Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.343
Filtrar
1.
J Plant Physiol ; 297: 154260, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701679

RESUMEN

Sulfur is an essential nutrient for all plants, but also crucial for the nitrogen fixing symbiosis between legumes and rhizobia. Sulfur limitation can hamper nodule development and functioning. Until now, it remained unclear whether sulfate uptake into nodules is local or mainly systemic via the roots, and if long-distance transport from shoots to roots and into nodules occurs. Therefore, this work investigates the systemic regulation of sulfur transportation in the model legume Lotus japonicus by applying stable isotope labeling to a split-root system. Metabolite and protein extraction together with mass spectrometry analyses were conducted to determine the plants molecular phenotype and relative isotope protein abundances. Data show that treatments of varying sulfate concentrations including the absence of sulfate on one side of a nodulated root was not affecting nodule development as long as the other side of the root system was provided with sufficient sulfate. Concentrations of shoot metabolites did not indicate a significant stress response caused by a lack of sulfur. Further, we did not observe any quantitative changes in proteins involved in biological nitrogen fixation in response to the different sulfate treatments. Relative isotope abundance of 34S confirmed a long-distance transport of sulfur from one side of the roots to the other side and into the nodules. Altogether, these results provide evidence for a systemic long-distance transport of sulfur via the upper part of the plant to the nodules suggesting a demand driven sulfur distribution for the maintenance of symbiotic N-fixation.


Asunto(s)
Lotus , Proteínas de Plantas , Nódulos de las Raíces de las Plantas , Azufre , Simbiosis , Nódulos de las Raíces de las Plantas/metabolismo , Azufre/metabolismo , Proteínas de Plantas/metabolismo , Lotus/metabolismo , Transporte Biológico , Fijación del Nitrógeno , Sulfatos/metabolismo , Raíces de Plantas/metabolismo
2.
Environ Microbiol Rep ; 16(3): e13263, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705733

RESUMEN

Deep-sea methane seeps are amongst the most biologically productive environments on Earth and are often characterised by stable, low oxygen concentrations and microbial communities that couple the anaerobic oxidation of methane to sulfate reduction or iron reduction in the underlying sediment. At these sites, ferrous iron (Fe2+) can be produced by organoclastic iron reduction, methanotrophic-coupled iron reduction, or through the abiotic reduction by sulfide produced by the abundant sulfate-reducing bacteria at these sites. The prevalence of Fe2+in the anoxic sediments, as well as the availability of oxygen in the overlying water, suggests that seeps could also harbour communities of iron-oxidising microbes. However, it is unclear to what extent Fe2+ remains bioavailable and in solution given that the abiotic reaction between sulfide and ferrous iron is often assumed to scavenge all ferrous iron as insoluble iron sulfides and pyrite. Accordingly, we searched the sea floor at methane seeps along the Cascadia Margin for microaerobic, neutrophilic iron-oxidising bacteria, operating under the reasoning that if iron-oxidising bacteria could be isolated from these environments, it could indicate that porewater Fe2+ can persist is long enough for biology to outcompete pyritisation. We found that the presence of sulfate in our enrichment media muted any obvious microbially-driven iron oxidation with most iron being precipitated as iron sulfides. Transfer of enrichment cultures to sulfate-depleted media led to dynamic iron redox cycling relative to abiotic controls and sulfate-containing cultures, and demonstrated the capacity for biogenic iron (oxyhydr)oxides from a methane seep-derived community. 16S rRNA analyses revealed that removing sulfate drastically reduced the diversity of enrichment cultures and caused a general shift from a Gammaproteobacteria-domainated ecosystem to one dominated by Rhodobacteraceae (Alphaproteobacteria). Our data suggest that, in most cases, sulfur cycling may restrict the biological "ferrous wheel" in contemporary environments through a combination of the sulfur-adapted sediment-dwelling ecosystems and the abiotic reactions they influence.


Asunto(s)
Bacterias , Sedimentos Geológicos , Hierro , Metano , Oxidación-Reducción , Azufre , Metano/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Agua de Mar/microbiología , Agua de Mar/química , Sulfuros/metabolismo , Sulfatos/metabolismo , ARN Ribosómico 16S/genética , Filogenia
3.
Sci Rep ; 14(1): 11734, 2024 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777815

RESUMEN

Heavy metal (HM) pollution threatens human and ecosystem health. Current methods for remediating water contaminated with HMs are expensive and have limited effect. Therefore, bioremediation is being investigated as an environmentally and economically viable alternative. Freshwater protists Euglena gracilis and Euglena mutabilis were investigated for their tolerance to cadmium (Cd). A greater increase in cell numbers under Cd stress was noted for E. mutabilis but only E. gracilis showed an increase in Cd tolerance following pre-treatment with elevated concentrations of S or N. To gain insight regarding the nature of the increased tolerance RNA-sequencing was carried out on E. gracilis. This revealed transcript level changes among pretreated cells, and additional differences among cells exposed to CdCl2. Gene ontology (GO) enrichment analysis reflected changes in S and N metabolism, transmembrane transport, stress response, and physiological processes related to metal binding. Identifying these changes enhances our understanding of how these organisms adapt to HM polluted environments and allows us to target development of future pre-treatments to enhance the use of E. gracilis in bioremediation relating to heavy metals.


Asunto(s)
Cadmio , Nitrógeno , Azufre , Cadmio/toxicidad , Azufre/metabolismo , Azufre/farmacología , Nitrógeno/metabolismo , Biodegradación Ambiental , Euglena/metabolismo , Euglena/efectos de los fármacos , Euglena/genética , Contaminantes Químicos del Agua/toxicidad , Euglena gracilis/metabolismo , Euglena gracilis/efectos de los fármacos , Euglena gracilis/genética
4.
Nat Commun ; 15(1): 4041, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740794

RESUMEN

Due to the complexity of the catalytic FeMo cofactor site in nitrogenases that mediates the reduction of molecular nitrogen to ammonium, mechanistic details of this reaction remain under debate. In this study, selenium- and sulfur-incorporated FeMo cofactors of the catalytic MoFe protein component from Azotobacter vinelandii are prepared under turnover conditions and investigated by using different EPR methods. Complex signal patterns are observed in the continuous wave EPR spectra of selenium-incorporated samples, which are analyzed by Tikhonov regularization, a method that has not yet been applied to high spin systems of transition metal cofactors, and by an already established grid-of-error approach. Both methods yield similar probability distributions that reveal the presence of at least four other species with different electronic structures in addition to the ground state E0. Two of these species were preliminary assigned to hydrogenated E2 states. In addition, advanced pulsed-EPR experiments are utilized to verify the incorporation of sulfur and selenium into the FeMo cofactor, and to assign hyperfine couplings of 33S and 77Se that directly couple to the FeMo cluster. With this analysis, we report selenium incorporation under turnover conditions as a straightforward approach to stabilize and analyze early intermediate states of the FeMo cofactor.


Asunto(s)
Azotobacter vinelandii , Molibdoferredoxina , Nitrogenasa , Selenio , Azufre , Espectroscopía de Resonancia por Spin del Electrón/métodos , Azotobacter vinelandii/enzimología , Azotobacter vinelandii/metabolismo , Nitrogenasa/metabolismo , Nitrogenasa/química , Molibdoferredoxina/metabolismo , Molibdoferredoxina/química , Selenio/metabolismo , Selenio/química , Azufre/metabolismo , Azufre/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
5.
Respir Res ; 25(1): 206, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745285

RESUMEN

BACKGROUND: Previous studies have largely neglected the role of sulfur metabolism in LUAD, and no study has combine iron, copper, and sulfur-metabolism associated genes together to create prognostic signatures. METHODS: This study encompasses 1564 LUAD patients, 1249 NSCLC patients, and over 10,000 patients with various cancer types from diverse cohorts. We employed the R package ConsensusClusterPlus to separate patients into different ICSM (Iron, Copper, and Sulfur-Metabolism) subtypes. Various machine-learning methods were utilized to develop the ICSMI. Enrichment analyses were conducted using ClusterProfiler and GSVA, while IOBR quantified immune cell infiltration. GISTIC2.0 and maftools were utilized for CNV and SNV data analysis. The Oncopredict package predicted drug information based on GDSC1. TIDE algorithm and cohorts GSE91061 and IMvigor210 evaluated patient response to immunotherapy. Single-cell data was processed using the Seurat package, AUCell package calculated cells geneset activity scores, and the Scissor algorithm identified ICSMI-associated cells. In vitro experiments was conducted to explore the role of ICSMRGs in LUAD. RESULTS: Unsupervised clustering identified two distinct ICSM subtypes of LUAD, each with unique clinical characteristics. The ICSMI, comprising 10 genes, was constructed using integrated machine-learning methods. Its prognostic power was validated in 10 independent datasets, revealing that LUAD patients with higher ICSMI levels had poorer prognoses. Furthermore, ICSMI demonstrated superior predictive abilities compared to 102 previously published signatures. A nomogram incorporating ICSMI and clinical features exhibited high predictive performance. ICSMI positively correlated with patients gene mutations, and integrated analysis of bulk and single-cell transcriptome data revealed its association with TME modulators. Cells representing the high-ICSMI phenotype exhibited more malignant features. LUAD patients with high ICSMI levels exhibited sensitivity to chemotherapy and targeted therapy but displayed resistance to immunotherapy. In a comprehensive analysis across various cancers, ICSMI retained significant prognostic value and emerged as a risk factor for the majority of cancer patients. CONCLUSIONS: ICSMI provides critical prognostic insights for LUAD patients, offering valuable insights into the tumor microenvironment and predicting treatment responsiveness.


Asunto(s)
Adenocarcinoma del Pulmón , Cobre , Hierro , Neoplasias Pulmonares , Aprendizaje Automático , Azufre , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/diagnóstico , Azufre/metabolismo , Cobre/metabolismo , Pronóstico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/diagnóstico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Hierro/metabolismo , Resultado del Tratamiento , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Valor Predictivo de las Pruebas , Masculino , Femenino
6.
Protein Sci ; 33(6): e5014, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747384

RESUMEN

A heterodisulfide reductase-like complex (sHdr) and novel lipoate-binding proteins (LbpAs) are central players of a wide-spread pathway of dissimilatory sulfur oxidation. Bioinformatic analysis demonstrate that the cytoplasmic sHdr-LbpA systems are always accompanied by sets of sulfur transferases (DsrE proteins, TusA, and rhodaneses). The exact composition of these sets may vary depending on the organism and sHdr system type. To enable generalizations, we studied model sulfur oxidizers from distant bacterial phyla, that is, Aquificota and Pseudomonadota. DsrE3C of the chemoorganotrophic Alphaproteobacterium Hyphomicrobium denitrificans and DsrE3B from the Gammaproteobacteria Thioalkalivibrio sp. K90mix, an obligate chemolithotroph, and Thiorhodospira sibirica, an obligate photolithotroph, are homotrimers that donate sulfur to TusA. Additionally, the hyphomicrobial rhodanese-like protein Rhd442 exchanges sulfur with both TusA and DsrE3C. The latter is essential for sulfur oxidation in Hm. denitrificans. TusA from Aquifex aeolicus (AqTusA) interacts physiologically with AqDsrE, AqLbpA, and AqsHdr proteins. This is particularly significant as it establishes a direct link between sulfur transferases and the sHdr-LbpA complex that oxidizes sulfane sulfur to sulfite. In vivo, it is unlikely that there is a strict unidirectional transfer between the sulfur-binding enzymes studied. Rather, the sulfur transferases form a network, each with a pool of bound sulfur. Sulfur flux can then be shifted in one direction or the other depending on metabolic requirements. A single pair of sulfur-binding proteins with a preferred transfer direction, such as a DsrE3-type protein towards TusA, may be sufficient to push sulfur into the sink where it is further metabolized or needed.


Asunto(s)
Proteínas Bacterianas , Oxidación-Reducción , Oxidorreductasas , Azufre , Sulfurtransferasas , Azufre/metabolismo , Sulfurtransferasas/metabolismo , Sulfurtransferasas/química , Sulfurtransferasas/genética , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética
7.
Nat Commun ; 15(1): 4066, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744885

RESUMEN

Terrestrial geothermal springs are physicochemically diverse and host abundant populations of Archaea. However, the diversity, functionality, and geological influences of these Archaea are not well understood. Here we explore the genomic diversity of Archaea in 152 metagenomes from 48 geothermal springs in Tengchong, China, collected from 2016 to 2021. Our dataset is comprised of 2949 archaeal metagenome-assembled genomes spanning 12 phyla and 392 newly identified species, which increases the known species diversity of Archaea by ~48.6%. The structures and potential functions of the archaeal communities are strongly influenced by temperature and pH, with high-temperature acidic and alkaline springs favoring archaeal abundance over Bacteria. Genome-resolved metagenomics and metatranscriptomics provide insights into the potential ecological niches of these Archaea and their potential roles in carbon, sulfur, nitrogen, and hydrogen metabolism. Furthermore, our findings illustrate the interplay of competition and cooperation among Archaea in biogeochemical cycles, possibly arising from overlapping functional niches and metabolic handoffs. Taken together, our study expands the genomic diversity of Archaea inhabiting geothermal springs and provides a foundation for more incisive study of biogeochemical processes mediated by Archaea in geothermal ecosystems.


Asunto(s)
Archaea , Genoma Arqueal , Manantiales de Aguas Termales , Metagenoma , Metagenómica , Filogenia , Manantiales de Aguas Termales/microbiología , Archaea/genética , Archaea/clasificación , China , Metagenómica/métodos , Biodiversidad , Concentración de Iones de Hidrógeno , Azufre/metabolismo , Temperatura , Ecosistema
8.
Mar Genomics ; 75: 101108, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735675

RESUMEN

Dimethylsulfoniopropionate (DMSP) is one of the most abundant sulfur-containing organic compounds on the earth, which is an important carbon and sulfur source and plays an important role in the global sulfur cycle. Marine microorganisms are an important group involved in DMSP metabolism. The strain Cobetia sp. D5 was isolated from seawater samples in the Yellow Sea area of Qingdao during an algal bloom. There is still limited knowledge on the capacity of DMSP utilization of Cobetia bacteria. The study reports the whole genome sequence of Cobetia sp. D5 to understand its DMSP metabolism pathway. The genome of Cobetia sp. D5 consists of a circular chromosome with a length of 4,233,985 bp and the GC content is 62.56%. Genomic analysis showed that Cobetia sp. D5 contains a set of genes to transport and metabolize DMSP, which can cleave DMSP to produce dimethyl sulphide (DMS) and 3-Hydroxypropionyl-Coenzyme A (3-HP-CoA). DMS diffuses into the environment to enter the global sulfur cycle, whereas 3-HP-CoA is catabolized to acetyl CoA to enter central carbon metabolism. Thus, this study provides genetic insights into the DMSP metabolic processes of Cobetia sp. D5 during a marine algal bloom, and contributes to the understanding of the important role played by marine bacteria in the global sulfur cycle.


Asunto(s)
Genoma Bacteriano , Compuestos de Sulfonio , Azufre , Compuestos de Sulfonio/metabolismo , Azufre/metabolismo , Agua de Mar/microbiología , Sulfuros/metabolismo , China
9.
Sci Rep ; 14(1): 10767, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730011

RESUMEN

Climate change and atmospheric deposition of nitrogen (N) and sulfur (S) impact the health and productivity of forests. Here, we explored the potential impacts of these environmental stressors on ecosystem services provided by future forests in the contiguous U.S. We found that all stand-level services benefitted (+ 2.6 to 8.1%) from reductions in N+S deposition, largely attributable to positive responses to reduced S that offset the net negative effects of lower N levels. Sawtimber responded positively (+ 0.5 to 0.6%) to some climate change, but negatively (- 2.4 to - 3.8%) to the most extreme scenarios. Aboveground carbon (C) sequestration and forest diversity were negatively impacted by all modelled changes in climate. Notably, the most extreme climate scenario eliminated gains in all three services achieved through reduced deposition. As individual tree species responded differently to climate change and atmospheric deposition, associated services unique to each species increased or decreased under future scenarios. Our results suggest that climate change should be considered when evaluating the benefits of N and S air pollution policies on the services provided by U.S. forests.


Asunto(s)
Cambio Climático , Bosques , Nitrógeno , Azufre , Nitrógeno/metabolismo , Azufre/metabolismo , Estados Unidos , Árboles , Ecosistema , Secuestro de Carbono
10.
Sci Rep ; 14(1): 7899, 2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570566

RESUMEN

Hutchison's niche theory suggests that coexisting competing species occupy non-overlapping hypervolumes, which are theoretical spaces encompassing more than three dimensions, within an n-dimensional space. The analysis of multiple stable isotopes can be used to test these ideas where each isotope can be considered a dimension of niche space. These hypervolumes may change over time in response to variation in behaviour or habitat, within or among species, consequently changing the niche space itself. Here, we use isotopic values of carbon and nitrogen of ten amino acids, as well as sulphur isotopic values, to produce multi-isotope models to examine niche segregation among an assemblage of five coexisting seabird species (ancient murrelet Synthliboramphus antiquus, double-crested cormorant Phalacrocorax auritus, Leach's storm-petrel Oceanodrama leucorhoa, rhinoceros auklet Cerorhinca monocerata, pelagic cormorant Phalacrocorax pelagicus) that inhabit coastal British Columbia. When only one or two isotope dimensions were considered, the five species overlapped considerably, but segregation increased in more dimensions, but often in complex ways. Thus, each of the five species occupied their own isotopic hypervolume (niche), but that became apparent only when factoring the increased information from sulphur and amino acid specific isotope values, rather than just relying on proxies of δ15N and δ13C alone. For cormorants, there was reduction of niche size for both species consistent with a decline in their dominant prey, Pacific herring Clupea pallasii, from 1970 to 2006. Consistent with niche theory, cormorant species showed segregation across time, with the double-crested demonstrating a marked change in diet in response to prey shifts in a higher dimensional space. In brief, incorporating multiple isotopes (sulfur, PC1 of δ15N [baselines], PC2 of δ15N [trophic position], PC1 and PC2 of δ13C) metrics allowed us to infer changes and differences in food web topology that were not apparent from classic carbon-nitrogen biplots.


Asunto(s)
Aminoácidos , Charadriiformes , Animales , Aminoácidos/metabolismo , Isótopos/metabolismo , Aves/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Azufre/metabolismo , Isótopos de Nitrógeno/metabolismo , Isótopos de Carbono/metabolismo
11.
Zool Res ; 45(3): 468-477, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38583938

RESUMEN

Iron-sulfur clusters are essential cofactors for proteins involved in various biological processes, such as electron transport, biosynthetic reactions, DNA repair, and gene expression regulation. Iron-sulfur cluster assembly protein IscA1 (or MagR) is found within the mitochondria of most eukaryotes. Magnetoreceptor (MagR) is a highly conserved A-type iron and iron-sulfur cluster-binding protein, characterized by two distinct types of iron-sulfur clusters, [2Fe-2S] and [3Fe-4S], each conferring unique magnetic properties. MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome (Cry) and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation. Although the N-terminal sequences of MagR vary among species, their specific function remains unknown. In the present study, we found that the N-terminal sequences of pigeon MagR, previously thought to serve as a mitochondrial targeting signal (MTS), were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound. Moreover, the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex. Thus, the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting. These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.


Asunto(s)
Proteínas Hierro-Azufre , Animales , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Hierro/metabolismo , Azufre/metabolismo
12.
Environ Microbiol Rep ; 16(2): e13246, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38575138

RESUMEN

Metagenome assembled genomes (MAGs), generated from sequenced 13C-labelled DNA from 13C-methanol enriched soils, were binned using an ensemble approach. This method produced a significantly larger number of higher-quality MAGs compared to direct binning approaches. These MAGs represent both the primary methanol utilizers and the secondary utilizers labelled via cross-feeding and predation on the labelled methylotrophs, including numerous uncultivated taxa. Analysis of these MAGs enabled the identification of multiple metabolic pathways within these active taxa that have climatic relevance relating to nitrogen, sulfur and trace gas metabolism. This includes denitrification, dissimilatory nitrate reduction to ammonium, ammonia oxidation and metabolism of organic sulfur species. The binning of viral sequence data also yielded extensive viral MAGs, identifying active viral replication by both lytic and lysogenic phages within the methanol-enriched soils. These MAGs represent a valuable resource for characterizing biogeochemical cycling within terrestrial environments.


Asunto(s)
Metanol , Suelo , Oxidación-Reducción , Metagenoma , Azufre/metabolismo , Metagenómica
13.
BMC Plant Biol ; 24(1): 257, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594609

RESUMEN

BACKGROUND: Sulfur (S) is a mineral nutrient essential for plant growth and development, which is incorporated into diverse molecules fundamental for primary and secondary metabolism, plant defense, signaling, and maintaining cellular homeostasis. Although, S starvation response is well documented in the dicot model Arabidopsis thaliana, it is not clear if the same transcriptional networks control the response also in the monocots. RESULTS: We performed series of physiological, expression, and metabolite analyses in two model monocot species, one representing the C3 plants, Oryza sativa cv. kitaake, and second representing the C4 plants, Setaria viridis. Our comprehensive transcriptomic analysis revealed twice as many differentially expressed genes (DEGs) in S. viridis than in O. sativa under S-deficiency, consistent with a greater loss of sulfur and S-containing metabolites under these conditions. Surprisingly, most of the DEGs and enriched gene ontology terms were species-specific, with an intersect of only 58 common DEGs. The transcriptional networks were different in roots and shoots of both species, in particular no genes were down-regulated by S-deficiency in the roots of both species. CONCLUSIONS: Our analysis shows that S-deficiency seems to have different physiological consequences in the two monocot species and their nutrient homeostasis might be under distinct control mechanisms.


Asunto(s)
Arabidopsis , Oryza , Genes de Plantas , Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Azufre/metabolismo , Homeostasis , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Raíces de Plantas/metabolismo
14.
Nat Commun ; 15(1): 3269, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627381

RESUMEN

Maturation of iron-sulfur proteins in eukaryotes is initiated in mitochondria by the core iron-sulfur cluster assembly (ISC) complex, consisting of the cysteine desulfurase sub-complex NFS1-ISD11-ACP1, the scaffold protein ISCU2, the electron donor ferredoxin FDX2, and frataxin, a protein dysfunctional in Friedreich's ataxia. The core ISC complex synthesizes [2Fe-2S] clusters de novo from Fe and a persulfide (SSH) bound at conserved cluster assembly site residues. Here, we elucidate the poorly understood Fe-dependent mechanism of persulfide transfer from cysteine desulfurase NFS1 to ISCU2. High-resolution cryo-EM structures obtained from anaerobically prepared samples provide snapshots that both visualize different stages of persulfide transfer from Cys381NFS1 to Cys138ISCU2 and clarify the molecular role of frataxin in optimally positioning assembly site residues for fast sulfur transfer. Biochemical analyses assign ISCU2 residues essential for sulfur transfer, and reveal that Cys138ISCU2 rapidly receives the persulfide without a detectable intermediate. Mössbauer spectroscopy assessing the Fe coordination of various sulfur transfer intermediates shows a dynamic equilibrium between pre- and post-sulfur-transfer states shifted by frataxin. Collectively, our study defines crucial mechanistic stages of physiological [2Fe-2S] cluster assembly and clarifies frataxin's molecular role in this fundamental process.


Asunto(s)
Frataxina , Proteínas Hierro-Azufre , Proteínas Hierro-Azufre/metabolismo , Sulfuros/metabolismo , Azufre/metabolismo , Liasas de Carbono-Azufre/metabolismo , Proteínas de Unión a Hierro/metabolismo
15.
Mar Environ Res ; 197: 106481, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38593647

RESUMEN

Marine distribution of dimethylsulfoniopropionate (DMSP) and its cleavage product dimethyl sulfide (DMS) is greatly affected by the community structures of bacteria, phytoplankton, and zooplankton. Spatial distributions of dissolved and particulate DMSP (DMSPd,p), and DMS were measured and their relationships with DMSP lyase activity (DLA), abundance of DMSP-consuming bacteria (DCB), and the community structures of phytoplankton, zooplankton, and bacteria were determined during summer in the South China Sea (SCS). The depth distributions of DMSPd,p exhibited a similar trend with Chl a, reaching their maxima in the mixing layer. The DMS concentration was positively correlated with DCB abundance and DLA, indicating that DCB and DMSP lyase had a significant effect on DMS production. High DMS concentrations in the horizontal distribution coincided with high DCB abundance and DLA and may be due to the rapid growth of phytoplankton resulting from the high dissolved inorganic nitrogen concentration brought by the cold vortices. Moreover, the highest copepod abundance at station G3 coincided with the highest DMS concentrations there among stations B4, F2, and G3. These results suggest that copepod may play an important role in DMS production. The bacterial SAR11 clade was positively correlated with DLA, indicating its significant contribution to DMSP degradation in the SCS. These findings contribute to the understanding of the effect of the community assemblage on DMSP/DMS distributions in the SCS dominated by mesoscale vortices.


Asunto(s)
Agua de Mar , Compuestos de Sulfonio , Animales , Agua de Mar/química , Azufre/metabolismo , Compuestos de Sulfonio/química , Compuestos de Sulfonio/metabolismo , Sulfuros/metabolismo , Bacterias/metabolismo , Fitoplancton , China , Zooplancton/metabolismo
16.
Water Res ; 256: 121639, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657306

RESUMEN

Phosphine (PH3) is an important contributor to the phosphorus cycle and is widespread in various environments. However, there are few studies on PH3 in constructed wetlands (CWs). In this study, lab-scale CWs and batch experiments were conducted to explore the characteristics and mechanisms of PH3 production in sulfur-based CWs. The results showed that the PH3 release flux of sulfur-based CWs varied from 0.86±0.04 ng·m-2·h-1 to 1.88±0.09 ng·m-2·h-1. The dissolved PH3 was the main PH3 form in CWs and varied from 2.73 µg·L-1 to 4.08 µg·L-1. The matrix-bound PH3 was a staging reservoir for PH3 and increased with substrate depth. In addition, the sulfur-based substrates had a significant improvement on PH3 production. Elemental sulfur is more conducive to PH3 production than pyrite. Moreover, there was a significant positive correlation between PH3 production, the dsrB gene, and nicotinamide adenine dinucleotide (NADH). NADH might catalyze the phosphate reduction process. And the final stage of the dissimilatory sulfate reduction pathway driven by the dsrB gene might also provide energy for phosphate reduction. The migration and transformation of PH3 increased the available P (Resin-P and NaHCO3-P) from 35 % to 56 % in sulfur-based CW, and the P adsorption capacity was improved by 12 %. The higher proportion of available P increased the plant uptake rate of P by 17 %. This study improves the understanding of the phosphorus cycle in sulfur-based CW and provides new insight into the long-term stable operation of CWs.


Asunto(s)
Fosfinas , Azufre , Humedales , Azufre/metabolismo
17.
Water Res ; 256: 121581, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614032

RESUMEN

The autotrophic denitrification of coupled sulfur and natural iron ore can remove nitrogen and phosphorus from wastewater with low C/N ratios. However, the low solubility of crystalline Fe limits its bioavailability and P absorption capacity. This study investigated the effects of amorphous Fe in drinking water treatment residue (DWTR) and crystalline Fe in red mud (RM) on nitrogen and phosphorus removal during sulfur autotrophic processes. Two types of S-Fe cross-linked filler particles with three-dimensional mesh structures were obtained by combining sulfur with the DWTR/RM using the hydrogel encapsulation method. Two fixed-bed reactors, sulfur-DWTR autotrophic denitrification (SDAD) and sulfur-RM autotrophic denitrification (SRAD), were constructed and stably operated for 236 d Under a 5-8-h hydraulic retention time, the average NO3--N, TN, and phosphate removal rates of SDAD and SRAD were 99.04 %, 96.29 %, 94.03 % (SDAD) and 97.33 %, 69.97 %, 82.26 % (SRAD), respectively. It is important to note that fermentative iron-reducing bacteria, specifically Clostridium_sensu_stricto_1, were present in SDAD at an abundance of 58.17 %, but were absent from SRAD. The presence of these bacteria facilitated the reduction of Fe (III) to Fe (II), which led to the complete denitrification of the S-Fe (II) co-electron donor to produce Fe (III), completing the iron cycle in the system. This study proposes an enhancement method for sulfur autotrophic denitrification using an amorphous Fe substrate, providing a new option for the efficient treatment of low-C/N wastewater.


Asunto(s)
Procesos Autotróficos , Desnitrificación , Hierro , Nitrógeno , Fósforo , Azufre , Fósforo/metabolismo , Nitrógeno/metabolismo , Azufre/metabolismo , Hierro/metabolismo , Hierro/química , Reactores Biológicos , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
18.
Water Res ; 256: 121592, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626614

RESUMEN

The cost-effective and environment-friendly sulfur-driven autotrophic denitrification (SdAD) process has drawn significant attention for advanced nitrogen removal from low carbon-to-nitrogen (C/N) ratio wastewater in recent years. However, achieving efficient nitrogen removal and maintaining system stability of SdAD process in treating low C/N landfill leachate treatment have been a major challenge. In this study, a novel electrochemical-coupled sulfur-driven autotrophic denitrification (ESdAD) system was developed and compared with SdAD system through a long-term continuous study. Superior nitrogen removal performance (removal efficiency of 89.1 ± 2.5 %) was achieved in ESdAD system compared to SdAD process when treating raw landfill leachate (influent total nitrogen (TN) concentration of 241.7 ± 36.3 mg-N/L), and the effluent TN concentration of ESdAD bioreactor was as low as 24.8 ± 5.1 mg-N/L, which meets the discharge standard of China (< 40 mg N/L). Moreover, less sulfate production rate (1.3 ± 0.2 mg SO42--S/mgNOx--N vs 1.7 ± 0.2 mg SO42--S/mgNOx--N) and excellent pH modulation (pH of 6.9 ± 0.2 vs 5.8 ± 0.4) were also achieved in the ESdAD system compared to SdAD system. The improvement of ESdAD system performance was contributed to coexistence and interaction of heterotrophic bacteria (e.g., Rhodanobacter, Thermomonas, etc.), sulfur autotrophic bacteria (e.g., Thiobacillus, Sulfurimonas, Ignavibacterium etc.) and hydrogen autotrophic bacteria (e.g., Thauera, Comamonas, etc.) under current stimulation. In addition, microbial nitrogen metabolic activity, including functional enzyme (e.g., Nar and Nir) activities and electron transfer capacity of extracellular polymeric substances (EPS) and cytochrome c (Cyt-C), were also enhanced during current stimulation, which facilitated the nitrogen removal and maintained system stability. These findings suggested that ESdAD is an effective and eco-friendly process for advanced nitrogen removal for low C/N wastewater.


Asunto(s)
Procesos Autotróficos , Reactores Biológicos , Desnitrificación , Nitrógeno , Azufre , Contaminantes Químicos del Agua , Nitrógeno/metabolismo , Azufre/metabolismo , Contaminantes Químicos del Agua/metabolismo , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Técnicas Electroquímicas
19.
Water Res ; 256: 121590, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38631241

RESUMEN

The high-concentration sulfate (SO42-) in the antibiotic production wastewater hinders the anerobic methanogenic process and also proposes possible environmental risk. In this study, a novel single-chamber up-flow anaerobic bioelectrochemical reactor (UBER) was designed to realize simultaneous SO42- removal and elemental sulfur (S0) recovery. With the carbon felt, the cathode was installed underneath and the anode above to meet the different biological niches for sulfate reducing bacteria (SRB) and sulfur oxidizing bacteria (SOB). The bio-anode UBER (B-UBER) demonstrated a much higher average SO42- removal rate (SRR) of 113.2 ± 5.7 mg SO42--S L-1 d-1 coupled with a S0 production rate (SPR) of 54.4 ± 5.8 mg S0-S L-1 d-1 at the optimal voltage of 0.8 V than that in the abio-anode UBER (control reactor) (SRR = 86.6 ± 13.4 mg SO42--S L-1 d-1; SPR = 25.5 ± 9.7 mg S0-S L-1 d-1) under long-term operation. A large amount of biogenic S0 (about 72.2 mg g-1 VSS) was recovered in the B-UBER. The bio-anode, dominated by Thiovirga (SOB genus) and Acinetobacter (electrochemically active bacteria genus), exhibited a higher current density, lower overpotential, and lower internal resistance. C-type cytochromes mainly served as the crucial electron transfer mediator for both direct and indirect electron transfer, so that significantly increasing electron transfer capacity and biogenic S0 recovery. The reaction pathways of the sulfur transformation in the B-UBER were hypothesized that SRB utilized acetate as the main electron donor for SO42- reduction in the cathode zone and SOB transferred electrons to the anode or oxygen to produce biogenic S0 in the anode zone. This study proved a new pathway for biogenic S0 recovery and sulfate removal from sulfate-laden antibiotic production wastewater using a well-designed single-chamber bioelectrochemical reactor.


Asunto(s)
Antibacterianos , Reactores Biológicos , Sulfatos , Azufre , Aguas Residuales , Aguas Residuales/química , Azufre/metabolismo , Sulfatos/metabolismo , Sulfatos/química , Eliminación de Residuos Líquidos/métodos , Electrodos
20.
J Hazard Mater ; 471: 134342, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678705

RESUMEN

The accumulation of microplastics in reservoirs due to river damming has drawn considerable attention due to their potential impacts on elemental biogeochemical cycling at the watershed scale. However, the effects of plastisphere communities on the sulfur cycle in the large deep-water reservoir remain poorly understood. Here, we collected microplastics and their surrounding environmental samples in the water and sediment ecosystems of Xiaowan Reservoir and found a significant spatiotemporal pattern of microplastics and sulfur distribution in this Reservoir. Based on the microbial analysis, plastic-degrading taxa (e.g., Ralstonia, Rhodococcus) involved in the sulfur cycle were enriched in the plastisphere of water and sediment, respectively. Typical thiosulfate oxidizing bacteria Limnobacter acted as keystone species in the plastisphere microbial network. Sulfate, oxidation reduction potential and organic matter drove the variations of the plastisphere. Environmental filtration significantly affected the plastisphere communities, and the deterministic process dominated the community assembly. Furthermore, predicted functional profiles related to sulfur cycling, compound degradation and membrane transport were significantly enriched in the plastisphere. Overall, our results suggest microplastics as a new microbial niche exert different effects in water and sediment environments, and provide insights into the potential impacts of the plastisphere on the sulfur biogeochemical cycle in the reservoir ecosystem.


Asunto(s)
Sedimentos Geológicos , Microplásticos , Azufre , Contaminantes Químicos del Agua , Azufre/metabolismo , Microplásticos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Bacterias/metabolismo , Bacterias/clasificación , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA