Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.976
Filtrar
1.
Nat Commun ; 15(1): 6730, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112443

RESUMEN

Whether small nucleolar RNAs (snoRNAs) are involved in the regulation of liver cancer stem cells (CSCs) self-renewal and serve as therapeutic targets remains largely unclear. Here we show that a functional snoRNA (SNORD88B) is robustly expressed in Hepatocellular carcinoma (HCC) tumors and liver CSCs. SNORD88B deficiency abolishes the self-renewal of liver CSCs and hepatocarcinogenesis. Mechanistically, SNORD88B anchors WRN in the nucleolus, promoting XRCC5 interacts with STK4 promoter to suppress its transcription, leading to inactivation of Hippo signaling. Moreover, low expression of STK4 and high expression of XRCC5 are positively correlated with HCC poor prognosis. Additionally, snord88b knockout suppresses mouse liver tumorigenesis. Notably, co-administration of SNORD88B antisense oligonucleotides (ASOs) with MST1 agonist adapalene (ADA) exert synergistic antitumor effects and increase overall murine survival. Our findings delineate that SNORD88B drives self-renewal of liver CSCs and accelerates HCC tumorigenesis via non-canonical mechanism, providing potential targets for liver cancer therapy by eliminating liver CSCs.


Asunto(s)
Carcinogénesis , Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Madre Neoplásicas , ARN Nucleolar Pequeño , Animales , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Ratones , ARN Nucleolar Pequeño/metabolismo , ARN Nucleolar Pequeño/genética , Carcinogénesis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Helicasa del Síndrome de Werner/metabolismo , Helicasa del Síndrome de Werner/genética , Nucléolo Celular/metabolismo , Línea Celular Tumoral , Autorrenovación de las Células , Regulación Neoplásica de la Expresión Génica , Masculino , Vía de Señalización Hippo , Oligonucleótidos Antisentido/farmacología , Transducción de Señal
2.
Biol Direct ; 19(1): 63, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113077

RESUMEN

Epidermal stem cells (EPSCs) are essential for maintaining skin homeostasis and ensuring a proper wound healing. During in vitro cultivations, EPSCs give rise to transient amplifying progenitors and differentiated cells, finally forming a stratified epithelium that can be grafted onto patients. Epithelial grafts have been used in clinics to cure burned patients or patients affected by genetic diseases. The long-term success of these advanced therapies relies on the presence of a correct amount of EPSCs that guarantees long-term epithelial regeneration. For this reason, a deeper understanding of self-renewal and differentiation is fundamental to fostering their clinical applications.The coordination between energetic metabolism (e.g., glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and amino acid synthesis pathways), molecular signalling pathways (e.g., p63, YAP, FOXM1, AMPK/mTOR), and epigenetic modifications controls fundamental biological processes as proliferation, self-renewal, and differentiation. This review explores how these signalling and metabolic pathways are interconnected in the epithelial cells, highlighting the distinct metabolic demands and regulatory mechanisms involved in skin physiology.


Asunto(s)
Diferenciación Celular , Metabolismo Energético , Transducción de Señal , Humanos , Células Madre/metabolismo , Células Madre/citología , Células Epiteliales/metabolismo , Animales , Autorrenovación de las Células
3.
Sci Adv ; 10(32): eadl1584, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39110797

RESUMEN

Histone acetyltransferases KAT2A and KAT2B are paralogs highly expressed in the intestinal epithelium, but their functions are not well understood. In this study, double knockout of murine Kat2 genes in the intestinal epithelium was lethal, resulting in robust activation of interferon signaling and interferon-associated phenotypes including the loss of intestinal stem cells. Use of pharmacological agents and sterile organoid cultures indicated a cell-intrinsic double-stranded RNA trigger for interferon signaling. Acetyl-proteomics and sequencing of immunoprecipitated double-stranded RNA were used to interrogate the mechanism behind this response, which identified mitochondria-encoded double-stranded RNA as the source of intrinsic interferon signaling. Kat2a and Kat2b therefore play an essential role in regulating mitochondrial functions and maintaining intestinal health.


Asunto(s)
Histona Acetiltransferasas , Interferones , Ratones Noqueados , ARN Bicatenario , Transducción de Señal , Células Madre , Animales , ARN Bicatenario/metabolismo , Ratones , Células Madre/metabolismo , Células Madre/citología , Interferones/metabolismo , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Mitocondrias/metabolismo , Autorrenovación de las Células/genética , Intestinos/citología
4.
Sci Adv ; 10(31): eadj3145, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093977

RESUMEN

Mutation in nucleophosmin (NPM1) causes relocalization of this normally nucleolar protein to the cytoplasm (NPM1c+). Despite NPM1 mutation being the most common driver mutation in cytogenetically normal adult acute myeloid leukemia (AML), the mechanisms of NPM1c+-induced leukemogenesis remain unclear. Caspase-2 is a proapoptotic protein activated by NPM1 in the nucleolus. Here, we show that caspase-2 is also activated by NPM1c+ in the cytoplasm and DNA damage-induced apoptosis is caspase-2 dependent in NPM1c+ but not in NPM1wt AML cells. Strikingly, in NPM1c+ cells, caspase-2 loss results in profound cell cycle arrest, differentiation, and down-regulation of stem cell pathways that regulate pluripotency including impairment of the AKT/mTORC1 pathways, and inhibition of Rictor cleavage. In contrast, there were minimal differences in proliferation, differentiation, or the transcriptional profile of NPM1wt cells lacking caspase-2. Our results show that caspase-2 is essential for proliferation and self-renewal of AML cells expressing mutated NPM1. This study demonstrates that caspase-2 is a major effector of NPM1c+ function.


Asunto(s)
Apoptosis , Caspasa 2 , Proliferación Celular , Leucemia Mieloide Aguda , Mutación , Proteínas Nucleares , Nucleofosmina , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Caspasa 2/metabolismo , Caspasa 2/genética , Humanos , Animales , Diferenciación Celular , Línea Celular Tumoral , Autorrenovación de las Células/genética , Ratones , Daño del ADN
5.
Stem Cell Res Ther ; 15(1): 248, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113086

RESUMEN

BACKGROUND: The function of hematopoietic stem cells (HSC) is regulated by HSC internal signaling pathways and their microenvironment. Chemokines and chemokine ligands play important roles in the regulation of HSC function. Yet, their functions in HSC are not fully understood. METHODS: We established Cxcr3 and Cxcl10 knockout mouse models (Cxcr3-/- and Cxcl10-/-) to analyze the roles of Cxcr3 or Cxcl10 in regulating HSC function. The cell cycle distribution of LT-HSC was assessed via flow cytometry. Cxcr3-/- and Cxcl10-/- stem/progenitor cells showed reduced self-renewal capacity as measured in serial transplantation assays. To study the effects of Cxcr3 or Cxcl10 deficient bone marrow microenvironment, we transplanted CD45.1 donor cells into Cxcr3-/-or Cxcl10-/- recipient mice (CD45.2) and examined donor-contributed hematopoiesis. RESULTS: Deficiency of Cxcl10 and its receptor Cxcr3 led to decreased BM cellularity in mice, with a significantly increased proportion of LT-HSC. Cxcl10-/- stem/progenitor cells showed reduced self-renewal capacity in the secondary transplantation assay. Notably, Cxcl10-/- donor-derived cells preferentially differentiated into B lymphocytes, with skewed myeloid differentiation ability. Meanwhile, Cxcr3-deficient HSCs demonstrated a reconstitution disadvantage in secondary transplantation, but the lineage bias was not significant. Interestingly, the absence of Cxcl10 or Cxcr3 in bone marrow microenvironment did not affect HSC function. CONCLUSIONS: The Cxcl10 and Cxcr3 regulate the function of HSC, including self-renewal and differentiation, adding to the understanding of the roles of chemokines in the regulation of HSC function.


Asunto(s)
Diferenciación Celular , Quimiocina CXCL10 , Células Madre Hematopoyéticas , Receptores CXCR3 , Animales , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Ratones , Ratones Noqueados , Ratones Endogámicos C57BL , Autorrenovación de las Células , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas
6.
Nat Commun ; 15(1): 5602, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961108

RESUMEN

Abnormal trophoblast self-renewal and differentiation during early gestation is the major cause of miscarriage, yet the underlying regulatory mechanisms remain elusive. Here, we show that trophoblast specific deletion of Kat8, a MYST family histone acetyltransferase, leads to extraembryonic ectoderm abnormalities and embryonic lethality. Employing RNA-seq and CUT&Tag analyses on trophoblast stem cells (TSCs), we further discover that KAT8 regulates the transcriptional activation of the trophoblast stemness marker, CDX2, via acetylating H4K16. Remarkably, CDX2 overexpression partially rescues the defects arising from Kat8 knockout. Moreover, increasing H4K16ac via using deacetylase SIRT1 inhibitor, EX527, restores CDX2 levels and promoted placental development. Clinical analysis shows reduced KAT8, CDX2 and H4K16ac expression are associated with recurrent pregnancy loss (RPL). Trophoblast organoids derived from these patients exhibit impaired TSC self-renewal and growth, which are significantly ameliorated with EX527 treatment. These findings suggest the therapeutic potential of targeting the KAT8-H4K16ac-CDX2 axis for mitigating RPL, shedding light on early gestational abnormalities.


Asunto(s)
Factor de Transcripción CDX2 , Proliferación Celular , Autorrenovación de las Células , Histona Acetiltransferasas , Trofoblastos , Trofoblastos/metabolismo , Factor de Transcripción CDX2/metabolismo , Factor de Transcripción CDX2/genética , Animales , Femenino , Humanos , Ratones , Embarazo , Autorrenovación de las Células/genética , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Aborto Habitual/metabolismo , Aborto Habitual/genética , Ratones Noqueados , Histonas/metabolismo , Diferenciación Celular , Placentación/genética
7.
Nat Commun ; 15(1): 5706, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977676

RESUMEN

Haematopoietic stem cells (HSCs) possess unique physiological adaptations to sustain blood cell production and cope with stress responses throughout life. To maintain these adaptations, HSCs rely on maintaining a tightly controlled protein translation rate. However, the mechanism of how HSCs regulate protein translation remains to be fully elucidated. In this study, we investigate the role of transfer RNA (tRNA) m1A58 'writer' proteins TRMT6 and TRMT61A in regulating HSCs function. Trmt6 deletion promoted HSC proliferation through aberrant activation of mTORC1 signaling. TRMT6-deficient HSCs exhibited an impaired self-renewal ability in competitive transplantation assay. Mechanistically, single cell RNA-seq analysis reveals that the mTORC1 signaling pathway is highly upregulated in HSC-enriched cell populations after Trmt6 deletion. m1A-tRNA-seq and Western blot analysis suggest that TRMT6 promotes methylation modification of specific tRNA and expression of TSC1, fine-tuning mTORC1 signaling levels. Furthermore, Pharmacological inhibition of the mTORC1 pathway rescued functional defect in TRMT6-deficient HSCs. To our knowledge, this study is the first to elucidate a mechanism by which TRMT6-TRMT61A complex-mediated tRNA-m1A58 modification regulates HSC homeostasis.


Asunto(s)
Proliferación Celular , Células Madre Hematopoyéticas , Diana Mecanicista del Complejo 1 de la Rapamicina , ARN de Transferencia , Transducción de Señal , Proteína 1 del Complejo de la Esclerosis Tuberosa , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Animales , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Ratones , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Autorrenovación de las Células/genética , Ratones Noqueados , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones Endogámicos C57BL , Metilación
8.
Sci Rep ; 14(1): 16287, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009631

RESUMEN

Division and differentiation events by which cell populations with specific functions are generated often take place as part of a developmental programme, which can be represented by a sequence of compartments. A compartment is the set of cells with common characteristics; sharing, for instance, a spatial location or a phenotype. Differentiation events are transitions from one compartment to the next. Cells may also die or divide. We consider three different types of division events: (i) where both daughter cells inherit the mother's phenotype (self-renewal), (ii) where only one of the daughters changes phenotype (asymmetric division), and (iii) where both daughters change phenotype (symmetric division). The self-renewal probability in each compartment determines whether the progeny of a single cell, moving through the sequence of compartments, is finite or grows without bound. We analyse the progeny stochastic dynamics with probability generating functions. In the case of self-renewal, by following one of the daughters after any division event, we may construct lifelines containing only one cell at any time. We analyse the number of divisions along such lines, and the compartment where lines terminate with a death event. Analysis and numerical simulations are applied to a five-compartment model of the gradual differentiation of hematopoietic stem cells and to a model of thymocyte development: from pre-double positive to single positive (SP) cells with a bifurcation to either SP4 or SP8 in the last compartment of the sequence.


Asunto(s)
Diferenciación Celular , División Celular , Procesos Estocásticos , Autorrenovación de las Células , División Celular Asimétrica , Modelos Biológicos , Animales , Humanos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología
9.
Int J Biol Macromol ; 274(Pt 2): 133418, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936577

RESUMEN

Microfluidic cell encapsulation has provided a platform for studying the behavior of individual cells and has become a turning point in single-cell analysis during the last decade. The engineered microenvironment, along with protecting the immune response, has led to increasingly presenting the results of practical and pre-clinical studies with the goals of disease treatment, tissue engineering, intelligent control of stem cell differentiation, and regenerative medicine. However, the significance of cell-substrate interaction versus cell-cell communications in the microgel is still unclear. In this study, monodisperse alginate microgels were generated using a flow-focusing microfluidic device to determine how the cell microenvironment can control human bone marrow-derived mesenchymal stem cells (hBMSCs) viability, proliferation, and biomechanical features in single-cell droplets versus multi-cell droplets. Collected results show insufficient cell proliferation (234 % and 329 %) in both single- and multi-cell alginate microgels. Alginate hydrogels supplemented with poly-l-lysine (PLL) showed a better proliferation rate (514 % and 780 %) in a comparison of free alginate hydrogels. Cell stiffness data illustrate that hBMSCs cultured in alginate hydrogels have higher membrane flexibility and migration potency (Young's modulus equal to 1.06 kPa), whereas PLL introduces more binding sites for cell attachment and causes lower flexibility and migration potency (Young's modulus equal to 1.83 kPa). Considering that cell adhesion is the most important parameter in tissue engineering, in which cells do not run away from a 3D substrate, PLL enhances cell stiffness and guarantees cell attachments. In conclusion, cell attachment to PLL-mediated alginate hydrogels is crucial for cell viability and proliferation. It suggests that cell-cell signaling is good enough for stem cell viability, but cell-PLL attachment alongside cell-cell signaling is crucial for stem cell proliferation and self-renewal.


Asunto(s)
Alginatos , Adhesión Celular , Proliferación Celular , Células Madre Mesenquimatosas , Microgeles , Polilisina , Alginatos/química , Alginatos/farmacología , Polilisina/química , Polilisina/farmacología , Humanos , Adhesión Celular/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Proliferación Celular/efectos de los fármacos , Microgeles/química , Microfluídica/métodos , Comunicación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Encapsulación Celular/métodos , Análisis de la Célula Individual , Autorrenovación de las Células/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos
10.
Food Chem Toxicol ; 190: 114838, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914192

RESUMEN

Benzene is a common environmental and occupational pollutant, benzene exposure causes damage to hematopoietic system. ZMAT3 is a zinc finger protein which has important biological functions. In this study, benzene-exposed mouse model and ZMAT3 overexpression and low expression hematopoietic stem cells (HSCs) models were constructed to explore the mechanism of ZMAT3 in benzene-induced hematopoietic toxicity. The results showed that benzene increased the expression of ZMAT3 in mouse bone marrow (BM) cells, HSCs and peripheral blood (PB) leukocyte, and the changes in HSCs were more sensitive than BM and PB cells. In addition, overexpression of ZMAT3 decreased the self-renewal ability of HSCs and reduced the HSCs differentiation into myeloid hematopoietic cells, while low expression has the opposite effect. Besides, over and low expression of ZMAT3 both increased the HSCs differentiation into lymphoid progenitor cells. Moreover, bioinformatics analysis suggested that ZMAT3 was associated with TNF-α signaling pathway, and the correlation was confirmed in mouse model. Meanwhile, the results indicated that ZMAT3 promoted TNF-α mRNA processing by binding to the ARE structural domain on TNF-α and interacting with hnRNP A2/B1 and hnRNP A1 proteins, ultimately activating the NF-κB signaling pathway. This study provides a new mechanism for the study of benzene toxicity.


Asunto(s)
Benceno , Diferenciación Celular , Células Madre Hematopoyéticas , FN-kappa B , Transducción de Señal , Factor de Necrosis Tumoral alfa , Animales , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Benceno/toxicidad , FN-kappa B/metabolismo , FN-kappa B/genética , Diferenciación Celular/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Ratones , Transducción de Señal/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Autorrenovación de las Células/efectos de los fármacos
11.
Development ; 151(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38934416

RESUMEN

Transit-amplifying (TA) cells are progenitors that undergo an amplification phase followed by transition into an extinction phase. A long postulated epidermal TA progenitor with biphasic behavior has not yet been experimentally observed in vivo. Here, we identify such a TA population using clonal analysis of Aspm-CreER genetic cell-marking in mice, which uncovers contribution to both homeostasis and injury repair of adult skin. This TA population is more frequently dividing than a Dlx1-CreER-marked long-term self-renewing (e.g. stem cell) population. Newly developed generalized birth-death modeling of long-term lineage tracing data shows that both TA progenitors and stem cells display neutral competition, but only the stem cells display neutral drift. The quantitative evolution of a nascent TA cell and its direct descendants shows that TA progenitors indeed amplify the basal layer before transition and that the homeostatic TA population is mostly in extinction phase. This model will be broadly useful for analyzing progenitors whose behavior changes with their clone age. This work identifies a long-missing class of non-self-renewing biphasic epidermal TA progenitors and has broad implications for understanding tissue renewal mechanisms.


Asunto(s)
Células Epidérmicas , Epidermis , Células Madre , Animales , Ratones , Células Madre/citología , Células Madre/metabolismo , Células Epidérmicas/citología , Células Epidérmicas/metabolismo , Epidermis/metabolismo , Proliferación Celular , Linaje de la Célula , Homeostasis , Diferenciación Celular , Autorrenovación de las Células/fisiología
12.
Biochem Biophys Res Commun ; 726: 150280, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-38909534

RESUMEN

Esophageal epithelium is one of the most proliferative and regenerative epithelia in our body, indicating robust stem cell activity. However, the underlying mechanisms regulating the self-renewal and differentiation of esophageal stem cells need to be more elucidated. Here, we identify the role of YAP1 in esophageal stem cells. YAP1 is differentially expressed in the nuclei of esophageal basal cells. Furthermore, the treatment of verteporfin, a YAP1 inhibitor, interfered with esophageal organoid formation. Consistently, YAP1 deletion decreased esophageal organoid formation and the expression of basal genes while increasing the expression of suprabasal genes. Finally, global transcriptomic analysis revealed that YAP1 inhibition induced a significant enrichment of gene sets related to keratinization and cornification, while depleting gene sets related to DNA repair and chromosome maintenance. Our data uncover a novel regulatory mechanism for esophageal stem cells, which could provide a potential strategy for esophageal regenerative medicine.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Autorrenovación de las Células , Esófago , Células Madre , Proteínas Señalizadoras YAP , Proteínas Señalizadoras YAP/metabolismo , Células Madre/metabolismo , Células Madre/citología , Esófago/citología , Esófago/metabolismo , Animales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratones , Humanos , Organoides/metabolismo , Organoides/citología
13.
Cells ; 13(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38891096

RESUMEN

Special AT-rich sequence binding protein-2 (SATB2) is a nuclear matrix protein that binds to nuclear attachment regions and is involved in chromatin remodeling and transcription regulation. In stem cells, it regulates the expression of genes required for maintaining pluripotency and self-renewal and epithelial-mesenchymal transition (EMT). In this study, we examined the oncogenic role of SATB2 in prostate cancer and assessed whether overexpression of SATB2 in human normal prostate epithelial cells (PrECs) induces properties of cancer stem cells (CSCs). The results demonstrate that SATB2 is highly expressed in prostate cancer cell lines and CSCs, but not in PrECs. Overexpression of SATB2 in PrECs induces cellular transformation which was evident by the formation of colonies in soft agar and spheroids in suspension. Overexpression of SATB2 in PrECs also resulted in induction of stem cell markers (CD44 and CD133), pluripotency-maintaining transcription factors (cMYC, OCT4, SOX2, KLF4, and NANOG), CADHERIN switch, and EMT-related transcription factors. Chromatin immunoprecipitation assay demonstrated that SATB2 can directly bind to promoters of BCL-2, BSP, NANOG, MYC, XIAP, KLF4, and HOXA2, suggesting SATB2 is capable of directly regulating pluripotency/self-renewal, cell survival, and proliferation. Since prostate CSCs play a crucial role in cancer initiation, progression, and metastasis, we also examined the effects of SATB2 knockdown on stemness. SATB2 knockdown in prostate CSCs inhibited spheroid formation, cell viability, colony formation, cell motility, migration, and invasion compared to their scrambled control groups. SATB2 knockdown in CSCs also upregulated the expression of E-CADHERIN and inhibited the expression of N-CADHERIN, SNAIL, SLUG, and ZEB1. The expression of SATB2 was significantly higher in prostate adenocarcinoma compared to normal tissues. Overall, our data suggest that SATB2 acts as an oncogenic factor where it is capable of inducing malignant changes in PrECs by inducing CSC characteristics.


Asunto(s)
Transición Epitelial-Mesenquimal , Factor 4 Similar a Kruppel , Proteínas de Unión a la Región de Fijación a la Matriz , Neoplasias de la Próstata , Factores de Transcripción , Humanos , Masculino , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Factor 4 Similar a Kruppel/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Regulación Neoplásica de la Expresión Génica , Autorrenovación de las Células , Proliferación Celular
14.
Development ; 151(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38934417

RESUMEN

Spermatogonial stem cells (SSCs) undergo self-renewal division to sustain spermatogenesis. Although it is possible to derive SSC cultures in most mouse strains, SSCs from a 129 background never proliferate under the same culture conditions, suggesting they have distinct self-renewal requirements. Here, we established long-term culture conditions for SSCs from mice of the 129 background (129 mice). An analysis of 129 testes showed significant reduction of GDNF and CXCL12, whereas FGF2, INHBA and INHBB were higher than in testes of C57BL/6 mice. An analysis of undifferentiated spermatogonia in 129 mice showed higher expression of Chrna4, which encodes an acetylcholine (Ach) receptor component. By supplementing medium with INHBA and Ach, SSC cultures were derived from 129 mice. Following lentivirus transduction for marking donor cells, transplanted cells re-initiated spermatogenesis in infertile mouse testes and produced transgenic offspring. These results suggest that the requirements of SSC self-renewal in mice are diverse, which has important implications for understanding self-renewal mechanisms in various animal species.


Asunto(s)
Ratones Endogámicos C57BL , Espermatogénesis , Espermatogonias , Testículo , Animales , Masculino , Ratones , Espermatogonias/citología , Espermatogonias/metabolismo , Espermatogénesis/genética , Espermatogénesis/fisiología , Testículo/metabolismo , Testículo/citología , Autorrenovación de las Células , Células Madre Germinales Adultas/metabolismo , Células Madre Germinales Adultas/citología , Células Cultivadas , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Ratones Endogámicos , Diferenciación Celular , Proliferación Celular , Células Madre/citología , Células Madre/metabolismo , Ratones Transgénicos
15.
Nature ; 630(8016): 412-420, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839950

RESUMEN

The processes that govern human haematopoietic stem cell (HSC) self-renewal and engraftment are poorly understood and challenging to recapitulate in culture to reliably expand functional HSCs1-3. Here we identify MYC target 1 (MYCT1; also known as MTLC) as a crucial human HSC regulator that moderates endocytosis and environmental sensing in HSCs. MYCT1 is selectively expressed in undifferentiated human haematopoietic stem and progenitor cells (HSPCs) and endothelial cells but becomes markedly downregulated during HSC culture. Lentivirus-mediated knockdown of MYCT1 prevented human fetal liver and cord blood (CB) HSPC expansion and engraftment. By contrast, restoring MYCT1 expression improved the expansion and engraftment of cultured CB HSPCs. Single-cell RNA sequencing of human CB HSPCs in which MYCT1 was knocked down or overexpressed revealed that MYCT1 governs important regulatory programmes and cellular properties essential for HSC stemness, such as ETS factor expression and low mitochondrial activity. MYCT1 is localized in the endosomal membrane in HSPCs and interacts with vesicle trafficking regulators and signalling machinery. MYCT1 loss in HSPCs led to excessive endocytosis and hyperactive signalling responses, whereas restoring MYCT1 expression balanced culture-induced endocytosis and dysregulated signalling. Moreover, sorting cultured CB HSPCs on the basis of lowest endocytosis rate identified HSPCs with preserved MYCT1 expression and MYCT1-regulated HSC stemness programmes. Our work identifies MYCT1-moderated endocytosis and environmental sensing as essential regulatory mechanisms required to preserve human HSC stemness. Our data also pinpoint silencing of MYCT1 as a cell-culture-induced vulnerability that compromises human HSC expansion.


Asunto(s)
Autorrenovación de las Células , Células Madre Hematopoyéticas , Proteínas Nucleares , Animales , Femenino , Humanos , Masculino , Ratones , Células Cultivadas , Endocitosis , Endosomas/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Sangre Fetal/citología , Técnicas de Silenciamiento del Gen , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hígado/citología , Hígado/metabolismo , Hígado/embriología , Mitocondrias/metabolismo , Proteínas Nucleares/metabolismo , Transducción de Señal , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Análisis de Expresión Génica de una Sola Célula
16.
Nat Commun ; 15(1): 5152, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886396

RESUMEN

In many cancers, a stem-like cell subpopulation mediates tumor initiation, dissemination and drug resistance. Here, we report that cancer stem cell (CSC) abundance is transcriptionally regulated by C-terminally phosphorylated p27 (p27pT157pT198). Mechanistically, this arises through p27 co-recruitment with STAT3/CBP to gene regulators of CSC self-renewal including MYC, the Notch ligand JAG1, and ANGPTL4. p27pTpT/STAT3 also recruits a SIN3A/HDAC1 complex to co-repress the Pyk2 inhibitor, PTPN12. Pyk2, in turn, activates STAT3, creating a feed-forward loop increasing stem-like properties in vitro and tumor-initiating stem cells in vivo. The p27-activated gene profile is over-represented in STAT3 activated human breast cancers. Furthermore, mammary transgenic expression of phosphomimetic, cyclin-CDK-binding defective p27 (p27CK-DD) increases mammary duct branching morphogenesis, yielding hyperplasia and microinvasive cancers that can metastasize to liver, further supporting a role for p27pTpT in CSC expansion. Thus, p27pTpT interacts with STAT3, driving transcriptional programs governing stem cell expansion or maintenance in normal and cancer tissues.


Asunto(s)
Neoplasias de la Mama , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Hiperplasia , Células Madre Neoplásicas , Factor de Transcripción STAT3 , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Humanos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Animales , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Femenino , Fosforilación , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Hiperplasia/metabolismo , Ratones , Regulación Neoplásica de la Expresión Génica , Autorrenovación de las Células/genética , Línea Celular Tumoral , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Glándulas Mamarias Animales/citología , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética
17.
Stem Cell Reports ; 19(7): 1024-1040, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38876109

RESUMEN

Increasing evidence suggests that the muscle stem cell (MuSC) pool is heterogeneous. In particular, a rare subset of PAX7-positive MuSCs that has never expressed the myogenic regulatory factor MYF5 displays unique self-renewal and engraftment characteristics. However, the scarcity and limited availability of protein markers make the characterization of these cells challenging. Here, we describe the generation of StemRep reporter mice enabling the monitoring of PAX7 and MYF5 proteins based on equimolar levels of dual nuclear fluorescence. High levels of PAX7 protein and low levels of MYF5 delineate a deeply quiescent MuSC subpopulation with an increased capacity for asymmetric division and distinct dynamics of activation, proliferation, and commitment. Aging primarily reduces the MYF5Low MuSCs and skews the stem cell pool toward MYF5High cells with lower quiescence and self-renewal potential. Altogether, we establish the StemRep model as a versatile tool to study MuSC heterogeneity and broaden our understanding of mechanisms regulating MuSC quiescence and self-renewal in homeostatic, regenerating, and aged muscles.


Asunto(s)
Envejecimiento , Genes Reporteros , Factor 5 Regulador Miogénico , Factor de Transcripción PAX7 , Regeneración , Animales , Factor de Transcripción PAX7/metabolismo , Factor de Transcripción PAX7/genética , Factor 5 Regulador Miogénico/metabolismo , Factor 5 Regulador Miogénico/genética , Ratones , Envejecimiento/metabolismo , Células Madre/metabolismo , Células Madre/citología , Proliferación Celular , Músculo Esquelético/metabolismo , Músculo Esquelético/citología , Diferenciación Celular , Ratones Transgénicos , Autorrenovación de las Células
18.
Angiogenesis ; 27(3): 545-560, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38733496

RESUMEN

Regenerative capabilities of the endothelium rely on vessel-resident progenitors termed endothelial colony forming cells (ECFCs). This study aimed to investigate if these progenitors are impacted by conditions (i.e., obesity or atherosclerosis) characterized by increased serum levels of oxidized low-density lipoprotein (oxLDL), a known inducer of Endothelial-to-Mesenchymal Transition (EndMT). Our investigation focused on understanding the effects of EndMT on the self-renewal capabilities of progenitors and the associated molecular alterations. In the presence of oxLDL, ECFCs displayed classical features of EndMT, through reduced endothelial gene and protein expression, function as well as increased mesenchymal genes, contractility, and motility. Additionally, ECFCs displayed a dramatic loss in self-renewal capacity in the presence of oxLDL. RNA-sequencing analysis of ECFCs exposed to oxLDL validated gene expression changes suggesting EndMT and identified SOX9 as one of the highly differentially expressed genes. ATAC sequencing analysis identified SOX9 binding sites associated with regions of dynamic chromosome accessibility resulting from oxLDL exposure, further pointing to its importance. EndMT phenotype and gene expression changes induced by oxLDL in vitro or high fat diet (HFD) in vivo were reversed by the silencing of SOX9 in ECFCs or the endothelial-specific conditional knockout of Sox9 in murine models. Overall, our findings support that EndMT affects vessel-resident endothelial progenitor's self-renewal. SOX9 activation is an early transcriptional event that drives the mesenchymal transition of endothelial progenitor cells. The identification of the molecular network driving EndMT in vessel-resident endothelial progenitors presents a new avenue in understanding and preventing a range of condition where this process is involved.


Asunto(s)
Lipoproteínas LDL , Factor de Transcripción SOX9 , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacología , Animales , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Ratones , Humanos , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Transición Epitelial-Mesenquimal , Ratones Endogámicos C57BL , Masculino , Células Progenitoras Endoteliales/metabolismo , Células Progenitoras Endoteliales/citología , Autorrenovación de las Células , Células Endoteliales/metabolismo
19.
Front Immunol ; 15: 1378863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765018

RESUMEN

Background: At menstruation, the functional layer of the human endometrium sheds off due to the trigger of the release of inflammatory factors, including interleukin 6 (IL-6), as a result of a sharp decline in progesterone levels, leading to tissue breakdown and bleeding. The endometrial mesenchymal stem-like cells (CD140b+CD146+ eMSC) located in the basalis are responsible for the cyclical regeneration of the endometrium after menstruation. Endometrial cells from the menstruation phase have been proven to secrete a higher amount of IL-6 and further enhance the self-renewal and clonogenic activity of eMSC. However, the IL-6-responsive mechanism remains unknown. Thus, we hypothesized that IL-6 secreted from niche cells during menstruation regulates the proliferation and self-renewal of eMSC through the WNT/ß-catenin signaling pathway. Methods: In this study, the content of IL-6 across the menstrual phases was first evaluated. Coexpression of stem cell markers (CD140b and CD146) with interleukin 6 receptor (IL-6R) was confirmed by immunofluorescent staining. In vitro functional assays were conducted to investigate the effect of IL-6 on the cell activities of eMSC, and the therapeutic role of these IL-6- and WNT5A-pretreated eMSC on the repair of injured endometrium was observed using an established mouse model. Results: The endometrial cells secrete a high amount of IL-6 under hypoxic conditions, which mimic the physiological microenvironment in the menstruation phase. Also, the expression of IL-6 receptors was confirmed in our eMSC, indicating their capacity to respond to IL-6 in the microenvironment. Exogenous IL-6 can significantly enhance the self-renewal, proliferation, and migrating capacity of eMSC. Activation of the WNT/ß-catenin signaling pathway was observed upon IL-6 treatment, while suppression of the WNT/ß-catenin signaling impaired the stimulatory role of IL-6 on eMSC activities. IL-6- and WNT5A-pretreated eMSC showed better performance during the regeneration of the injured mouse endometrium. Conclusion: We demonstrate that the high level of IL-6 produced by endometrial cells at menstruation can induce the stem cells in the human endometrium to proliferate and migrate through the activation of the WNT/ß-catenin pathway. Treatment of eMSC with IL-6 and WNT5A might enhance their therapeutic potential in the regeneration of injured endometrium.


Asunto(s)
Autorrenovación de las Células , Endometrio , Interleucina-6 , Menstruación , Células Madre Mesenquimatosas , Vía de Señalización Wnt , Adulto , Animales , Femenino , Humanos , Ratones , Proliferación Celular , Células Cultivadas , Endometrio/metabolismo , Endometrio/citología , Interleucina-6/metabolismo , Interleucina-6/farmacología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo
20.
Cell Stem Cell ; 31(5): 754-771.e6, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701759

RESUMEN

Development of embryonic stem cells (ESCs) into neurons requires intricate regulation of transcription, splicing, and translation, but how these processes interconnect is not understood. We found that polypyrimidine tract binding protein 1 (PTBP1) controls splicing of DPF2, a subunit of BRG1/BRM-associated factor (BAF) chromatin remodeling complexes. Dpf2 exon 7 splicing is inhibited by PTBP1 to produce the DPF2-S isoform early in development. During neuronal differentiation, loss of PTBP1 allows exon 7 inclusion and DPF2-L expression. Different cellular phenotypes and gene expression programs were induced by these alternative DPF2 isoforms. We identified chromatin binding sites enriched for each DPF2 isoform, as well as sites bound by both. In ESC, DPF2-S preferential sites were bound by pluripotency factors. In neuronal progenitors, DPF2-S sites were bound by nuclear factor I (NFI), while DPF2-L sites were bound by CCCTC-binding factor (CTCF). DPF2-S sites exhibited enhancer modifications, while DPF2-L sites showed promoter modifications. Thus, alternative splicing redirects BAF complex targeting to impact chromatin organization during neuronal development.


Asunto(s)
Empalme Alternativo , Diferenciación Celular , Cromatina , Ribonucleoproteínas Nucleares Heterogéneas , Neuronas , Proteína de Unión al Tracto de Polipirimidina , Factores de Transcripción , Empalme Alternativo/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Animales , Diferenciación Celular/genética , Cromatina/metabolismo , Ratones , Neuronas/metabolismo , Neuronas/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Transcripción Genética , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Exones/genética , Humanos , Autorrenovación de las Células/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA