Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.408
Filtrar
1.
J Orthop Surg Res ; 19(1): 325, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822418

RESUMEN

OBJECTIVE: Muscle wasting frequently occurs following joint trauma. Previous research has demonstrated that joint distraction in combination with treadmill exercise (TRE) can mitigate intra-articular inflammation and cartilage damage, consequently delaying the advancement of post-traumatic osteoarthritis (PTOA). However, the precise mechanism underlying this phenomenon remains unclear. Hence, the purpose of this study was to examine whether the mechanism by which TRE following joint distraction delays the progression of PTOA involves the activation of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), as well as its impact on muscle wasting. METHODS: Quadriceps samples were collected from patients with osteoarthritis (OA) and normal patients with distal femoral fractures, and the expression of PGC-1α was measured. The hinged external fixator was implanted in the rabbit PTOA model. One week after surgery, a PGC-1α agonist or inhibitor was administered for 4 weeks prior to TRE. Western blot analysis was performed to detect the expression of PGC-1α and Muscle atrophy gene 1 (Atrogin-1). We employed the enzyme-linked immunosorbent assay (ELISA) technique to examine pro-inflammatory factors. Additionally, we utilized quantitative real-time polymerase chain reaction (qRT-PCR) to analyze genes associated with cartilage regeneration. Synovial inflammation and cartilage damage were evaluated through hematoxylin-eosin staining. Furthermore, we employed Masson's trichrome staining and Alcian blue staining to analyze cartilage damage. RESULTS: The decreased expression of PGC-1α in skeletal muscle in patients with OA is correlated with the severity of OA. In the rabbit PTOA model, TRE following joint distraction inhibited the expressions of muscle wasting genes, including Atrogin-1 and muscle ring finger 1 (MuRF1), as well as inflammatory factors such as interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in skeletal muscle, potentially through the activation of PGC-1α. Concurrently, the production of IL-1ß, IL-6, TNF-α, nitric oxide (NO), and malondialdehyde (MDA) in the synovial fluid was down-regulated, while the expression of type II collagen (Col2a1), Aggrecan (AGN), SRY-box 9 (SOX9) in the cartilage, and superoxide dismutase (SOD) in the synovial fluid was up-regulated. Additionally, histological staining results demonstrated that TRE after joint distraction reduced cartilage degeneration, leading to a significant decrease in OARSI scores.TRE following joint distraction could activate PGC-1α, inhibit Atrogin-1 expression in skeletal muscle, and reduce C-telopeptides of type II collagen (CTX-II) in the blood compared to joint distraction alone. CONCLUSION: Following joint distraction, TRE might promote the activation of PGC-1α in skeletal muscle during PTOA progression to exert anti-inflammatory effects in skeletal muscle and joint cavity, thereby inhibiting muscle wasting and promoting cartilage regeneration, making it a potential therapeutic intervention for treating PTOA.


Asunto(s)
Progresión de la Enfermedad , Músculo Esquelético , Atrofia Muscular , Osteoartritis , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Animales , Conejos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Osteoartritis/etiología , Osteoartritis/metabolismo , Osteoartritis/prevención & control , Atrofia Muscular/etiología , Atrofia Muscular/prevención & control , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Masculino , Humanos , Condicionamiento Físico Animal/fisiología , Femenino , Modelos Animales de Enfermedad
2.
Adv Mind Body Med ; 28(2): 40-55, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38837782

RESUMEN

We present the case of 11 years of severe malabsorption, muscular atrophy, seizures, and immunodeficiency resolved after proximal intercessory prayer (PIP). A male infant suffered from severe abdominal pain and impaired development with the introduction of solid food at age five months. The patient had previously appeared healthy, having been born to term and breastfed. Neocate and total parenteral nutrition (TPN) were prescribed, and the former was removed due to abdominal pain and diarrhea. Ultimately, the patient became completely dependent on TPN. It was concluded that he suffered from chronic, idiopathic, severe malabsorption. Development of neutropenia, hypogamma-globulinemia, and hypotonia was recorded. Medical records document atrophy and progressive deterioration of muscular symptoms. At five years of age, frontal lobe epilepsy was detected. Over the course of the disease, several genetic tests were performed. Doctors tried unsuccessfully to diagnose an underlying condition, with various mitochondriopathies and Shwachman-Diamond syndrome suggested as possible causes, but no prognosis of recovery was given. Eleven years following the initial presentation of symptoms, proximal intercessory prayer (PIP) was administered in a single session. The patient reported no unusual sensations during prayer. However, oral feedings were immediately tolerated without discomfort from that time onward. Post-PIP medical records indicate discontinuation of TPN, seizures, and seizure medications. Progressive improvement in the hematological disorders, BMI, and muscular symptoms was also observed. The present case report describes a novel association between PIP and the lasting resolution of multiple symptoms likely related to a genetic disorder. The results inform ongoing discussions about faith-based practices in health care and suggest the need for additional studies of PIP on health outcomes.


Asunto(s)
Síndromes de Malabsorción , Humanos , Masculino , Síndromes de Malabsorción/terapia , Síndromes de Malabsorción/fisiopatología , Atrofia Muscular , Convulsiones , Niño , Religión
3.
Neurology ; 103(1): e209561, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38833636

RESUMEN

Hand weakness is a frequent chief concern in neurology practice. We report a case of a 55-year-old woman presenting with a chronic, gradually worsening right hand weakness and atrophy, selectively affecting the thenar muscles, without any sensory symptoms. She had a history of carpal tunnel syndrome and previously underwent surgical carpal tunnel release. This case delves into the differential diagnosis of hand weakness and atrophy, emphasizing the significance of myotomal innervation in intrinsic hand muscles. Furthermore, it outlines a systematic approach to diagnosing an uncommon cause for a common clinical presentation, offering a comprehensive differential diagnosis, and exploring various possible causes.


Asunto(s)
Mano , Debilidad Muscular , Humanos , Femenino , Persona de Mediana Edad , Debilidad Muscular/etiología , Debilidad Muscular/diagnóstico , Razonamiento Clínico , Diagnóstico Diferencial , Atrofia Muscular/etiología , Atrofia Muscular/diagnóstico , Atrofia , Síndrome del Túnel Carpiano/diagnóstico
4.
Trials ; 25(1): 356, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835083

RESUMEN

BACKGROUND: Patients diagnosed with pancreatic, biliary tract, and liver cancer often suffer from a progressive loss of muscle mass. Given the considerable functional impairments in these patients, high musculoskeletal weight loads may not be well tolerated by all individuals. The use of blood-flow restricted resistance training (BFR-T) which only requires low training loads may allow for a faster recovery of muscle due to avoidance of high levels of mechanical muscle stress associated with high-load resistance exercise. This study aims to investigate whether BFR-T can prevent or slow down the loss of skeletal muscle mass and enhance the functional capacity and mental health of patients with pancreatic, biliary tract, and liver cancer. METHODS: The PREV-Ex exercise trial is a multicenter two-armed randomized controlled trial. Patients will be randomized to an exercise program consisting of home-based low-load BFR-T during a combined pre- and postoperative period for a total of 6-10 weeks (prehabilitation and rehabilitation), or to a control group. Protein supplementation will be given to both groups to ensure adequate protein intake. The primary outcomes, skeletal muscle thickness and muscle cross-sectional area, will be assessed by ultrasound. Secondary outcomes include the following: (i) muscle catabolism-related and inflammatory bio-markers (molecular characteristics will be assessed from a vastus lateralis biopsy and blood samples will be obtained from a sub-sample of patients); (ii) patient-reported outcome measures (self-reported fatigue, health-related quality of life, and nutritional status will be assessed through validated questionnaires); (iii) physical fitness/performance/activity (validated tests will be used to evaluate physical function, cardiorespiratory fitness and maximal isometric muscle strength. Physical activity and sedentary behavior (assessed using an activity monitor); (iv) clinical outcomes: hospitalization rates and blood status will be recorded from the patients' medical records; (v) explorative outcomes of patients' experience of the exercise program which will be evaluated using focus group/individual interviews. DISCUSSION: It is worthwhile to investigate new strategies that have the potential to counteract the deterioration of skeletal muscle mass, muscle function, strength, and physical function, all of which have debilitating consequences for patients with pancreatic, biliary tract, and liver cancer. The expected findings could improve prognosis, help patients stay independent for longer, and possibly reduce treatment-related costs. TRIAL REGISTRATION: ClinicalTrials.gov NCT05044065. Registered on September 14, 2021.


Asunto(s)
Neoplasias del Sistema Biliar , Neoplasias Hepáticas , Músculo Esquelético , Neoplasias Pancreáticas , Entrenamiento de Fuerza , Humanos , Entrenamiento de Fuerza/métodos , Neoplasias Pancreáticas/cirugía , Neoplasias del Sistema Biliar/complicaciones , Neoplasias del Sistema Biliar/cirugía , Músculo Esquelético/fisiopatología , Neoplasias Hepáticas/cirugía , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto , Flujo Sanguíneo Regional , Resultado del Tratamiento , Calidad de Vida , Fuerza Muscular , Factores de Tiempo , Ejercicio Preoperatorio , Atrofia Muscular/prevención & control , Atrofia Muscular/etiología , Atrofia Muscular/fisiopatología , Sarcopenia/prevención & control , Sarcopenia/fisiopatología , Sarcopenia/etiología
5.
Clin Interv Aging ; 19: 795-806, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745745

RESUMEN

The World Health Organization recommends that older adults undertake at least 150 minutes of moderate intensity physical activity over the course of each week in order to maintain physical, mental, and social health. This goal turns out to be very difficult for most community dwelling older adults to achieve, due to both actual and perceived barriers. These barriers include personal health limitations, confinement issues, and self-imposed restrictions such as fear of injury. Climate change exacerbates the confinement issues and injury fears among the elderly. To assist older adults in obtaining the benefits of increased physical activity under increasingly challenging climate conditions, we propose a targeted non-volitional intervention which could serve as a complement to volitional physical activity. Exogenous neuro-muscular stimulation of the soleus muscles is a non-invasive intervention capable of significantly increasing cardiac output in sedentary individuals. Long-term daily use has been shown to improve sleep, reduce bone loss, and reverse age-related cognitive decline, all of which are significant health concerns for older adults. These outcomes support the potential benefit of exogenous neuro-muscular stimulation as a complementary form of physical activity which older adults may find convenient to incorporate into their daily life when traditional forms of exercise are difficult to achieve due to barriers to completing traditional physical activities as a result of in-home or in-bed confinement, perceptual risks, or real environmental risks such as those arising from climate change.


Asunto(s)
Cambio Climático , Músculo Esquelético , Atrofia Muscular , Anciano , Humanos , Terapia por Estimulación Eléctrica/métodos , Ejercicio Físico , Terapia por Ejercicio/métodos , Atrofia Muscular/prevención & control , Atrofia Muscular/terapia
6.
Cir Cir ; 92(2): 150-158, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38782399

RESUMEN

OBJECTIVE: The objective of the study was to explore red cell distribution width (RDW) as a surrogate marker of inflammation, alone and in conjunction with muscle wasting to predict malnutrition-related adverse outcomes. METHODS: This was a single-center observational study including adult hospitalized patients. Demographic variables, malnutrition criteria, and RDW were captured within 24 hours of hospital admission. Correlation tests and regression models were performed between these variables (RDW and muscle wasting) and adverse outcomes (in-hospital mortality and unplanned transfer to critical care areas (CCA). RESULTS: Five hundred and forty-five patients were included in the final analysis. Muscle wasting showed an independent association with adverse outcomes in every regression model tested. RDW alone showed fair predictive performance for both outcomes' significance and the adjusted model with muscle wasting showed association only for unplanned transfer to CCA. CONCLUSION: RDW did not improve the prediction of adverse outcomes compared to muscle wasting assessed by physical examination and simple indexes for acute and chronic inflammation. Malnourished patients presented higher RDW values showing a possible metabolic profile (higher inflammation and lower muscle). It is still unknown whether nutrition support can influence RDW value over time as a response marker or if RDW can predict who may benefit the most from nutritional support.


OBJETIVO: Explorar el ancho de distribución eritrocitaria (ADE) como un marcador subrogado de inflamación, individualmente y en conjunto con el desgaste muscular, para predecir resultados adversos asociados a la desnutrición. MÉTODO: Estudio unicéntrico, observacional, incluyendo pacientes adultos hospitalizados. Se capturaron variables demográficas, criterios de desnutrición y el ADE en las primeras 24 horas de ingreso. Se realizaron pruebas de correlación y modelos de regresión entre dichas variables (ADE y desgaste) y resultados adversos (mortalidad hospitalaria y traslado no planeado a áreas críticas). RESULTADOS: Se incluyeron 545 pacientes. El desgaste muscular mostró asociación independiente con los resultados adversos en cada modelo. El ADE individualmente mostró un desempeño aceptable para la predicción de ambos resultados, y en modelos ajustados con desgaste muscular mostró asociación únicamente con traslado no planeado a áreas críticas. CONCLUSIONES: El ADE no mejoró la predicción de resultados adversos comparado con el desgaste muscular por exploración física e índices simples de inflamación. Los pacientes con desnutrición presentaron mayores valores de ADE, mostrando un posible perfil metabólico (mayor inflamación y menos músculo). Aún se desconoce si el soporte nutricional puede influenciar el ADE como un marcador de respuesta o si puede predecir una respuesta favorable al soporte nutricional.


Asunto(s)
Índices de Eritrocitos , Mortalidad Hospitalaria , Inflamación , Desnutrición , Humanos , Masculino , Femenino , Desnutrición/sangre , Desnutrición/complicaciones , Persona de Mediana Edad , Inflamación/sangre , Anciano , Atrofia Muscular/etiología , Atrofia Muscular/sangre , Adulto , Biomarcadores/sangre
7.
Eur J Med Res ; 29(1): 294, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778361

RESUMEN

OBJECTIVES: To assess the feasibility of long-term muscle monitoring, we implemented an AI-guided segmentation approach on clinically indicated Computed Tomography (CT) examinations conducted throughout the hospitalization period of patients admitted to the intensive care unit (ICU) with acute pancreatitis (AP). In addition, we aimed to investigate the potential of muscle monitoring for early detection of patients at nutritional risk and those experiencing adverse outcomes. This cohort served as a model for potential integration into clinical practice. MATERIALS: Retrospective cohort study including 100 patients suffering from AP that underwent a minimum of three CT scans during hospitalization, totaling 749 assessments. Sequential segmentation of psoas muscle area (PMA) was performed and was relative muscle loss per day for the entire monitoring period, as well as for the interval between each consecutive scan was calculated. Subgroup and outcome analyses were performed including ANOVA. Discriminatory power of muscle decay rates was evaluated using ROC analysis. RESULTS: Monitoring PMA decay revealed significant long-term losses of 48.20% throughout the hospitalization period, with an average daily decline of 0.98%. Loss rates diverged significantly between survival groups, with 1.34% PMA decay per day among non-survivors vs. 0.74% in survivors. Overweight patients exhibited significantly higher total PMA losses (52.53 vs. 42.91%; p = 0.02) and average PMA loss per day (of 1.13 vs. 0.80%; p = 0.039). The first and the maximum decay rate, in average available after 6.16 and 17.03 days after ICU admission, showed convincing discriminatory power for survival in ROC analysis (AUC 0.607 and 0.718). Both thresholds for maximum loss (at 3.23% decay per day) and for the initial loss rate (at 1.98% per day) proved to be significant predictors of mortality. CONCLUSIONS: The innovative AI-based PMA segmentation method proved robust and effortless, enabling the first comprehensive assessment of muscle wasting in a large cohort of intensive care pancreatitis patients. Findings revealed significant muscle wasting (48.20% on average), particularly notable in overweight individuals. Higher rates of initial and maximum muscle loss, detectable early, correlated strongly with survival. Integrating this tool into routine clinical practice will enable continuous muscle status tracking and early identification of those at risk for unfavorable outcomes.


Asunto(s)
Enfermedad Crítica , Pancreatitis , Tomografía Computarizada por Rayos X , Humanos , Masculino , Persona de Mediana Edad , Femenino , Pancreatitis/diagnóstico por imagen , Pancreatitis/complicaciones , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Anciano , Unidades de Cuidados Intensivos , Adulto , Atrofia Muscular/diagnóstico por imagen , Atrofia Muscular/etiología , Atrofia Muscular/diagnóstico , Músculos Psoas/diagnóstico por imagen , Enfermedad Aguda , Hospitalización/estadística & datos numéricos
8.
Molecules ; 29(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792078

RESUMEN

Disuse muscle atrophy (DMA) is a significant healthcare challenge characterized by progressive loss of muscle mass and function resulting from prolonged inactivity. The development of effective strategies for muscle recovery is essential. In this study, we established a DMA mouse model through hindlimb suspension to evaluate the therapeutic potential of lactate in alleviating the detrimental effects on the gastrocnemius muscle. Using NMR-based metabolomic analysis, we investigated the metabolic changes in DMA-injured gastrocnemius muscles compared to controls and evaluated the beneficial effects of lactate treatment. Our results show that lactate significantly reduced muscle mass loss and improved muscle function by downregulating Murf1 expression, decreasing protein ubiquitination and hydrolysis, and increasing myosin heavy chain levels. Crucially, lactate corrected perturbations in four key metabolic pathways in the DMA gastrocnemius: the biosynthesis of phenylalanine, tyrosine, and tryptophan; phenylalanine metabolism; histidine metabolism; and arginine and proline metabolism. In addition to phenylalanine-related pathways, lactate also plays a role in regulating branched-chain amino acid metabolism and energy metabolism. Notably, lactate treatment normalized the levels of eight essential metabolites in DMA mice, underscoring its potential as a therapeutic agent against the consequences of prolonged inactivity and muscle wasting. This study not only advances our understanding of the therapeutic benefits of lactate but also provides a foundation for novel treatment approaches aimed at metabolic restoration and muscle recovery in conditions of muscle wasting.


Asunto(s)
Ácido Láctico , Metabolómica , Músculo Esquelético , Animales , Ratones , Metabolómica/métodos , Ácido Láctico/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/patología , Modelos Animales de Enfermedad , Espectroscopía de Resonancia Magnética , Masculino , Proteínas Musculares/metabolismo , Trastornos Musculares Atróficos/metabolismo , Trastornos Musculares Atróficos/tratamiento farmacológico , Trastornos Musculares Atróficos/patología , Ubiquitina-Proteína Ligasas/metabolismo , Metaboloma/efectos de los fármacos , Suspensión Trasera , Proteínas de Motivos Tripartitos/metabolismo , Ratones Endogámicos C57BL , Cadenas Pesadas de Miosina/metabolismo
9.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732203

RESUMEN

Skeletal muscle unloading occurs during a wide range of conditions, from space flight to bed rest. The unloaded muscle undergoes negative functional changes, which include increased fatigue. The mechanisms of unloading-induced fatigue are far from complete understanding and cannot be explained by muscle atrophy only. In this review, we summarize the data concerning unloading-induced fatigue in different muscles and different unloading models and provide several potential mechanisms of unloading-induced fatigue based on recent experimental data. The unloading-induced changes leading to increased fatigue include both neurobiological and intramuscular processes. The development of intramuscular fatigue seems to be mainly contributed by the transformation of soleus muscle fibers from a fatigue-resistant, "oxidative" "slow" phenotype to a "fast" "glycolytic" one. This process includes slow-to-fast fiber-type shift and mitochondrial density decline, as well as the disruption of activating signaling interconnections between slow-type myosin expression and mitochondrial biogenesis. A vast pool of relevant literature suggests that these events are triggered by the inactivation of muscle fibers in the early stages of muscle unloading, leading to the accumulation of high-energy phosphates and calcium ions in the myoplasm, as well as NO decrease. Disturbance of these secondary messengers leads to structural changes in muscles that, in turn, cause increased fatigue.


Asunto(s)
Fatiga Muscular , Músculo Esquelético , Humanos , Fatiga Muscular/fisiología , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Atrofia Muscular/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología
10.
Int J Mol Sci ; 25(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38732255

RESUMEN

This research aimed to explore the healing impacts of Melittin treatment on gastrocnemius muscle wasting caused by immobilization with a cast in rabbits. Twenty-four rabbits were randomly allocated to four groups. The procedures included different injections: 0.2 mL of normal saline to Group 1 (G1-NS); 4 µg/kg of Melittin to Group 2 (G2-4 µg/kg Melittin); 20 µg/kg of Melittin to Group 3 (G3-20 µg/kg Melittin); and 100 µg/kg of Melittin to Group 4 (G4-100 µg/kg Melittin). Ultrasound was used to guide the injections into the rabbits' atrophied calf muscles following two weeks of immobilization via casting. Clinical measurements, including the length of the calf, the compound muscle action potential (CMAP) of the tibial nerve, and the gastrocnemius muscle thickness, were assessed. Additionally, cross-sectional slices of gastrocnemius muscle fibers were examined, and immunohistochemistry and Western blot analyses were performed following two weeks of therapy. The mean regenerative changes, as indicated by clinical parameters, in Group 4 were significantly more pronounced than in the other groups (p < 0.05). Furthermore, the cross-sectional area of the gastrocnemius muscle fibers and immunohistochemical indicators in Group 4 exceeded those in the remaining groups (p < 0.05). Western blot analysis also showed a more significant presence of anti-inflammatory and angiogenic cytokines in Group 4 compared to the others (p < 0.05). Melittin therapy at a higher dosage can more efficiently activate regeneration in atrophied gastrocnemius muscle compared to lower doses of Melittin or normal saline.


Asunto(s)
Meliteno , Músculo Esquelético , Atrofia Muscular , Regeneración , Animales , Conejos , Meliteno/farmacología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Regeneración/efectos de los fármacos , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/patología , Masculino
11.
Nutrients ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732549

RESUMEN

Oleocanthal (OC) is a monophenol of extra-virgin olive oil (EVOO) endowed with antibiotic, cardioprotective and anticancer effects, among others, mainly in view of its antioxidant and anti-inflammatory properties. OC has been largely investigated in terms of its anticancer activity, in Alzheimer disease and in collagen-induced arthritis; however, the possibility that it can also affect muscle biology has been totally overlooked so far. This study is the first to describe that OC modulates alterations induced in C2C12 myotubes by stimuli known to induce muscle wasting in vivo, namely TNF-α, or in the medium conditioned by the C26 cachexia-inducing tumor (CM-C26). C2C12 myotubes were exposed to CM-C26 or TNF-α in the presence or absence of OC for 24 and 48 h and analyzed by immunofluorescence and Western blotting. In combination with TNF-α or CM-C26, OC was revealed to be able to restore both the myotube's original size and morphology and normal levels of both atrogin-1 and MuRF1. OC seems unable to impinge on the autophagic-lysosomal proteolytic system or protein synthesis. Modulations towards normal levels of the expression of molecules involved in myogenesis, such as Pax7, myogenin and MyHC, were also observed in the myotube cultures exposed to OC and TNF-α or CM-C26. In conclusion, the data presented here show that OC exerts a protective action in C2C12 myotubes exposed to TNF-α or CM-C26, with mechanisms likely involving the downregulation of ubiquitin-proteasome-dependent proteolysis and the partial relief of myogenic differentiation impairment.


Asunto(s)
Catecoles , Monoterpenos Ciclopentánicos , Fibras Musculares Esqueléticas , Proteínas Musculares , Atrofia Muscular , Factor de Necrosis Tumoral alfa , Animales , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Atrofia Muscular/prevención & control , Atrofia Muscular/metabolismo , Proteínas Musculares/metabolismo , Monoterpenos Ciclopentánicos/farmacología , Catecoles/farmacología , Línea Celular , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Desarrollo de Músculos/efectos de los fármacos , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo , Autofagia/efectos de los fármacos , Fenoles/farmacología , Caquexia/prevención & control , Medios de Cultivo Condicionados/farmacología , Aldehídos
12.
Life Sci ; 348: 122677, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38702026

RESUMEN

AIMS: Epidemiological evidence indicates that there is a substantial association between body mass index (BMI) and at least ten forms of cancer, including melanoma, and BMI imbalance contributes to the poor survival rate of cancer patients before and after therapy. Nevertheless, few pharmacological studies on models of obesity and cancer have been reported. In this study, we administered epigallocatechin gallate (EGCG) to B16BL6 tumor-bearing mice that received a high-fat diet (HFD) to examine its impact. METHODS: B16BL6 tumor-bearing mice were fed a HFD. Body weight and food intake were documented every week. We conducted a Western blot analysis to examine the protein levels in the tumor, gastrocnemius (GAS), and tibialis anterior (TA) muscles, as well as the inguinal and epididymal white adipose tissues (iWAT and eWAT). KEY FINDINGS: EGCG has been shown to have anti-cancer effects equivalent to those of cisplatin, a chemotherapy drug. Furthermore, EGCG protected against the loss of epidydimal white adipose tissue by regulating protein levels of lipolysis factors of adipose triglyceride lipase and hormone-sensitive lipase as well as WAT browning factors of uncoupling protein 1, as opposed to cisplatin. EGCG was shown to reduce the protein levels of muscular atrophy factors of muscle RING-finger protein-1, whereas cisplatin did not contribute to rescuing the atrophy of TA and GAS muscles. CONCLUSION: Taken together, our findings indicate that EGCG has a preventive effect against cachexia symptoms and has anti-cancer effects similar to those of cisplatin in tumor-bearing mice fed a high-fat diet.


Asunto(s)
Catequina , Dieta Alta en Grasa , Melanoma Experimental , Ratones Endogámicos C57BL , Atrofia Muscular , Animales , Catequina/análogos & derivados , Catequina/farmacología , Catequina/uso terapéutico , Dieta Alta en Grasa/efectos adversos , Ratones , Masculino , Atrofia Muscular/prevención & control , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamiento farmacológico , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología
13.
PLoS One ; 19(5): e0304380, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820523

RESUMEN

Skeletal muscle atrophy is characterized by a decrease in muscle mass and strength caused by an imbalance in protein synthesis and degradation. This process naturally occurs upon reduced or absent physical activity, often related to illness, forced bed rest, or unhealthy lifestyles. Currently, no treatment is available for atrophy, and it can only be prevented by overloading exercise, causing severe problems for patients who cannot exercise due to chronic diseases, disabilities, or being bedridden. The two murine models commonly used to induce muscle atrophy are hindlimb suspension and ankle joint immobilization, both of which come with criticalities. The lack of treatments and the relevance of this atrophic process require a unilateral, safe, and robust model to induce muscle atrophy. In this work, we designed and developed a 3D-printed cast to be used for the study of disuse skeletal muscle atrophy. Applying two halves of the cast is non-invasive, producing little to no swelling or skin damage. The application of the cast induces, in 2-weeks immobilized leg, the activation of atrophy-related genes, causing a muscle weight loss up to 25% in the gastrocnemius muscle, and 31% in the soleus muscle of the immobilized leg compared to the control leg. The cross-sectional area of the fibers is decreased by 31% and 34% respectively, with a peculiar effect on fiber types. In the immobilized gastrocnemius, absolute muscle force is reduced by 38%, while normalized force is reduced by 16%. The contralateral leg did not show signs of overload or hypertrophy when compared to free roaming littermates, offering a good internal control over the immobilized limb. Upon removing the cast, the mice effectively recovered mass and force in 3 weeks.


Asunto(s)
Modelos Animales de Enfermedad , Músculo Esquelético , Atrofia Muscular , Impresión Tridimensional , Animales , Músculo Esquelético/patología , Ratones , Atrofia Muscular/patología , Atrofia Muscular/etiología , Atrofia Muscular/terapia , Masculino , Trastornos Musculares Atróficos/patología , Trastornos Musculares Atróficos/terapia , Suspensión Trasera/efectos adversos , Ratones Endogámicos C57BL
14.
Mol Med Rep ; 30(1)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757344

RESUMEN

Muscle atrophy is a debilitating condition with various causes; while aging is one of these causes, reduced engagement in routine muscle­strengthening activities also markedly contributes to muscle loss. Although extensive research has been conducted on microRNAs (miRNAs/miRs) and their associations with muscle atrophy, the roles played by miRNA precursors remain underexplored. The present study detected the upregulation of the miR­206 precursor in cell­free (cf)RNA from the plasma of patients at risk of sarcopenia, and in cfRNAs from the muscles of mice subjected to muscle atrophy. Additionally, a decline in the levels of the miR­6516 precursor was observed in mice with muscle atrophy. The administration of mimic­miR­6516 to mice immobilized due to injury inhibited muscle atrophy by targeting and inhibiting cyclin­dependent kinase inhibitor 1b (Cdkn1b). Based on these results, the miR­206 precursor appears to be a potential biomarker of muscle atrophy, whereas miR­6516 shows promise as a therapeutic target to alleviate muscle deterioration in patients with muscle disuse and atrophy.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ratones , Humanos , Masculino , Femenino , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Modelos Animales de Enfermedad , Persona de Mediana Edad , Anciano , Trastornos Musculares Atróficos/genética , Trastornos Musculares Atróficos/metabolismo , Trastornos Musculares Atróficos/patología , Trastornos Musculares Atróficos/terapia , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Biomarcadores , Sarcopenia/metabolismo , Sarcopenia/genética , Sarcopenia/patología , Sarcopenia/terapia , Adulto
15.
Physiol Behav ; 281: 114575, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692384

RESUMEN

Fibromyalgia (FM) is characterized by chronic widespread musculoskeletal pain accompanied by fatigue and muscle atrophy. Although its etiology is not known, studies have shown that FM patients exhibit altered function of the sympathetic nervous system (SNS), which regulates nociception and muscle plasticity. Nevertheless, the precise SNS-mediated mechanisms governing hyperalgesia and skeletal muscle atrophy in FM remain unclear. Thus, we employed two distinct FM-like pain models, involving intramuscular injections of acidic saline (pH 4.0) or carrageenan in prepubertal female rats, and evaluated the catecholamine content, adrenergic signaling and overall muscle proteolysis. Subsequently, we assessed the contribution of the SNS to the development of hyperalgesia and muscle atrophy in acidic saline-injected rats treated with clenbuterol (a selective ß2-adrenergic receptor agonist) and in animals maintained under baseline conditions and subjected to epinephrine depletion through adrenodemedullation (ADM). Seven days after inducing an FM-like model with acidic saline or carrageenan, we observed widespread mechanical hyperalgesia along with loss of strength and/or muscle mass. These changes were associated with reduced catecholamine content, suggesting a common underlying mechanism. Notably, treatment with a ß2-agonist alleviated hyperalgesia and prevented muscle atrophy in acidic saline-induced FM-like pain, while epinephrine depletion induced mechanical hyperalgesia and increased muscle proteolysis in animals under baseline conditions. Together, the results suggest that reduced sympathetic activity is involved in the development of pain and muscle atrophy in the murine model of FM analyzed.


Asunto(s)
Clenbuterol , Modelos Animales de Enfermedad , Fibromialgia , Hiperalgesia , Atrofia Muscular , Sistema Nervioso Simpático , Animales , Femenino , Fibromialgia/patología , Fibromialgia/fisiopatología , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Hiperalgesia/fisiopatología , Hiperalgesia/patología , Sistema Nervioso Simpático/fisiopatología , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/patología , Clenbuterol/farmacología , Ratas , Carragenina/toxicidad , Ratas Sprague-Dawley , Dolor/patología , Dolor/fisiopatología , Epinefrina , Músculo Esquelético/patología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiopatología , Catecolaminas/metabolismo , Agonistas Adrenérgicos beta/farmacología
16.
J Nanobiotechnology ; 22(1): 276, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778385

RESUMEN

With the increasing trend of global aging, sarcopenia has become a significant public health issue. Goji berry, also known as "Gou qi zi" in China, is a traditional Chinese herb that can enhance the structure and function of muscles and bones. Otherwise, previous excellent publications illustrated that plant-derived exosome-like nanoparticles can exert good bioactive functions in different aging or disease models. Thus, we issued the hypothesis that Gouqi-derived nanovesicles (GqDNVs) may also have the ability to improve skeletal muscle health, though the effect and its mechanism need to be explored. Hence, we have extracted GqDNVs from fresh berries of Lycium barbarum L. (goji) and found that the contents of GqDNVs are rich in saccharides and lipids. Based on the pathway annotations and predictions in non-targeted metabolome analysis, GqDNVs are tightly associated with the pathways in metabolism. In muscle atrophy model mice, intramuscular injection of GqDNVs improves the cross-sectional area of the quadriceps muscle, grip strength and the AMPK/SIRT1/PGC1α pathway expression. After separately inhibiting AMPK or PGC1α in C2C12 cells with dexamethasone administration, we have found that the activated AMPK plays the chief role in improving cell proliferation induced by GqDNVs. Furthermore, the energy-targeted metabolome analysis in the quadriceps muscle demonstrates that the GqDNVs up-regulate the metabolism of amino sugar and nucleotide sugar, autophagy and oxidative phosphorylation process, which indicates the activation of muscle regeneration. Besides, the Spearman rank analysis shows close associations between the quality and function of skeletal muscle, metabolites and expression levels of AMPK and SIRT1. In this study, we provide a new founding that GqDNVs can improve the quality and function of skeletal muscle accompanying the activated AMPK/SIRT1/PGC1α signaling pathway. Therefore, GqDNVs have the effect of anti-aging skeletal muscle as a potential adjuvant or complementary method or idea in future therapy and research.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Dexametasona , Atrofia Muscular , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transducción de Señal , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Dexametasona/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/inducido químicamente , Línea Celular , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Ratones Endogámicos C57BL , Nanopartículas/química , Exosomas/metabolismo , Exosomas/efectos de los fármacos
17.
Proc Natl Acad Sci U S A ; 121(22): e2405123121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38781208

RESUMEN

Mitochondria play a central role in muscle metabolism and function. A unique family of iron-sulfur proteins, termed CDGSH Iron Sulfur Domain-containing (CISD/NEET) proteins, support mitochondrial function in skeletal muscles. The abundance of these proteins declines during aging leading to muscle degeneration. Although the function of the outer mitochondrial CISD/NEET proteins, CISD1/mitoNEET and CISD2/NAF-1, has been defined in skeletal muscle cells, the role of the inner mitochondrial CISD protein, CISD3/MiNT, is currently unknown. Here, we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne muscular dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscles, as well as their mitochondria, and that CISD3 interacts with, and donates its [2Fe-2S] clusters to, complex I respiratory chain subunit NADH Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2). Using coevolutionary and structural computational tools, we model a CISD3-NDUFV2 complex with proximal coevolving residue interactions conducive of [2Fe-2S] cluster transfer reactions, placing the clusters of the two proteins 10 to 16 Å apart. Taken together, our findings reveal that CISD3/MiNT is important for supporting the biogenesis and function of complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact different muscle degeneration syndromes, aging, and related conditions.


Asunto(s)
Complejo I de Transporte de Electrón , Proteínas Mitocondriales , Músculo Esquelético , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Ratones , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Mitocondrias/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/genética , Ratones Noqueados , Mitocondrias Musculares/metabolismo , Humanos , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/genética
18.
ACS Nano ; 18(22): 14427-14440, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38776414

RESUMEN

Muscle atrophy resulting from peripheral nerve injury (PNI) poses a threat to a patient's mobility and sensitivity. However, an effective method to inhibit muscle atrophy following PNI remains elusive. Drawing inspiration from the sea cucumber, we have integrated microneedles (MNs) and microchannel technology into nerve guidance conduits (NGCs) to develop bionic microneedle NGCs (MNGCs) that emulate the structure and piezoelectric function of sea cucumbers. Morphologically, MNGCs feature an outer surface with outward-pointing needle tips capable of applying electrical stimulation to denervated muscles. Simultaneously, the interior contains microchannels designed to guide the migration of Schwann cells (SCs). Physiologically, the incorporation of conductive reduced graphene oxide and piezoelectric zinc oxide nanoparticles into the polycaprolactone scaffold enhances conductivity and piezoelectric properties, facilitating SCs' migration, myelin regeneration, axon growth, and the restoration of neuromuscular function. These combined effects ultimately lead to the inhibition of muscle atrophy and the restoration of nerve function. Consequently, the concept of the synergistic effect of inhibiting muscle atrophy and promoting nerve regeneration has the capacity to transform the traditional approach to PNI repair and find broad applications in PNI repair.


Asunto(s)
Atrofia Muscular , Agujas , Regeneración Nerviosa , Pepinos de Mar , Animales , Regeneración Nerviosa/efectos de los fármacos , Atrofia Muscular/prevención & control , Atrofia Muscular/patología , Pepinos de Mar/química , Células de Schwann , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/terapia , Grafito/química , Ratas , Poliésteres/química , Ratas Sprague-Dawley , Ratones
19.
Mol Nutr Food Res ; 68(10): e2300347, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712453

RESUMEN

Skeletal muscle can undergo detrimental changes in various diseases, leading to muscle dysfunction and atrophy, thus severely affecting people's lives. Along with exercise, there is a growing interest in the potential of nutritional support against muscle atrophy. This review provides a brief overview of the molecular mechanisms driving skeletal muscle atrophy and summarizes recent advances in nutritional interventions for preventing and treating muscle atrophy. The nutritional supplements include amino acids and their derivatives (such as leucine, ß-hydroxy, ß-methylbutyrate, and creatine), various antioxidant supplements (like Coenzyme Q10 and mitoquinone, resveratrol, curcumin, quercetin, Omega 3 fatty acids), minerals (such as magnesium and selenium), and vitamins (such as vitamin B, vitamin C, vitamin D, and vitamin E), as well as probiotics and prebiotics (like Lactobacillus, Bifidobacterium, and 1-kestose). Furthermore, the study discusses the impact of a combined approach involving nutritional support and physical therapy to prevent muscle atrophy, suggests appropriate multi-nutritional and multi-modal interventions based on individual conditions to optimize treatment outcomes, and enhances the recovery of muscle function for patients. By understanding the molecular mechanisms behind skeletal muscle atrophy and implementing appropriate interventions, it is possible to enhance the recovery of muscle function and improve patients' quality of life.


Asunto(s)
Suplementos Dietéticos , Músculo Esquelético , Atrofia Muscular , Humanos , Atrofia Muscular/prevención & control , Atrofia Muscular/dietoterapia , Músculo Esquelético/efectos de los fármacos , Probióticos/administración & dosificación , Antioxidantes , Prebióticos , Vitaminas , Animales
20.
Zhonghua Yi Xue Za Zhi ; 104(13): 1028-1035, 2024 Apr 02.
Artículo en Chino | MEDLINE | ID: mdl-38561297

RESUMEN

Objective: To investigate the impact of lumbar paraspinal muscle degeneration and postoperative failure to restore ideal Roussouly classification on the occurrence of mechanical complications (MC) following long-segment spinal correction surgery in female patients with degenerative scoliosis (DS). Methods: The clinical data of 72 female DS patients who underwent long-segment spinal correction surgery in Gulou Hospital from June 2017 to November 2021 were retrospectively analyzed. According to whether restoring the ideal Roussouly classification after surgery, the patients were divided into R group(recovery group) (n=51) and N group(non-recovery group) (n=21). According to whether mechanical complications occurred after operation within two years, the patients were divided into MC (mechanical complications)group (n=24) and NMC(non-mechanical complications) group (n=48). The RM group (n=14) experienced mechanical complications in the R group, while the RN group (n=37) did not. The NM group (n=10) experienced mechanical complications in the N group, while the NN group (n=11) did not.Radiographic assessment included Sagittal parameters of spine and pelvis, standardized cross-sectional area (SCSA) and fat infiltration rate (FI%) of paraspinal muscle at each lumbar disc level. Results: The age of DS patients in this study was (61.4±6.2) years.The incidence of MC was 33.33%(n=24)in all patients. The incidence of MC was 27.45%(n=14)in group R and 47.62%(n=10) in group N. The correction amount of pelvic tilt angle (PT) (-11.62°±10.06° vs -7.04°±8.45°, P=0.046) and T1 pelvic angle(TPA)(-12.88°±11.23° vs -7.31°±9.55°, P=0.031)during surgery were significantly higher in MC group compared to the NMC group. In group R, the FI% of paraspinal muscles in each lumbar segment of patients with postoperative MC was higher than that in patients without MC (P<0.05). In the R and N groups, there was no significant difference inthe SCSA of the lumbar paravertebral muscles between patients with postoperative MC and those without MC at each level (all P>0.05). Multivariate logistic regression analysis showed that the average FI% of lumbar PSM was correlated with the occurrence of MC after spinal fusion in DS patients.The average FI% of lumbar PSM≥22.63% was a risk factors for MC after spinal fusion (P=0.010,OR=1.088, 95%CI:1.020-1.160). Conclusions: Female DS patients with higher degree of preoperative paraspinal muscle degeneration have a higher incidence of postoperative mechanical complications. For these patients,.there is still a higher risk of mechanical complications after surgery even if the ideal Roussouly classification is restored after surgery.


Asunto(s)
Escoliosis , Fusión Vertebral , Humanos , Femenino , Persona de Mediana Edad , Anciano , Escoliosis/cirugía , Músculos Paraespinales , Vértebras Lumbares/cirugía , Estudios Retrospectivos , Factores de Riesgo , Atrofia Muscular , Complicaciones Posoperatorias , Fusión Vertebral/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA