining the differential metabolic response and that this is sex dependent as males and females respond differently to high-fat diets. Male and female primary hypothalamic astrocyte cultures were treated with oleic acid (OA) or palmitic acid (PA) for 24 h, and an untargeted metabolomics study was performed. A clear predictive model for PA exposure was obtained, while the metabolome after OA exposure was not different from controls. The observed modifications in metabolites, as well as the expression levels of key metabolic enzymes, indicate a reduction in the activity of the Krebs and glutamate/glutamine cycles in response to PA. In addition, there were specific differences between the response of astrocytes from male and female mice, as well as between hypothalamic and cerebral cortical astrocytes. Thus, the response of hypothalamic astrocytes to specific fatty acids could result in differential impacts on surrounding metabolic neurons and resulting in varied systemic metabolic outcomes.


Asunto(s)
Astrocitos , Hipotálamo , Ácido Oléico , Ácido Palmítico , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Ácido Oléico/farmacología , Femenino , Ácido Palmítico/farmacología , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Caracteres Sexuales , Células Cultivadas
13.
J Neuroimmune Pharmacol ; 19(1): 22, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771543

RESUMEN

SARS-CoV-2 spike proteins have been shown to cross the blood-brain barrier (BBB) in mice and affect the integrity of human BBB cell models. However, the effects of SARS-CoV-2 spike proteins in relation to sporadic, late onset, Alzheimer's disease (AD) risk have not been extensively investigated. Here we characterized the individual and combined effects of SARS-CoV-2 spike protein subunits S1 RBD, S1 and S2 on BBB cell types (induced brain endothelial-like cells (iBECs) and astrocytes (iAstrocytes)) generated from induced pluripotent stem cells (iPSCs) harboring low (APOE3 carrier) or high (APOE4 carrier) relative Alzheimer's risk. We found that treatment with spike proteins did not alter iBEC integrity, although they induced the expression of several inflammatory cytokines. iAstrocytes exhibited a robust inflammatory response to SARS-CoV-2 spike protein treatment, with differences found in the levels of cytokine secretion between spike protein-treated APOE3 and APOE4 iAstrocytes. Finally, we tested the effects of potentially anti-inflammatory drugs during SARS-CoV-2 spike protein exposure in iAstrocytes, and discovered different responses between spike protein treated APOE4 iAstrocytes and APOE3 iAstrocytes, specifically in relation to IL-6, IL-8 and CCL2 secretion. Overall, our results indicate that APOE3 and APOE4 iAstrocytes respond differently to anti-inflammatory drug treatment during SARS-CoV-2 spike protein exposure with potential implications to therapeutic responses.


Asunto(s)
Apolipoproteína E3 , Apolipoproteína E4 , Astrocitos , Barrera Hematoencefálica , Citocinas , Glicoproteína de la Espiga del Coronavirus , Barrera Hematoencefálica/metabolismo , Humanos , Citocinas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Astrocitos/metabolismo , Astrocitos/virología , Astrocitos/efectos de los fármacos , Apolipoproteína E3/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , SARS-CoV-2 , COVID-19/metabolismo , COVID-19/inmunología , Células Cultivadas
14.
Sci Rep ; 14(1): 11435, 2024 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-38763939

RESUMEN

Autism spectrum disorder (ASD) exhibits a gender bias, with boys more frequently affected than girls. Similarly, in mouse models induced by prenatal exposure to valproic acid (VPA), males typically display reduced sociability, while females are less affected. Although both males and females exhibit VPA effects on neuroinflammatory parameters, these effects are sex-specific. Notably, females exposed to VPA show increased microglia and astrocyte density during the juvenile period. We hypothesized that these distinct neuroinflammatory patterns contribute to the resilience of females to VPA. To investigate this hypothesis, we treated juvenile animals with intraperitoneal bacterial lipopolysaccharides (LPS), a treatment known to elicit brain neuroinflammation. We thus evaluated the impact of juvenile LPS-induced inflammation on adult sociability and neuroinflammation in female mice prenatally exposed to VPA. Our results demonstrate that VPA-LPS females exhibit social deficits in adulthood, overriding the resilience observed in VPA-saline littermates. Repetitive behavior and anxiety levels were not affected by either treatment. We also evaluated whether the effect on sociability was accompanied by heightened neuroinflammation in the cerebellum and hippocampus. Surprisingly, we observed reduced astrocyte and microglia density in the cerebellum of VPA-LPS animals. These findings shed light on the complex interactions between prenatal insults, juvenile inflammatory stimuli, and sex-specific vulnerability in ASD-related social deficits, providing insights into potential therapeutic interventions for ASD.


Asunto(s)
Trastorno del Espectro Autista , Lipopolisacáridos , Efectos Tardíos de la Exposición Prenatal , Conducta Social , Ácido Valproico , Animales , Femenino , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Embarazo , Ratones , Ácido Valproico/efectos adversos , Masculino , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/etiología , Microglía/efectos de los fármacos , Microglía/metabolismo , Modelos Animales de Enfermedad , Conducta Animal/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Ratones Endogámicos C57BL
15.
J Neuroinflammation ; 21(1): 132, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760862

RESUMEN

BACKGROUND: Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most common neurological problems occurring in the perinatal period. However, there still is not a promising approach to reduce long-term neurodevelopmental outcomes of HIE. Recently, itaconate has been found to exhibit anti-oxidative and anti-inflammatory effects. However, the therapeutic efficacy of itaconate in HIE remains inconclusive. Therefore, this study attempts to explore the pathophysiological mechanisms of oxidative stress and inflammatory responses in HIE as well as the potential therapeutic role of a derivative of itaconate, 4-octyl itaconate (4OI). METHODS: We used 7-day-old mice to induce hypoxic-ischemic (HI) model by right common carotid artery ligation followed by 1 h of hypoxia. Behavioral experiments including the Y-maze and novel object recognition test were performed on HI mice at P60 to evaluate long-term neurodevelopmental outcomes. We employed an approach combining non-targeted metabolomics with transcriptomics to screen alterations in metabolic profiles and gene expression in the hippocampal tissue of the mice at 8 h after hypoxia. Immunofluorescence staining and RT-PCR were used to evaluate the pathological changes in brain tissue cells and the expression of mRNA and proteins. 4OI was intraperitoneally injected into HI model mice to assess its anti-inflammatory and antioxidant effects. BV2 and C8D1A cells were cultured in vitro to study the effect of 4OI on the expression and nuclear translocation of Nrf2. We also used Nrf2-siRNA to further validate 4OI-induced Nrf2 pathway in astrocytes. RESULTS: We found that in the acute phase of HI, there was an accumulation of pyruvate and lactate in the hippocampal tissue, accompanied by oxidative stress and pro-inflammatory, as well as increased expression of antioxidative stress and anti-inflammatory genes. Treatment of 4OI could inhibit activation and proliferation of microglial cells and astrocytes, reduce neuronal death and relieve cognitive dysfunction in HI mice. Furthermore, 4OI enhanced nuclear factor erythroid-2-related factor (Nfe2l2; Nrf2) expression and nuclear translocation in astrocytes, reduced pro-inflammatory cytokine production, and increased antioxidant enzyme expression. CONCLUSION: Our study demonstrates that 4OI has a potential therapeutic effect on neuronal damage and cognitive deficits in HIE, potentially through the modulation of inflammation and oxidative stress pathways by Nrf2 in astrocytes.


Asunto(s)
Animales Recién Nacidos , Astrocitos , Hipoxia-Isquemia Encefálica , Factor 2 Relacionado con NF-E2 , Fármacos Neuroprotectores , Succinatos , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/patología , Ratones , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Succinatos/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Transducción de Señal/efectos de los fármacos , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Modelos Animales de Enfermedad
16.
Cancer Cell ; 42(5): 741-743, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38579726

RESUMEN

In this issue of Cancer Cell, Spitzer and colleagues demonstrate the role of IDH inhibitors on IDHmutant gliomas in reducing proliferation and enhancing cell differentiation toward an astrocytic-like state, thus altering neurodevelopmental pathways. Despite clinical promise, unresolved questions regarding mechanisms of action and resistance underline the need for further research for treatment optimization.


Asunto(s)
Neoplasias Encefálicas , Glioma , Isocitrato Deshidrogenasa , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/antagonistas & inhibidores , Glioma/tratamiento farmacológico , Glioma/patología , Glioma/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Mutación , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo
17.
J Neurosci Res ; 102(4): e25336, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38656664

RESUMEN

Chronic neuroinflammation has been implicated in neurodegenerative disease pathogenesis. A key feature of neuroinflammation is neuronal loss and glial activation, including microglia and astrocytes. 4R-cembranoid (4R) is a natural compound that inhibits hippocampal pro-inflammatory cytokines and increases memory function in mice. We used the lipopolysaccharide (LPS) injection model to study the effect of 4R on neuronal density and microglia and astrocyte activation. C57BL/6J wild-type mice were injected with LPS (5 mg/kg) and 2 h later received either 4R (6 mg/kg) or vehicle. Mice were sacrificed after 72 h for analysis of brain pathology. Confocal images of brain sections immunostained for microglial, astrocyte, and neuronal markers were used to quantify cellular hippocampal phenotypes and neurons. Hippocampal lysates were used to measure the expression levels of neuronal nuclear protein (NeuN), inducible nitrous oxide synthase (iNOS), arginase-1, thrombospondin-1 (THBS1), glial cell-derived neurotrophic factor (GDNF), and orosomucoid-2 (ORM2) by western blot. iNOS and arginase-1 are widely used protein markers of pro- and anti-inflammatory microglia, respectively. GDNF promotes neuronal survival, and ORM2 and THBS1 are astrocytic proteins that regulate synaptic plasticity and inhibit microglial activation. 4R administration significantly reduced neuronal loss and the number of pro-inflammatory microglia 72 h after LPS injection. It also decreased the expression of the pro-inflammatory protein iNOS while increasing arginase-1 expression, supporting its anti-inflammatory role. The protein expression of THBS1, GDNF, and ORM2 was increased by 4R. Our data show that 4R preserves the integrity of hippocampal neurons against LPS-induced neuroinflammation in mice.


Asunto(s)
Hipocampo , Lipopolisacáridos , Ratones Endogámicos C57BL , Neuroglía , Neuronas , Animales , Lipopolisacáridos/toxicidad , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/patología , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Fenotipo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología
18.
eNeuro ; 11(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38604775

RESUMEN

A sublethal ischemic episode [termed preconditioning (PC)] protects neurons in the brain against a subsequent severe ischemic injury. This phenomenon is known as brain ischemic tolerance and has received much attention from researchers because of its robust neuroprotective effects. We have previously reported that PC activates astrocytes and subsequently upregulates P2X7 receptors, thereby leading to ischemic tolerance. However, the downstream signals of P2X7 receptors that are responsible for PC-induced ischemic tolerance remain unknown. Here, we show that PC-induced P2X7 receptor-mediated lactate release from astrocytes has an indispensable role in this event. Using a transient focal cerebral ischemia model caused by middle cerebral artery occlusion, extracellular lactate levels during severe ischemia were significantly increased in mice who experienced PC; this increase was dependent on P2X7 receptors. In addition, the intracerebroventricular injection of lactate protected against cerebral ischemic injury. In in vitro experiments, although stimulation of astrocytes with the P2X7 receptor agonist BzATP had no effect on the protein levels of monocarboxylate transporter (MCT) 1 and MCT4 (which are responsible for lactate release from astrocytes), BzATP induced the plasma membrane translocation of these MCTs via their chaperone CD147. Importantly, CD147 was increased in activated astrocytes after PC, and CD147-blocking antibody abolished the PC-induced facilitation of astrocytic lactate release and ischemic tolerance. Taken together, our findings suggest that astrocytes induce ischemic tolerance via P2X7 receptor-mediated lactate release.


Asunto(s)
Astrocitos , Precondicionamiento Isquémico , Ácido Láctico , Ratones Endogámicos C57BL , Transportadores de Ácidos Monocarboxílicos , Receptores Purinérgicos P2X7 , Animales , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Precondicionamiento Isquémico/métodos , Ácido Láctico/metabolismo , Ácido Láctico/farmacología , Receptores Purinérgicos P2X7/metabolismo , Masculino , Transportadores de Ácidos Monocarboxílicos/metabolismo , Basigina/metabolismo , Isquemia Encefálica/metabolismo , Simportadores/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Modelos Animales de Enfermedad , Proteínas Musculares/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Ratones , Células Cultivadas , Encéfalo/metabolismo , Ratones Noqueados
19.
Nat Commun ; 15(1): 3661, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688901

RESUMEN

Optochemistry, an emerging pharmacologic approach in which light is used to selectively activate or deactivate molecules, has the potential to alleviate symptoms, cure diseases, and improve quality of life while preventing uncontrolled drug effects. The development of in-vivo applications for optochemistry to render brain cells photoresponsive without relying on genetic engineering has been progressing slowly. The nucleus accumbens (NAc) is a region for the regulation of slow-wave sleep (SWS) through the integration of motivational stimuli. Adenosine emerges as a promising candidate molecule for activating indirect pathway neurons of the NAc expressing adenosine A2A receptors (A2ARs) to induce SWS. Here, we developed a brain-permeable positive allosteric modulator of A2ARs (A2AR PAM) that can be rapidly photoactivated with visible light (λ > 400 nm) and used it optoallosterically to induce SWS in the NAc of freely behaving male mice by increasing the activity of extracellular adenosine derived from astrocytic and neuronal activity.


Asunto(s)
Adenosina , Núcleo Accumbens , Receptor de Adenosina A2A , Sueño de Onda Lenta , Animales , Núcleo Accumbens/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Masculino , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2A/genética , Ratones , Adenosina/metabolismo , Adenosina/farmacología , Regulación Alostérica , Sueño de Onda Lenta/fisiología , Sueño de Onda Lenta/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Luz , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Ratones Endogámicos C57BL , Humanos , Agonistas del Receptor de Adenosina A2/farmacología
20.
Neurosci Biobehav Rev ; 161: 105668, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608826

RESUMEN

Neuroinflammation accompanies several brain disorders, either as a secondary consequence or as a primary cause and may contribute importantly to disease pathogenesis. Neurosteroids which act as Positive Steroid Allosteric GABA-A receptor Modulators (Steroid-PAM) appear to modulate neuroinflammation and their levels in the brain may vary because of increased or decreased local production or import from the systemic circulation. The increased synthesis of steroid-PAMs is possibly due to increased expression of the mitochondrial cholesterol transporting protein (TSPO) in neuroinflammatory tissue, and reduced production may be due to changes in the enzymatic activity. Microglia and astrocytes play an important role in neuroinflammation, and their production of inflammatory mediators can be both activated and inhibited by steroid-PAMs and GABA. What is surprising is the finding that both allopregnanolone, a steroid-PAM, and golexanolone, a novel GABA-A receptor modulating steroid antagonist (GAMSA), can inhibit microglia and astrocyte activation and normalize their function. This review focuses on the role of steroid-PAMs in neuroinflammation and their importance in new therapeutic approaches to CNS and liver disease.


Asunto(s)
Enfermedades Neuroinflamatorias , Pregnanolona , Pregnanolona/farmacología , Pregnanolona/metabolismo , Humanos , Animales , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Antagonistas de Receptores de GABA-A/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA