Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 477
Filtrar
1.
Plant Physiol Biochem ; 214: 108890, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38950462

RESUMEN

Drought stress affects plant photosynthesis, leading to a reduction in the quality and yield of crop production. Non-foliar organs play a complementary role in photosynthesis during plant growth and development and are important sources of energy. However, there are limited studies on the performance of non-foliar organs under drought stress. The photosynthetic-responsive differences of oat spikelet organs (glumes, lemmas and paleas) and flag leaves to drought stress during the grain-filling stage were examined. Under drought stress, photosynthetic performance of glume is more stable. Intercellular CO2 concentration (Ci), chlorophyll b, maximum photochemical efficiency of photosystem II. (Fv/Fm), and electron transport rate (ETR) were significantly higher in the glume compared to the flag leaf. The transcriptome data revealed that stable expression of the RCCR gene under drought stress was the main reason for maintaining higher chlorophyll content in the glume. Additionally, no differential expression genes (DEGs) related to Photosystem Ⅰ (PSI) reaction centers were found, and drought stress primarily affects the Photosystem II (PSII) reaction center. In spikelets, the CP43 and CP47 subunits of PSII and the AtpB subunit of ATP synthase were increased on the thylakoid membrane, contributing to photosynthetic stabilisation of spikelets as a means of supplementing the limited photosynthesis of the leaves under drought stress. The results enhanced understanding of the photosynthetic performance of oat spikelet during the grain-filling stage, and also provided an important basis on improving the photosynthetic capacity of non-foliar organs for the selection and breeding new oat varieties with high yield and better drought resistance.


Asunto(s)
Avena , Sequías , Fotosíntesis , Complejo de Proteína del Fotosistema II , Fotosíntesis/fisiología , Avena/genética , Avena/metabolismo , Avena/crecimiento & desarrollo , Avena/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Complejo de Proteína del Fotosistema I/metabolismo , Grano Comestible/fisiología , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
BMC Plant Biol ; 24(1): 632, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970019

RESUMEN

BACKGROUND: The myeloblastosis (MYB) transcription factor (TF) family is one of the largest and most important TF families in plants, playing an important role in a life cycle and abiotic stress. RESULTS: In this study, 268 Avena sativa MYB (AsMYB) TFs from Avena sativa were identified and named according to their order of location on the chromosomes, respectively. Phylogenetic analysis of the AsMYB and Arabidopsis MYB proteins were performed to determine their homology, the AsMYB1R proteins were classified into 5 subgroups, and the AsMYB2R proteins were classified into 34 subgroups. The conserved domains and gene structure were highly conserved among the subgroups. Eight differentially expressed AsMYB genes were screened in the transcriptome of transcriptional data and validated through RT-qPCR. Three genes in AsMYB2R subgroup, which are related to the shortened growth period, stomatal closure, and nutrient and water transport by PEG-induced drought stress, were investigated in more details. The AsMYB1R subgroup genes LHY and REV 1, together with GST, regulate ROS homeostasis to ensure ROS signal transduction and scavenge excess ROS to avoid oxidative damage. CONCLUSION: The results of this study confirmed that the AsMYB TFs family is involved in the homeostatic regulation of ROS under drought stress. This lays the foundation for further investigating the involvement of the AsMYB TFs family in regulating A. sativa drought response mechanisms.


Asunto(s)
Avena , Sequías , Homeostasis , Filogenia , Proteínas de Plantas , Especies Reactivas de Oxígeno , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Avena/genética , Avena/metabolismo , Regulación de la Expresión Génica de las Plantas , Polietilenglicoles/farmacología , Familia de Multigenes , Estrés Fisiológico/genética , Estudio de Asociación del Genoma Completo , Genoma de Planta
3.
Genes (Basel) ; 15(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38927635

RESUMEN

The integration of target capture systems with next-generation sequencing has emerged as an efficient tool for exploring specific genetic regions with a high resolution and facilitating the rapid discovery of novel alleles. Despite these advancements, the application of targeted sequencing methodologies, such as the myBaits technology, in polyploid oat species remains relatively unexplored. In this study, we utilized the myBaits target capture method offered by Daicel Arbor Biosciences to detect variants and assess their reliability for variant detection in oat genomics and breeding. Ten oat genotypes were carefully chosen for targeted sequencing, focusing on specific regions on chromosome 2A to detect variants. The selected region harbors 98 genes. Precisely designed baits targeting the genes within these regions were employed for the target capture sequencing. We employed various mappers and variant callers to identify variants. After the identification of variants, we focused on the variants identified via all variants callers to assess the applicability of the myBaits sequencing methodology in oat breeding. In our efforts to validate the identified variants, we focused on two SNPs, one deletion and one insertion identified via all variant callers in the genotypes KF-318 and NOS 819111-70 but absent in the remaining eight genotypes. The Sanger sequencing of targeted SNPs failed to reproduce target capture data obtained through the myBaits technology. Similarly, the validation of deletion and insertion variants via high-resolution melting (HRM) curve analysis also failed to reproduce target capture data, again suggesting limitations in the reliability of the myBaits target capture sequencing using short-read sequencing for variant detection in the oat genome. This study shed light on the importance of exercising caution when employing the myBaits target capture strategy for variant detection in oats. This study provides valuable insights for breeders seeking to advance oat breeding efforts and marker development using myBaits target capture sequencing, emphasizing the significance of methodological sequencing considerations in oat genomics research.


Asunto(s)
Avena , Secuenciación de Nucleótidos de Alto Rendimiento , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Avena/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple/genética , Genoma de Planta/genética , Genómica/métodos , Genotipo , Análisis de Secuencia de ADN/métodos
4.
BMC Plant Biol ; 24(1): 537, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867157

RESUMEN

BACKGROUND: Avena fatua and A. sterilis are challenging to distinguish due to their strong similarities. However, Artificial Neural Networks (ANN) can effectively extract patterns and identify these species. We measured seed traits of Avena species from 122 locations across the Balkans and from some populations from southern, western, and central Europe (total over 22 000 seeds). The inputs for the ANN model included seed mass, size, color, hairiness, and placement of the awn attachment on the lemma. RESULTS: The ANN model achieved high classification accuracy for A. fatua and A. sterilis (R2 > 0.99, RASE < 0.0003) with no misclassification. Incorporating geographic coordinates as inputs also resulted in successful classification (R2 > 0.99, RASE < 0.000001) with no misclassification. This highlights the significant influence of geographic coordinates on the occurrence of Avena species. The models revealed hidden relationships between morphological traits that are not easily detectable through traditional statistical methods. For example, seed color can be partially predicted by other seed traits combined with geographic coordinates. When comparing the two species, A. fatua predominantly had the lemma attachment point in the upper half, while A. sterilis had it in the lower half. A. sterilis exhibited slightly longer seeds and hairs than A. fatua, while seed hairiness and mass were similar in both species. A. fatua populations primarily had brown, light brown, and black colors, while A. sterilis populations had black, brown, and yellow colors. CONCLUSIONS: Distinguishing A. fatua from A. sterilis based solely on individual characteristics is challenging due to their shared traits and considerable variability of traits within each species. However, it is possible to classify these species by combining multiple seed traits. This approach also has significant potential for exploring relationships among different traits that are typically difficult to assess using conventional methods.


Asunto(s)
Redes Neurales de la Computación , Semillas , Semillas/anatomía & histología , Avena/genética , Avena/anatomía & histología , Peninsula Balcánica , Europa (Continente)
5.
Nucleic Acids Res ; 52(13): 8003-8016, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38860425

RESUMEN

Optogenetics' advancement has made light induction attractive for controlling biological processes due to its advantages of fine-tunability, reversibility, and low toxicity. The lactose operon induction system, commonly used in Escherichia coli, relies on the binding of lactose or isopropyl ß-d-1-thiogalactopyranoside (IPTG) to the lactose repressor protein LacI, playing a pivotal role in controlling the lactose operon. Here, we harnessed the light-responsive light-oxygen-voltage 2 (LOV2) domain from Avena sativa phototropin 1 as a tool for light control and engineered LacI into two light-responsive variants, OptoLacIL and OptoLacID. These variants exhibit direct responsiveness to light and darkness, respectively, eliminating the need for IPTG. Building upon OptoLacI, we constructed two light-controlled E. coli gene expression systems, OptoE.coliLight system and OptoE.coliDark system. These systems enable bifunctional gene expression regulation in E. coli through light manipulation and show superior controllability compared to IPTG-induced systems. We applied the OptoE.coliDark system to protein production and metabolic flux control. Protein production levels are comparable to those induced by IPTG. Notably, the titers of dark-induced production of 1,3-propanediol (1,3-PDO) and ergothioneine exceeded 110% and 60% of those induced by IPTG, respectively. The development of OptoLacI will contribute to the advancement of the field of optogenetic protein engineering, holding substantial potential applications across various fields.


Asunto(s)
Escherichia coli , Isopropil Tiogalactósido , Operón Lac , Represoras Lac , Luz , Optogenética , Isopropil Tiogalactósido/farmacología , Represoras Lac/metabolismo , Represoras Lac/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efectos de la radiación , Optogenética/métodos , Regulación Bacteriana de la Expresión Génica/efectos de la radiación , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ingeniería de Proteínas/métodos , Avena/genética , Avena/metabolismo , Avena/efectos de la radiación
6.
Nat Plants ; 10(6): 874-879, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38816499

RESUMEN

Plant photosystem I (PSI) consists of at least 13 nuclear-encoded and 4 chloroplast-encoded subunits that together act as a sunlight-driven oxidoreductase. Here we report the structure of a PSI assembly intermediate that we isolated from greening oat seedlings. The assembly intermediate shows an absence of at least eight subunits, including PsaF and LHCI, and lacks photoreduction activity. The data show that PsaF is a regulatory checkpoint that promotes the assembly of LHCI, effectively coupling biogenesis to function.


Asunto(s)
Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/metabolismo , Avena/metabolismo , Avena/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/genética , Plantones/genética , Plantones/metabolismo
7.
Plant Genome ; 17(2): e20457, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38764287

RESUMEN

Oats (Avena sativa L.) provide unique nutritional benefits and contribute to sustainable agricultural systems. Breeding high-value oat varieties that meet milling industry standards is crucial for satisfying the demand for oat-based food products. Test weight, thins, and groat percentage are primary traits that define oat milling quality and the final price of food-grade oats. Conventional selection for milling quality is costly and burdensome. Multi-trait genomic selection (MTGS) combines information from genome-wide markers and secondary traits genetically correlated with primary traits to predict breeding values of primary traits on candidate breeding lines. MTGS can improve prediction accuracy and significantly accelerate the rate of genetic gain. In this study, we evaluated different MTGS models that used morphometric grain traits to improve prediction accuracy for primary grain quality traits within the constraints of a breeding program. We evaluated 558 breeding lines from the University of Illinois Oat Breeding Program across 2 years for primary milling traits, test weight, thins, and groat percentage, and secondary grain morphometric traits derived from kernel and groat images. Kernel morphometric traits were genetically correlated with test weight and thins percentage but were uncorrelated with groat percentage. For test weight and thins percentage, the MTGS model that included the kernel morphometric traits in both training and candidate sets outperformed single-trait models by 52% and 59%, respectively. In contrast, MTGS models for groat percentage were not significantly better than the single-trait model. We found that incorporating kernel morphometric traits can improve the genomic selection for test weight and thins percentage.


Asunto(s)
Avena , Grano Comestible , Fitomejoramiento , Avena/genética , Grano Comestible/genética , Selección Genética , Fenotipo , Genoma de Planta , Genómica/métodos , Sitios de Carácter Cuantitativo
8.
Planta ; 260(1): 8, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789631

RESUMEN

MAIN CONCLUSION: A gene-to-metabolite approach afforded new insights regarding defence mechanisms in oat plants that can be incorporated into plant breeding programmes for the selection of markers and genes related to disease resistance. Monitoring metabolite levels and changes therein can complement and corroborate transcriptome (mRNA) data on plant-pathogen interactions, thus revealing mechanisms involved in pathogen attack and host defence. A multi-omics approach thus adds new layers of information such as identifying metabolites with antimicrobial properties, elucidating metabolomic profiles of infected and non-infected plants, and reveals pathogenic requirements for infection and colonisation. In this study, two oat cultivars (Dunnart and SWK001) were inoculated with Pseudomonas syringae pathovars, pathogenic and non-pathogenic on oat. Following inoculation, metabolites were extracted with methanol from leaf tissues at 2, 4 and 6 days post-infection and analysed by multiple reaction monitoring (MRM) on a triple quadrupole mass spectrometer system. Relatedly, mRNA was isolated at the same time points, and the cDNA analysed by quantitative PCR (RT-qPCR) for expression levels of selected gene transcripts associated with avenanthramide (Avn) biosynthesis. The targeted amino acids, hydroxycinnamic acids and Avns were successfully quantified. Distinct cultivar-specific differences in the metabolite responses were observed in response to pathogenic and non-pathogenic strains. Trends in aromatic amino acids and hydroxycinnamic acids seem to indicate stronger activation and flux through these pathways in Dunnart as compared to SWK001. A positive correlation between hydroxycinnamoyl-CoA:hydroxyanthranilate N-hydroxycinnamoyl transferase (HHT) gene expression and the abundance of Avn A in both cultivars was documented. However, transcript profiling of selected genes involved in Avn synthesis did not reveal a clear pattern to distinguish between the tolerant and susceptible cultivars.


Asunto(s)
Avena , Perfilación de la Expresión Génica , Metaboloma , Enfermedades de las Plantas , Pseudomonas syringae , Pseudomonas syringae/patogenicidad , Pseudomonas syringae/fisiología , Avena/microbiología , Avena/genética , Avena/metabolismo , Metaboloma/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Fitoquímicos/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Regulación de la Expresión Génica de las Plantas , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno , Transcriptoma , ortoaminobenzoatos/metabolismo
9.
Int J Mol Sci ; 25(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38791572

RESUMEN

Artificial hybrids between cultivated Avena species and wild Avena macrostachya that possess genes for resistance to biotic and abiotic stresses can be important for oat breeding. For the first time, a comprehensive study of genomes of artificial fertile hybrids Avena sativa × Avena macrostachya and their parental species was carried out based on the chromosome FISH mapping of satellite DNA sequences (satDNAs) and also analysis of intragenomic polymorphism in the 18S-ITS1-5.8S rDNA region, using NGS data. Chromosome distribution patterns of marker satDNAs allowed us to identify all chromosomes in the studied karyotypes, determine their subgenomic affiliation, and detect several chromosome rearrangements. Based on the obtained cytogenomic data, we revealed differences between two A. macrostachya subgenomes and demonstrated that only one of them was inherited in the studied octoploid hybrids. Ribotype analyses showed that the second major ribotype of A. macrostachya was species-specific and was not represented in rDNA pools of the octoploids, which could be related to the allopolyploid origin of this species. Our results indicate that the use of marker satDNAs in cytogenomic studies can provide important data on genomic relationships within Avena allopolyploid species and hybrids, and also expand the potential for interspecific crosses for breeding.


Asunto(s)
Avena , Hibridación Genética , Avena/clasificación , Avena/genética , ADN Ribosómico/genética , Cromosomas de las Plantas , Filogenia , Cruzamiento , ADN Satélite/genética , ADN de Plantas/genética , Variación Genética
10.
J Agric Food Chem ; 72(34): 19197-19218, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38803291

RESUMEN

Cereal grains play an important role in human health as a source of macro- and micronutrients, besides phytochemicals. The metabolite diversity was investigated in cereal crops and their milling fractions by untargeted metabolomics ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) of 69 samples: 7 species (barley, oat, pearl millet, rye, sorghum, triticale, and wheat), 23 genotypes, and 4 milling fractions (husk, bran, flour, and wholegrain). Samples were also analyzed by in vitro antioxidant activity. UHPLC-MS/MS signals were processed using XCMS, and metabolite annotation was based on SIRIUS and GNPS libraries. Bran and husk showed the highest antioxidant capacity and phenolic content/diversity. The major metabolite classes were phenolic acids, flavonoids, fatty acyls, and organic acids. Sorghum, millet, barley, and oats showed distinct metabolite profiles, especially related to the bran fraction. Molecular networking and chemometrics provided a comprehensive insight into the metabolic profiling of cereal crops, unveiling the potential of coproducts and super cereals such as sorghum and millet as sources of polyphenols.


Asunto(s)
Antioxidantes , Grano Comestible , Espectrometría de Masas en Tándem , Antioxidantes/metabolismo , Antioxidantes/química , Antioxidantes/análisis , Grano Comestible/química , Grano Comestible/metabolismo , Cromatografía Líquida de Alta Presión , Sorghum/química , Sorghum/metabolismo , Avena/química , Avena/metabolismo , Avena/genética , Triticum/química , Triticum/metabolismo , Triticum/genética , Flavonoides/metabolismo , Flavonoides/análisis , Flavonoides/química , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Mijos/química , Mijos/metabolismo , Mijos/genética , Hordeum/química , Hordeum/metabolismo , Hordeum/genética , Semillas/química , Semillas/metabolismo , Metabolómica , Productos Agrícolas/química , Productos Agrícolas/metabolismo , Productos Agrícolas/genética
11.
Genes (Basel) ; 15(4)2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38674348

RESUMEN

The length of coleoptile is crucial for determining the sowing depth of oats in low-precipitation regions, which is significant for oat breeding programs. In this study, a diverse panel of 243 oat accessions was used to explore coleoptile length in two independent experiments. The panel exhibited significant variation in coleoptile length, ranging from 4.66 to 8.76 cm. Accessions from Africa, America, and the Mediterranean region displayed longer coleoptile lengths than those from Asia and Europe. Genome-wide association studies (GWASs) using 26,196 SNPs identified 34 SNPs, representing 32 quantitative trait loci (QTLs) significantly associated with coleoptile length. Among these QTLs, six were consistently detected in both experiments, explaining 6.43% to 10.07% of the phenotypic variation. The favorable alleles at these stable loci additively increased coleoptile length, offering insights for pyramid breeding. Gene Ontology (GO) analysis of the 350 candidate genes underlying the six stable QTLs revealed significant enrichment in cell development-related processes. Several phytochrome-related genes, including auxin transporter-like protein 1 and cytochrome P450 proteins, were found within these QTLs. Further validation of these loci will enhance our understanding of coleoptile length regulation. This study provides new insights into the genetic architecture of coleoptile length in oats.


Asunto(s)
Avena , Cotiledón , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Avena/genética , Avena/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo/métodos , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Fenotipo , Genoma de Planta , Fitomejoramiento
12.
Sci Data ; 11(1): 412, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649380

RESUMEN

Diploid wild oat Avena longiglumis has nutritional and adaptive traits which are valuable for common oat (A. sativa) breeding. The combination of Illumina, Nanopore and Hi-C data allowed us to assemble a high-quality chromosome-level genome of A. longiglumis (ALO), evidenced by contig N50 of 12.68 Mb with 99% BUSCO completeness for the assembly size of 3,960.97 Mb. A total of 40,845 protein-coding genes were annotated. The assembled genome was composed of 87.04% repetitive DNA sequences. Dotplots of the genome assembly (PI657387) with two published ALO genomes were compared to indicate the conservation of gene order and equal expansion of all syntenic blocks among three genome assemblies. Two recent whole-genome duplication events were characterized in genomes of diploid Avena species. These findings provide new knowledge for the genomic features of A. longiglumis, give information about the species diversity, and will accelerate the functional genomics and breeding studies in oat and related cereal crops.


Asunto(s)
Avena , Diploidia , Genoma de Planta , Avena/genética , Cromosomas de las Plantas
13.
Sci Rep ; 14(1): 9928, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688976

RESUMEN

SQUAMOSA promoter binding-like proteins (SPLs) are important transcription factors that influence growth phase transition and reproduction in plants. SPLs are targeted by miR156 but the SPL/miR156 module is completely unknown in oat. We identified 28 oat SPL genes (AsSPLs) distributed across all 21 oat chromosomes except for 4C and 6D. The oat- SPL gene family represented six of eight SPL phylogenetic groups, with no AsSPLs in groups 3 and 7. A novel oat miR156 (AsmiR156) family with 21 precursors divided into 7 groups was characterized. A total of 16 AsSPLs were found to be targeted by AsmiR156. Intriguingly, AsSPL3s showed high transcript abundance during early inflorescence (GS-54), as compared to the lower abundance of AsmiR156, indicating their role in reproductive development. Unravelling the SPL/miR156 regulatory hub and alterations in expression patterns of AsSPLs could provide an essential toolbox for genetic improvement in the cultivated oat.


Asunto(s)
Avena , Regulación de la Expresión Génica de las Plantas , MicroARNs , Proteínas de Plantas , MicroARNs/genética , MicroARNs/metabolismo , Avena/genética , Avena/metabolismo , Avena/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas , Cromosomas de las Plantas/genética , Perfilación de la Expresión Génica
14.
PLoS One ; 19(4): e0298072, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593116

RESUMEN

As a result of oat (Avena sativa L.) × maize (Zea mays L.) crossing, maize chromosomes may not be completely eliminated at the early stages of embryogenesis, leading to the oat × maize addition (OMA) lines development. Introgression of maize chromosomes into oat genome can cause morphological and physiological modifications. The aim of the research was to evaluate the leaves' anatomy, chlorophyll a fluorescence, and yield parameter of oat doubled haploid (DH) and OMA lines obtained by oat × maize crossing. The present study examined two DH and two disomic OMA lines and revealed that they differ significantly in the majority of studied traits, apart from: the number of cells of the outer bundle sheath; light energy absorption; excitation energy trapped in PSII reaction centers; and energy dissipated from PSII. The OMA II line was characterized by larger size of single cells in the outer bundle sheath and greater number of seeds per plant among tested lines.


Asunto(s)
Avena , Zea mays , Zea mays/genética , Clorofila A , Avena/genética , Haploidia , Fluorescencia , Clorofila
15.
J Agric Food Chem ; 72(14): 8103-8113, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38530645

RESUMEN

The effect of genotype and environment on oat protein composition was analyzed through size exclusion-high-performance liquid chromatography (SE-HPLC) and liquid chromatography-mass spectrometry (LC-MS) to characterize oat protein isolate (OPI) extracted from three genotypes grown at three locations in the Canadian Prairies. SE-HPLC identified four fractions in OPI, including polymeric globulins, avenins, glutelins, and albumins, and smaller proteins. The protein composition was dependent on the environment, rather than the genotype. The proteins identified through LC-MS were grouped into eight categories, including globulins, prolamins/avenins, glutelins, enzymes/albumins, enzyme inhibitors, heat shock proteins, grain softness proteins, and allergenic proteins. Three main globulin protein types were also identified, including the P14812|SSG2-12S seed storage globulin, the Q6UJY8_TRITU-globulin, and the M7ZQM3_TRIUA-Globulin-1 S. Principal component analysis indicated that samples from Manitoba showed a positive association with the M7ZQM3_TRIUA-Globulin-1 S allele and Q6UJY8_TRITU-globulin, while samples from Alberta and Saskatchewan had a negative association with them. The results show that the influence of G × E on oat protein fractions and their relative composition is crucial to understanding genotypes' behavior in response to different environments.


Asunto(s)
Globulinas , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Avena/genética , Avena/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Canadá , Glútenes/genética , Prolaminas/metabolismo , Globulinas/metabolismo , Albúminas
16.
PLoS One ; 19(2): e0295006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38306337

RESUMEN

Oat crown rust, caused by Puccinia coronata Corda f. sp. avenae Eriks. (Pca), is a major biotic impediment to global oat production. Crown rust resistance has been described in oat diploid species A. strigosa accession PI 258731 and resistance from this accession has been successfully introgressed into hexaploid A. sativa germplasm. The current study focuses on 1) mapping the location of QTL containing resistance and evaluating the number of quantitative trait loci (QTL) conditioning resistance in PI 258731; 2) understanding the relationship between the original genomic location in A. strigosa and the location of the introgression in the A. sativa genome; 3) identifying molecular markers tightly linked with PI 258731 resistance loci that could be used for marker assisted selection and detection of this resistance in diverse A. strigosa accessions. To achieve this, A. strigosa accessions, PI 258731 and PI 573582 were crossed to produce 168 F5:6 recombinant inbred lines (RILs) through single seed descent. Parents and RILs were genotyped with the 6K Illumina SNP array which generated 168 segregating SNPs. Seedling reactions to two isolates of Pca (races TTTG, QTRG) were conditioned by two genes (0.6 cM apart) in this population. Linkage mapping placed these two resistant loci to 7.7 (QTRG) to 8 (TTTG) cM region on LG7. Field reaction data was used for QTL analysis and the results of interval mapping (MIM) revealed a major QTL (QPc.FD-AS-AA4) for field resistance. SNP marker assays were developed and tested in 125 diverse A. strigosa accessions that were rated for crown rust resistance in Baton Rouge, LA and Gainesville, FL and as seedlings against races TTTG and QTRG. Our data proposed SNP marker GMI_ES17_c6425_188 as a candidate for use in marker-assisted selection, in addition to the marker GMI_ES02_c37788_255 suggested by Rine's group, which provides an additional tool in facilitating the utilization of this gene in oat breeding programs.


Asunto(s)
Avena , Basidiomycota , Avena/genética , Diploidia , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Fitomejoramiento , Plantones/genética
17.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38396983

RESUMEN

Oats (Avena sativa) are an important cereal crop and cool-season forage worldwide. Heat shock protein 90 (HSP90) is a protein ubiquitously expressed in response to heat stress in almost all plants. To date, the HSP90 gene family has not been comprehensively reported in oats. Herein, we have identified twenty HSP90 genes in oats and elucidated their evolutionary pathways and responses to five abiotic stresses. The gene structure and motif analyses demonstrated consistency across the phylogenetic tree branches, and the groups exhibited relative structural conservation. Additionally, we identified ten pairs of segmentally duplicated genes in oats. Interspecies synteny analysis and orthologous gene identification indicated that oats share a significant number of orthologous genes with their ancestral species; this implies that the expansion of the oat HSP90 gene family may have occurred through oat polyploidization and large fragment duplication. The analysis of cis-acting elements revealed their influential role in the expression pattern of HSP90 genes under abiotic stresses. Analysis of oat gene expression under high-temperature, salt, cadmium (Cd), polyethylene glycol (PEG), and abscisic acid (ABA) stresses demonstrated that most AsHSP90 genes were significantly up-regulated by heat stress, particularly AsHSP90-7, AsHSP90-8, and AsHSP90-9. This study offers new insights into the amplification and evolutionary processes of the AsHSP90 protein, as well as its potential role in response to abiotic stresses. Furthermore, it lays the groundwork for understanding oat adaptation to abiotic stress, contributing to research and applications in plant breeding.


Asunto(s)
Avena , Grano Comestible , Avena/genética , Avena/metabolismo , Grano Comestible/genética , Filogenia , Genoma de Planta , Fitomejoramiento , Estrés Fisiológico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
18.
PeerJ ; 12: e16759, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38274325

RESUMEN

Background: Traditional spring-summer sown oat is a typical long-day crop that cannot head under short-day conditions. The creation of photoperiod-insensitive oats overcomes this limitation. MADS-box genes are a class of transcription factors involved in plant flowering signal transduction regulation. Previous transcriptome studies have shown that MADS-box genes may be related to the oat photoperiod. Methods: Putative MADS-box genes were identified in the whole genome of oat. Bioinformatics methods were used to analyze their classification, conserved motifs, gene structure, evolution, chromosome localization, collinearity and cis-elements. Ten representative genes were further screened via qRT‒PCR analysis under short days. Results: In total, sixteen AsMADS genes were identified and grouped into nine subfamilies. The domains, conserved motifs and gene structures of all AsMADS genes were conserved. All members contained light-responsive elements. Using the photoperiod-insensitive oat MENGSIYAN4HAO (MSY4) and spring-summer sown oat HongQi2hao (HQ2) as materials, qRT‒PCR analysis was used to analyze the AsMADS gene at different panicle differentiation stages under short-day conditions. Compared with HQ2, AsMADS3, AsMADS8, AsMADS11, AsMADS13, and AsMADS16 were upregulated from the initial stage to the branch differentiation stage in MSY4, while AsMADS12 was downregulated. qRT‒PCR analysis was also performed on the whole panicle differentiation stages in MSY4 under short-day conditions, the result showed that the expression levels of AsMADS9 and AsMADS11 gradually decreased. Based on the subfamily to which these genes belong, the above results indicated that AsMADS genes, especially SVP, SQUA and Mα subfamily members, regulated panicle development in MSY4 by responding to short-days. This work provides a foundation for revealing the function of the AsMADS gene family in the oat photoperiod pathway.


Asunto(s)
Avena , Fotoperiodo , Avena/genética , Factores de Transcripción/genética , Genoma de Planta/genética , Plantas/genética
19.
J Appl Genet ; 65(1): 1-11, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37934380

RESUMEN

Apart from apomictic types, the Polygonum-type eight-nuclear embryo sac is considered to be dominant in grasses. A triploid endosperm is formed as a result of double fertilisation. This study showed, for the first time, the dominance of diploid nuclei in the syncytial stage of the central cell of embryo sac in oat species and amphiploids. The dominance of diploid nuclei, which were the basis for the formation of polyploid nuclei, was weaker in amphiploids due to aneuploid events. The genomic in situ hybridisation method applied in the study did not distinguish the maternal and paternal haploid nuclei of embryo sac. However, this method demonstrated the lack of a set of genomes of one haploid nucleus. Embryological analyses of the initial stages of oat endosperm development revealed a fertilised egg cell, and two polar nuclei differing in size. It can be assumed that the formation of diploid oat endosperm occurred after the fusion of one polar nucleus and the nucleus of a male gamete, while the second polar nucleus gave rise to 1n nuclei. The levels of ploidy of syncytial nuclei were not influenced by both aneuploid events and correlated with pollen developmental anomalies. The differences in the analysed cytogenetic events distinguished amphiploids and their parental species in the ordination space.


Asunto(s)
Diploidia , Endospermo , Endospermo/genética , Avena/genética , Ploidias , Aneuploidia
20.
Phytochemistry ; 218: 113940, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056517

RESUMEN

Hemicelluloses constitute approximately one-third of the plant cell wall and can be used as a dietary fiber and food additive, and as raw materials for biofuels. Although genes involved in hemicelluloses synthesis have been investigated in some model plants, no comprehensive analysis has been conducted in common oat at present. In this study, we identified and systematically analyzed the cellulose synthase-like gene (Csl) family members in common oat and investigated them using various bioinformatics tools. The results showed that there are 76 members of the oat Csl gene family distributed on 17 chromosomes, and phylogenetic analysis indicated that the 76 Csl genes belong to the CslA, CslC, CslD, CslE, CslF, CslH, and CslJ subfamilies. A total of 14 classes of cis-acting elements were identified in the promoter regions, including hormone response, light response, cell development, and defense stress elements. The collinearity analysis identified 28 pairs of segmentally duplicated genes, most of which were found on chromosomes 2D and 6A. Expression pattern analysis showed that oat Csl genes display strong tissue-specific expression; of the 76 Csl genes, 33 were significantly up-regulated in stems and 30 were up-regulated in immature seeds. The expression of most members of the AsCsl gene family is repressed by abiotic stress, while the expression of some members is up-regulated by light. Immunoelectron microscopy shows that the product of AsCsl61, a member of CslF subfamily, mediates (1,3; 1,4)-ß-D-glucan synthesis in transgenic Arabidopsis. These findings provide a fundamental understanding of the structural, functional, and evolutionary features of the oat Csl genes and may contribute to our general understanding of hemicellulose biosynthesis. Moreover, this information will be helpful in designing experiments for genetic manipulation of mixed-linkage glucan (MLG) synthesis with the goal of quality improvement in oat.


Asunto(s)
Arabidopsis , Avena , Glucosiltransferasas , Avena/genética , Avena/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Arabidopsis/metabolismo , Glucanos/metabolismo , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA