Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40.342
Filtrar
1.
Food Microbiol ; 122: 104565, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839213

RESUMEN

To evaluate the effects of bioaugmentation fermentation inoculated with one ester-producing strain (Wickerhamomyces anomalus ZX-1) and two strains of lactic acid bacteria (Lactobacillus plantarum CGMCC 24035 and Lactobacillus acidophilus R2) for improving the flavor of persimmon vinegar, microbial community, flavor compounds and metabolites were analyzed. The results of microbial diversity analysis showed that bioaugmentation fermentation significantly increased the abundance of Lactobacillus, Saccharomyces, Pichia and Wickerhamomyces, while the abundance of Acetobacter, Apiotrichum, Delftia, Komagataeibacter, Kregervanrija and Aspergillus significantly decreased. After bioaugmentation fermentation, the taste was softer, and the sensory irritancy of acetic acid was significantly reduced. The analysis of HS-SPME-GC-MS and untargeted metabolomics based on LC-MS/MS showed that the contents of citric acid, lactic acid, malic acid, ethyl lactate, methyl acetate, isocitrate, acetoin and 2,3-butanediol were significantly increased. By multivariate analysis, 33 differential metabolites were screened out to construct the correlation between the differential metabolites and microorganisms. Pearson correlation analysis showed that methyl acetate, ethyl lactate, betaine, aconitic acid, acetoin, 2,3-butanediol and isocitrate positively associated with Wickerhamomyces and Lactobacillus. The results confirmed that the quality of persimmon vinegar was improved by bioaugmentation fermentation.


Asunto(s)
Ácido Acético , Diospyros , Fermentación , Microbiota , Ácido Acético/metabolismo , Diospyros/microbiología , Diospyros/metabolismo , Saccharomycetales/metabolismo , Gusto , Aromatizantes/metabolismo , Lactobacillus plantarum/metabolismo , Microbiología de Alimentos , Lactobacillus acidophilus/metabolismo , Lactobacillus acidophilus/crecimiento & desarrollo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética
2.
Food Microbiol ; 122: 104528, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839212

RESUMEN

Human milk is considered the most suitable source of nutrition for infants. Donor human milk from human milk banks (HMB) is recommended as the best alternative for infants whose mothers' own milk is unavailable. Microbiological screening of milk donated to HMB is important to ensure the quality and safety of the pasteurised human milk. This article describes the microbiological status of human milk donated to the Regional Human Milk Bank in Torun, Poland. Statistical data regarding the microbiological analysis of milk from 292 donors were collected in the years 2013-2021. Total of 538 milk samples were tested. Only in 6% of human milk samples the bacteria level was above the required standard and/or the milk had potentially pathogenic bacteria. The main core of donors' breastmilk bacteria represents the skin microbiota, and the composition of the microbiota is strictly related to the surrounding environment. The most abundant genera detected in milk samples were the Staphylococcus group. Prolonged hospitalisation of infants' mothers and/or offsprings is associated with potentially pathogenic bacteria colonization in milk. The use of the modern identification method MALDI-TOF resulted in more accurate results compared to the biochemical methods. Our analysis indicates that most of the tested milk samples (94%), both expressing at home and in hospital environments, meet the criteria for admission to the human milk bank. Effective techniques for identifying microorganisms ensure that donor milk from human milk banks meets the guidelines set for these units.


Asunto(s)
Bacterias , Bancos de Leche Humana , Leche Humana , Humanos , Leche Humana/microbiología , Polonia , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Femenino , Adulto , Microbiota , Lactante , Adulto Joven
3.
Food Microbiol ; 122: 104558, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839222

RESUMEN

In this study, we investigated the microbiota of 72 Italian ham samples collected after 12 months of seasoning. The hams were elaborated from pigs fed different rearing methods, including the traditional restricted medium protein diet chosen as control (C group); restrictive low protein diet (LP group); two ad libitum high-protein diet groups (HP9M group: slaughter at 9 months of age; HP170 group: slaughter at 170 kg). A multi-amplicon 16S metabarcoding approach was used, and a total of 2845 Amplicon Sequence Variants were obtained from the 72 ham samples. Main phyla included: Firmicutes (90.8%), Actinobacteria (6.2%), Proteobacteria (2.7%), and Bacteroidota (0.12%). The most common genera were Staphylococcus, Tetragenococcus, and Brevibacterium. Shannon index for α-diversity was found statistically significant, notably for the HP9M group, indicating higher diversity compared to C. PERMANOVA test on ß-diversity showed significant differences in rearing methods between HP170 and C, HP170 and LP, and HP9M vs. C. All three rearing methods revealed associations with characteristic communities: the HP9M group had the highest number of associations, many of which were due to spoilage bacteria, whereas the LP group had the highest number of seasoning-favourable genera.


Asunto(s)
Bacterias , Microbiota , ARN Ribosómico 16S , Animales , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Porcinos , Productos de la Carne/microbiología , Productos de la Carne/análisis , Alimentación Animal/análisis , Microbiología de Alimentos , Italia
4.
Food Microbiol ; 122: 104536, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839216

RESUMEN

The aim of this study was to develop a novel and healthier fermented meat product by replacing pork fat with avocado pulp (AVP) during salami production. Experimental salamis were produced under laboratory conditions by substituting pork fat with AVP partially (10-AVP) and totally (20-AVP), while control salamis (CTR) remained AVP-free. The microbial composition of control and experimental salamis was assessed using a combined culture-dependent and -independent approach. Over a 20-days ripening period, lactic acid bacteria, coagulase-negative staphylococci, and yeasts dominated the microbial community, with approximate levels of 9.0, 7.0 and 6.0 log CFU/g, respectively. Illumina technology identified 26 taxonomic groups, with leuconostocs being the predominant group across all trials [constituting 31.26-59.12 % of relative abundance (RA)]. Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed changes in fatty acid composition and volatile organic compounds due to the substitution of pork fat with AVP. Specifically, monounsaturated fatty acids and terpene compounds increased, while saturated fatty acids and lipid oxidation products decreased. Although AVP influenced the sensory characteristics of the salamis, the highest overall satisfaction ratings were observed for the 10-AVP salamis. Consequently, substituting pork fat with AVP emerges as a viable strategy for producing healthier salamis and diversifying the meat product portfolio.


Asunto(s)
Fermentación , Productos de la Carne , Persea , Persea/microbiología , Persea/química , Animales , Porcinos , Productos de la Carne/microbiología , Productos de la Carne/análisis , Ácidos Grasos/análisis , Ácidos Grasos/metabolismo , Humanos , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Bacterias/genética , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Frutas/microbiología , Frutas/química , Microbiología de Alimentos , Gusto , Lactobacillales/metabolismo , Lactobacillales/clasificación , Lactobacillales/crecimiento & desarrollo
5.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 28-36, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836684

RESUMEN

Piceatannol, resveratrol's derivative, and a valuable polyphenol has managed to become one of the most remarkable candidate molecules for drug development research, with its high bioactive properties and higher stability. On the other hand, the very low amount of piceatannol in plants which are its natural source increases the cost and limits the commercialization possibilities of the product. To overcome this bottleneck, a limited number of studies have recently shown that it is possible to produce piceatannol from the resveratrol precursor much cheaper by regioselective hydroxylation catalyzed by bacteria isolated from the soil, and the search for new bacteria of similar nature in new ecosystems has gained popularity. The aim of our study, which was prepared within this framework, is the bacterial isolate with regioselective hydroxylation potential obtained as a result of selective isolation steps; determination of resveratrol hydroxylation potentials and piceatannol product yields, investigation of possibilities to increase piceatannol yield with optimization trials and identification of isolates with the highest yield. For this purpose, 200 bacterial isolates capable of resveratrol hydroxylation were obtained from soil samples taken from Erzurum (Turkey) and its surroundings by using selective media. In the continuation of the study; resveratrol hydroxylation trials were carried out with these isolates and 55 active isolates capable of producing piceatannol by regioselective hydroxylation were selected. Then, yield improvement studies of active isolates were carried out by using different carbon sources and optimizing the culture conditions. As a result, a culture collection was created by identifying the 6 most active bacterial isolates with commercialization potential using conventional and molecular methods. These are 4 Gram-positive (Rhodococcus sp., Rhodococcus erythropolis, Paeniglutamicibacter sp., Arthrobacter sp.) and 2 Gram-negative (Shinella sp., Ensifer adhaerens) bacterial isolates. As a result of the optimization studies, three of these isolates used phenol as a biocatalyst, while the other three increased the production yield of piceatannol by using 4-hydroxyphenylacetic acid.


Asunto(s)
Bacterias , Resveratrol , Microbiología del Suelo , Estilbenos , Estilbenos/metabolismo , Estilbenos/aislamiento & purificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/clasificación , Resveratrol/metabolismo , Turquía , Hidroxilación
6.
PeerJ ; 12: e17421, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827308

RESUMEN

Background: Rainfall-induced coastal runoff represents an important environmental impact in near-shore coral reefs that may affect coral-associated bacterial microbiomes. Shifts in microbiome community composition and function can stress corals and ultimately cause mortality and reef declines. Impacts of environmental stress may be site specific and differ between coral microbiome compartments (e.g., tissue versus mucus). Coastal runoff and associated water pollution represent a major stressor for near-shore reef-ecosystems in Guam, Micronesia. Methods: Acropora pulchra colonies growing on the West Hagåtña reef flat in Guam were sampled over a period of 8 months spanning the 2021 wet and dry seasons. To examine bacterial microbiome diversity and composition, samples of A. pulchra tissue and mucus were collected during late April, early July, late September, and at the end of December. Samples were collected from populations in two different habitat zones, near the reef crest (farshore) and close to shore (nearshore). Seawater samples were collected during the same time period to evaluate microbiome dynamics of the waters surrounding coral colonies. Tissue, mucus, and seawater microbiomes were characterized using 16S DNA metabarcoding in conjunction with Illumina sequencing. In addition, water samples were collected to determine fecal indicator bacteria (FIB) concentrations as an indicator of water pollution. Water temperatures were recorded using data loggers and precipitation data obtained from a nearby rain gauge. The correlation structure of environmental parameters (temperature and rainfall), FIB concentrations, and A. pulchra microbiome diversity was evaluated using a structural equation model. Beta diversity analyses were used to investigate spatio-temporal trends of microbiome composition. Results: Acropora pulchra microbiome diversity differed between tissues and mucus, with mucus microbiome diversity being similar to the surrounding seawater. Rainfall and associated fluctuations of FIB concentrations were correlated with changes in tissue and mucus microbiomes, indicating their role as drivers of A. pulchra microbiome diversity. A. pulchra tissue microbiome composition remained relatively stable throughout dry and wet seasons; tissues were dominated by Endozoicomonadaceae, coral endosymbionts and putative indicators of coral health. In nearshore A. pulchra tissue microbiomes, Simkaniaceae, putative obligate coral endosymbionts, were more abundant than in A. pulchra colonies growing near the reef crest (farshore). A. pulchra mucus microbiomes were more diverse during the wet season than the dry season, a distinction that was also associated with drastic shifts in microbiome composition. This study highlights the seasonal dynamics of coral microbiomes and demonstrates that microbiome diversity and composition may differ between coral tissues and the surface mucus layer.


Asunto(s)
Antozoos , Arrecifes de Coral , Microbiota , Estaciones del Año , Animales , Antozoos/microbiología , Microbiota/fisiología , Microbiota/genética , Moco/microbiología , Agua de Mar/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación
7.
PLoS One ; 19(6): e0304663, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38843239

RESUMEN

The productivity of agricultural ecosystems is heavily influenced by soil-dwelling organisms. To optimize agricultural practices and management, it is critical to know the composition, abundance, and interactions of soil microorganisms. Our study focused on Acrobeles complexus nematodes collected from tomato fields in South Africa and analyzed their associated bacterial communities utilizing metabarcoding analysis. Our findings revealed that A. complexus forms associations with a wide range of bacterial species. Among the most abundant species identified, we found Dechloromonas sp., a bacterial species commonly found in aquatic sediments, Acidovorax temperans, a bacterial species commonly found in activated sludge, and Lactobacillus ruminis, a commensal motile lactic acid bacterium that inhabits the intestinal tracts of humans and animals. Through principal component analysis (PCA), we found that the abundance of A. complexus in the soil is negatively correlated with clay content (r = -0.990) and soil phosphate levels (r = -0.969) and positively correlated with soil sand content (r = 0.763). This study sheds light on the bacterial species associated to free-living nematodes in tomato crops in South Africa and highlights the occurrence of various potentially damaging and beneficial nematode-associated bacteria, which can in turn, impact soil health and tomato production.


Asunto(s)
Productos Agrícolas , Nematodos , Microbiología del Suelo , Solanum lycopersicum , Animales , Solanum lycopersicum/microbiología , Solanum lycopersicum/parasitología , Sudáfrica , Productos Agrícolas/parasitología , Productos Agrícolas/microbiología , Nematodos/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Suelo/parasitología , ARN Ribosómico 16S/genética , Análisis de Componente Principal
8.
Sci Data ; 11(1): 608, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851809

RESUMEN

Microbiological Rapid On-Site Evaluation (M-ROSE) is based on smear staining and microscopic observation, providing critical references for the diagnosis and treatment of pulmonary infectious disease. Automatic identification of pathogens is the key to improving the quality and speed of M-ROSE. Recent advancements in deep learning have yielded numerous identification algorithms and datasets. However, most studies focus on artificially cultured bacteria and lack clinical data and algorithms. Therefore, we collected Gram-stained bacteria images from lower respiratory tract specimens of patients with lung infections in Chinese PLA General Hospital obtained by M-ROSE from 2018 to 2022 and desensitized images to produce 1705 images (4,912 × 3,684 pixels). A total of 4,833 cocci and 6,991 bacilli were manually labelled and differentiated into negative and positive. In addition, we applied the detection and segmentation networks for benchmark testing. Data and benchmark algorithms we provided that may benefit the study of automated bacterial identification in clinical specimens.


Asunto(s)
Aprendizaje Profundo , Humanos , Bacterias/aislamiento & purificación , Bacterias/clasificación , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/diagnóstico , Algoritmos
9.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(2): 174-178, 2024 Apr 29.
Artículo en Chino | MEDLINE | ID: mdl-38857962

RESUMEN

OBJECTIVE: To investigate the bacterial community diversity in human Demodex mites, so as to provide insights into unraveling the role of human Demodex mites in them caused infectious diseases. METHODS: From June to July 2023, Demodex mites were collected from the faces of college students in a university in Wuhu City using the adhesive tape method, and the V4 region of 16S ribosomal RNA (16S rRNA) gene and the internal transcribed spacer (ITS) gene of nuclear ribosomal DNA were amplified on an Illumina PE250 high-throughput sequencing platform. Sequencing data were spliced according to the overlapping relations and filtered to yield effective sequences, and operational taxonomic units (OTUs) was clustered. The diversity index of obtained OUTs was analyzed, and the structure of the bacterial community was analyzed at various taxonomic levels. RESULTS: A total of 57 483 valid sequences were obtained using 16S rRNA gene sequencing, and 159 OUTs were classified according to similarity. Then, OUTs at a 97% similarity were included for taxonomic analyses, and the bacteria in Demodex mites belonged to 14 phyla, 20 classes, 51 orders, 72 families, and 94 genera. Proteobacteria was the dominant phylum, and Vibrio, Bradyrhizobium and Variovorax were dominant genera. A total of 56 362 valid sequences were obtained using ITS gene sequencing, and 147 OTUs were obtained, which belonged to 5 phyla, 17 classes, 34 orders, 68 families, and 93 genera and were annotated to Ascomycota, Basidiomycota and Chytridiomycota, with Ascomycota as the dominant phylum, and Alternaria alternata, Epicoccum, Penicillium, and Sarocladium as dominant genera. CONCLUSIONS: There is a high diversity in the composition of bacterial communities in human Demodex mites, with multiple types of microorganisms and high species abundance.


Asunto(s)
Bacterias , Ácaros , ARN Ribosómico 16S , Humanos , Animales , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Ácaros/microbiología , Ácaros/genética , Ácaros/fisiología , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Biodiversidad , Filogenia
10.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(2): 148-153, 2024 May 27.
Artículo en Chino | MEDLINE | ID: mdl-38857957

RESUMEN

OBJECTIVE: To investigating the microbial communities and physicochemical properties of soil and distribution of Oncomelania hupensis snails in marshlands along the Yangtze River basin at different types of land use, and to examine the effects of soil microorganisms and physicochemical properties on snail distribution, so as to provide insights into snail control and schistosomiasis prevention in marshland along the Yangtze River basin. METHODS: Marshlands with four types of land use were selected along the Yangtze River basin on April 2021, including poplar forest-crops integrated planting, reed areas, agricultural cultivation lands and ditches. The distribution of snails and physicochemical properties of soil were investigated in marshlands with different types of land use, and the V3 to V4 regions of the bacterial 16S ribosomal RNA (16S rRNA) gene, fungal internal transcribed spacer-1 (ITS1) gene and algal ribulose-bisphosphate carboxylase (rbcL) gene in soils were subjected to high-throughput sequencing. The occurrence of frames with living snails and density of living snails were compared in marshland with different types of land use. The associations of soil microorganisms and physicochemical properties with the density of living snails were examined using Pearson correlation analysis, and the contributions of soil microorganisms and physicochemical properties to the density of living snails were evaluated using variance partitioning analysis. RESULTS: In marshlands with four types of land use, the greatest occurrence of frames with living snails [(4.94 ± 2.14)%] and density of living snails [(0.070 ± 0.026) snails/0.1 m2] were seen in ditches, and the lowest were found in [(1.23 ± 1.23)%] agricultural cultivation lands [(0.016 ± 0.019) snails/0.1 m2]. A total of 2 phyla, 5 classes, 8 orders, 9 families and 11 genera of algae were detected in soils at four types of land use, with Chlorophyta as the dominant phylum and Pseudoneochloris as the dominant genus. A total of 44 phyla, 134 classes, 281 orders, 338 families and 516 genera of bacteria were detected in soils at four types of land use, with Proteobacteria and Acidobacteriota as the dominant phyla and uncultured Acidobacterium, MND1, Mitrospira, Haliangium and Sphingomonas as dominant genera. A total of 11 phyla, 41 classes, 108 orders, 223 families and 408 genera of fungi were detected in soils at four types of land use, with phyla Ascomycota, Basidiomycota and Mortierellomycota presenting high relative abundances and genera Cladorrhinum, Mortierella and Humicola presenting high relative abundances. Pearson correlation analysis revealed that the density of living snails correlated negatively with the relative abundance of Proteobacteria (r = -0.965, P < 0.05) and soil electronic conductivity (r = -0.962, P < 0.05) and positively with soil moisture (r = 0.951, P < 0.05). Variance partitioning analysis demonstrated that the physicochemical properties and microorganisms of soil contributed 69% and 10% to the density of living snails, respectively. CONCLUSIONS: The diversity of microbial communities varies in soils at different types of land use in marshland along the Yangtze River basin, and the physicochemical properties and microorganisms of soils may affect the distribution of O. hupensis snails.


Asunto(s)
Ríos , Caracoles , Microbiología del Suelo , Suelo , Humedales , Animales , Ríos/microbiología , Ríos/química , China , Suelo/química , ARN Ribosómico 16S/análisis , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación
11.
Sci Rep ; 14(1): 13305, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858383

RESUMEN

In this study, 80 catfish fillets were randomly collected from Egyptian local markets and retailers. The samples included 20 African catfish (Clarias gariepinus), 20 bayad (Bagrus bajad), and 40 pangasius catfish (Pangasianodon hypophthalmus) fillets. Pangasianodon hypophthalmus fillet samples were divided into 20 white basa and 20 red basa fillets. We conducted a microbiological analysis of catfish fillet samples, evaluating mesophilic aerobic bacteria, psychrophilic aerobic bacteria, H2S-producing bacteria, Staphylococcus spp., Enterobacteriaceae, Coliforms, and fecal Coliform counts. Additionally, we identified the existence of Salmonella spp., Vibrio spp., Yersinia spp., Escherichia spp., Aeromonas spp., and Pseudomonas spp. in the catfish fillet samples. In our study, the psychrophilic bacterial counts in Bagrus bajad (5.21 log CFU/g) were found to be higher compared to the counts in Clarias gariepinus (4.31 log CFU/g) and Pangasianodon hypophthalmus (3.89-4.7 log CFU/g). The fecal Coliform in Clarias gariepinus fillets was significantly higher than in other catfish fillets. We isolated Escherichia coli, Escherichia fergusonii, Aeromonas hydrophila, and Pseudomonas luteola from the catfish fillets, while no Salmonella spp., Vibrio spp., or Yersinia spp. were detected. These isolates were identified using 16S rRNA sequencing and phylogenetic analysis. Furthermore, ten Escherichia spp. were serologically identified, revealing that O26 and O78 were the most commonly occurring serotypes. This study highlights the microbiological analysis conducted on catfish fillets and concludes that the fillet samples from these catfish were of superior quality and deemed acceptable for human consumption.


Asunto(s)
Bagres , Microbiología de Alimentos , Animales , Bagres/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Alimentos Marinos/microbiología
12.
Microb Biotechnol ; 17(6): e14482, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38858806

RESUMEN

This Lilliput article provides a literature overview on ecological effects of the plant microbiome with a focus on practical application in forestry, agriculture and urban greenspace under the spectre of climate change. After an overview of the mostly bacterial microbiome of the model plant Arabidopsis thaliana, worldwide data from forests reveal ecological differentiation with respect to major guilds of predominantly fungal plant root symbionts. The plant-microbiome association forms a new holobiont, an integrated unit for ecological adaptation and evolutionary selection. Researchers explored the impact of the microbiome on the capacity of plants to adapt to changing climate conditions. They investigated the impact of the microbiome in reforestation programs, after wildfire, drought, salination and pollution events in forestry, grasslands and agriculture. With increasing temperatures plant populations migrate to higher latitudes and higher altitudes. Ecological studies compared the dispersal capacity of plant seeds with that of soil microbes and the response of soil and root microbes to experimental heating of soils. These studies described a succession of microbiome associations and the kinetics of a release of stored soil carbon into the atmosphere enhancing global warming. Scientists explored the impact of synthetic microbial communities (SynComs) on rice productivity or tea quality; of whole soil addition in grassland restoration; or single fungal inoculation in maize fields. Meta-analyses of fungal inoculation showed overall a positive effect, but also a wide variation in effect sizes. Climate change will be particularly prominent in urban areas ("urban heat islands") where more than half of the world population is living. Urban landscape architecture will thus have an important impact on human health and studies started to explore the contribution of the microbiome from urban greenspace to ecosystem services.


Asunto(s)
Agricultura , Cambio Climático , Microbiota , Agricultura/métodos , Agricultura Forestal , Plantas/microbiología , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Hongos/fisiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación
13.
Environ Microbiol ; 26(6): e16659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899728

RESUMEN

Microbiota are considered significant in the biology of tardigrades, yet their diversity and distribution remain largely unexplored. This is partly due to the methodological challenges associated with studying the microbiota of small organisms that inhabit microbe-rich environments. In our study, we characterized the microbiota of 31 species of cultured tardigrades using 16S rRNA amplicon sequencing. We employed various sample preparation strategies and multiple types of controls and estimated the number of microbes in samples using synthetic DNA spike-ins. We also reanalysed data from previous tardigrade microbiome studies. Our findings suggest that the microbial communities of cultured tardigrades are predominantly composed of bacterial genotypes originating from food, medium, or reagents. Despite numerous experiments, we found it challenging to identify strains that were enriched in certain tardigrades, which would have indicated likely symbiotic associations. Putative tardigrade-associated microbes rarely constituted more than 20% of the datasets, although some matched symbionts identified in other studies. We also uncovered serious contamination issues in previous tardigrade microbiome studies, casting doubt on some of their conclusions. We concluded that tardigrades are not universally dependent on specialized microbes. Our work underscores the need for rigorous safeguards in studies of the microbiota of microscopic organisms and serves as a cautionary tale for studies involving samples with low microbiome abundance.


Asunto(s)
Bacterias , Microbiota , ARN Ribosómico 16S , Simbiosis , Tardigrada , Microbiota/genética , Animales , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Filogenia , ADN Bacteriano/genética , Análisis de Secuencia de ADN/métodos
14.
Gut Microbes ; 16(1): 2367297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38899956

RESUMEN

The gut fungi play important roles in human health and are involved in energy metabolism. This study aimed to examine gut mycobiome composition in obese subjects in two geographically different regions in China and to identify specific gut fungi associated with obesity. A total of 217 subjects from two regions with different urbanization levels [Hong Kong (HK): obese, n = 59; lean, n = 59; Kunming (KM): obese, n = 50; lean, n = 49. Mean body mass index (BMI) for obesity = 33.7] were recruited. We performed deep shotgun metagenomic sequencing on fecal samples to compare gut mycobiome composition and trophic functions in lean and obese subjects across these two regions. The gut mycobiome of obese subjects in both HK and KM were altered compared to those of lean subjects, characterized by a decrease in the relative abundance of Nakaseomyces, Schizosaccharomyces pombe, Candida dubliniensis and an increase in the abundance of Lanchanceathermotolerans, Saccharomyces paradox, Parastagonospora nodorum and Myceliophthorathermophila. Reduced fungal - bacterial and fungal - fungal correlations as well as increased negative fungal-bacterial correlations were observed in the gut of obese subjects. Furthermore, the anti-obesity effect of fungus S. pombe was further validated using a mouse model. Supplementing high-fat diet-induced obese mice with the fungus for 12 weeks led to a significant reduction in body weight gain (p < 0.001), and an improvement in lipid and glucose metabolism compared to mice without intervention. In conclusion, the gut mycobiome composition and functionalities of obese subjects were altered. These data shed light on the potential of utilizing fungus-based therapeutics for the treatment of obesity. S. pombe may serve as a potential fungal probiotic in the prevention of diet-induced obesity and future human trials are needed.


Asunto(s)
Heces , Hongos , Microbioma Gastrointestinal , Micobioma , Obesidad , Obesidad/microbiología , Humanos , Animales , Hongos/clasificación , Hongos/aislamiento & purificación , Hongos/genética , Masculino , Ratones , China , Femenino , Heces/microbiología , Adulto , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Persona de Mediana Edad , Ratones Endogámicos C57BL , Índice de Masa Corporal
15.
Arch Microbiol ; 206(7): 314, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900289

RESUMEN

In the field of metagenomic research, the choice of DNA extraction methods plays a pivotal yet often underestimated role in shaping the reliability and interpretability of microbial community data. This study delves into the impact of five commercially available DNA extraction kits on the analysis of bovine fecal microbiota. Recognizing the importance of accurate DNA extraction in elucidating microbial community dynamics, we systematically assessed DNA yield, quality, and microbial composition across these kits using 16S rRNA gene sequencing. Notably, the FastDNA spin soil kit yielded the highest DNA concentration, while significant variations in quality were observed across kits. Furthermore, differential abundance analysis revealed kit-specific biases that impacted taxa representation. Microbial richness and diversity were significantly influenced by the choice of extraction kit, with QIAamp DNA stool minikit, QIAamp Power Pro, and DNeasy PowerSoil outperforming the Stool DNA Kit. Principal-coordinate analysis revealed distinct clustering based on DNA isolation procedures, particularly highlighting the unique microbial community composition derived from the Stool DNA Kit. This study also addressed practical implications, demonstrating how kit selection influences the concentration of Gram-positive and Gram-negative bacterial taxa in samples. This research highlights the need for consideration of DNA extraction kits in metagenomic studies, offering valuable insights for researchers striving to advance the precision and depth of microbiota analyses in ruminants.


Asunto(s)
ADN Bacteriano , Heces , ARN Ribosómico 16S , Animales , Bovinos , Heces/microbiología , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Metagenómica , Análisis de Secuencia de ADN , Juego de Reactivos para Diagnóstico/normas , Microbiota/genética
16.
Front Cell Infect Microbiol ; 14: 1405399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895737

RESUMEN

The present treatments for bronchiectasis, which is defined by pathological dilatation of the airways, are confined to symptom relief and minimizing exacerbations. The condition is becoming more common worldwide. Since the disease's pathophysiology is not entirely well understood, developing novel treatments is critically important. The interplay of chronic infection, inflammation, and compromised mucociliary clearance, which results in structural alterations and the emergence of new infection, is most likely responsible for the progression of bronchiectasis. Other than treating bronchiectasis caused by cystic fibrosis, there are no approved treatments. Understanding the involvement of the microbiome in this disease is crucial, the microbiome is defined as the collective genetic material of all bacteria in an environment. In clinical practice, bacteria in the lungs have been studied using cultures; however, in recent years, researchers use next-generation sequencing methods, such as 16S rRNA sequencing. Although the microbiome in bronchiectasis has not been entirely investigated, what is known about it suggests that Haemophilus, Pseudomonas and Streptococcus dominate the lung bacterial ecosystems, they present significant intraindividual stability and interindividual heterogeneity. Pseudomonas and Haemophilus-dominated microbiomes have been linked to more severe diseases and frequent exacerbations, however additional research is required to fully comprehend the role of microbiome in the evolution of bronchiectasis. This review discusses recent findings on the lung microbiota and its association with bronchiectasis.


Asunto(s)
Bronquiectasia , Pulmón , Microbiota , Bronquiectasia/microbiología , Humanos , Pulmón/microbiología , Pulmón/patología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética
17.
Appl Microbiol Biotechnol ; 108(1): 367, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850297

RESUMEN

Recent microbiome research has incorporated a higher number of samples through more participants in a study, longitudinal studies, and metanalysis between studies. Physical limitations in a sequencing machine can result in samples spread across sequencing runs. Here we present the results of sequencing nearly 1000 16S rRNA gene sequences in fecal (stabilized and swab) and oral (swab) samples from multiple human microbiome studies and positive controls that were conducted with identical standard operating procedures. Sequencing was performed in the same center across 18 different runs. The simplified mock community showed limitations in accuracy, while precision (e.g., technical variation) was robust for the mock community and actual human positive control samples. Technical variation was the lowest for stabilized fecal samples, followed by fecal swab samples, and then oral swab samples. The order of technical variation stability was inverse of DNA concentrations (e.g., highest in stabilized fecal samples), highlighting the importance of DNA concentration in reproducibility and urging caution when analyzing low biomass samples. Coefficients of variation at the genus level also followed the same trend for lower variation with higher DNA concentrations. Technical variation across both sample types and the two human sampling locations was significantly less than the observed biological variation. Overall, this research providing comparisons between technical and biological variation, highlights the importance of using positive controls, and provides semi-quantified data to better understand variation introduced by sequencing runs. KEY POINTS: • Mock community and positive control accuracy were lower than precision. • Samples with lower DNA concentration had increased technical variation across sequencing runs. • Biological variation was significantly higher than technical variation due to sequencing runs.


Asunto(s)
ADN Bacteriano , Heces , Microbiota , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Humanos , ARN Ribosómico 16S/genética , Heces/microbiología , Microbiota/genética , Análisis de Secuencia de ADN/métodos , ADN Bacteriano/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Reproducibilidad de los Resultados , Boca/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
18.
BMC Microbiol ; 24(1): 204, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851673

RESUMEN

BACKGROUND: The Gastrodia elata Bl. is an orchid, and its growth demands the presence of Armillaria species. The strong competitiveness of Armillaria species has always been a concern of major threat to other soil organisms, thus disrupting the equilibrium of soil biodiversity. Introducing other species to where G. elata was cultivated, could possibly alleviate the problems associated with the disequilibrium of soil microenvironment; however, their impacts on the soil microbial communities and the underlying mechanisms remain unclear. To reveal the changes of microbial groups associated with soil chemical properties responding to different cultivation species, the chemical property measurements coupled with the next-generation pyrosequencing analyses were applied with soil samples collected from fallow land, cultivation of G. elata and Phallus impudicus, respectively. RESULTS: The cultivation of G. elata induced significant increases (p < 0.05) in soil pH and NO3-N content compared with fallow land, whereas subsequent cultivation of P. impudicus reversed these G. elata-induced increases and was also found to significantly increase (p < 0.05) the content of soil NH4+-N and AP. The alpha diversities of soil microbial communities were significantly increased (p < 0.01) by cultivation of G. elata and P. impudicus as indicated with Chao1 estimator and Shannon index. The structure and composition of soil microbial communities differed responding to different cultivation species. In particular, the relative abundances of Bacillus, norank_o_Gaiellales, Mortierella and unclassified_k_Fungi were significantly increased (p < 0.05), while the abundances of potentially beneficial genera such as Acidibacter, Acidothermus, Cryptococcus, and Penicillium etc., were significantly decreased (p < 0.05) by cultivation of G. elata. It's interesting to find that cultivation of P. impudicus increased the abundances of these genera that G. elata decreased before, which contributed to the difference of composition and structure. The results of CCA and heatmap indicated that the changes of soil microbial communities had strong correlations with soil nutrients. Specifically, among 28 genera presented, 50% and 42.9% demonstrated significant correlations with soil pH and NO3-N in response to cultivation of G. elata and P. impudicus. CONCLUSIONS: Our findings suggested that the cultivation of P. impudicus might have potential benefits as result of affecting soil microorganisms coupled with changes in soil nutrient profile.


Asunto(s)
Bacterias , Biodiversidad , Gastrodia , Microbiota , Microbiología del Suelo , Suelo , Suelo/química , Gastrodia/microbiología , Gastrodia/química , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Microbiota/genética , Concentración de Iones de Hidrógeno , Nitrógeno/análisis , Nitrógeno/metabolismo , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Armillaria/genética , ARN Ribosómico 16S/genética
19.
PLoS One ; 19(6): e0302151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38885178

RESUMEN

The dysbiosis of microbiota has been reported to be associated with numerous human pathophysiological processes, including inflammatory bowel disease (IBD). With advancements in high-throughput sequencing, various methods have been developed to study the alteration of microbiota in the development and progression of diseases. However, a suitable approach to assess the global stability of the microbiota in disease states through time-series microbiome data is yet to be established. In this study, we have introduced a novel Energy Landscape construction method, which incorporates the Latent Dirichlet Allocation (LDA) model and the pairwise Maximum Entropy (MaxEnt) model for their complementary advantages, and demonstrate its utility by applying it to an IBD time-series dataset. Through this approach, we obtained the microbial assemblages' energy profile of the whole microbiota under the IBD condition and uncovered the hidden stable stages of microbiota structure during the disease development with time-series microbiome data. The Bacteroides-dominated assemblages presenting in multiple stable states suggest the potential contribution of Bacteroides and interactions with other microbial genera, like Alistipes, and Faecalibacterium, to the development of IBD. Our proposed method provides a novel and insightful tool for understanding the alteration and stability of the microbiota under disease states and offers a more holistic view of the complex dynamics at play in microbiota-mediated diseases.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Enfermedades Inflamatorias del Intestino/microbiología , Humanos , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Entropía , Disbiosis/microbiología , Bacteroides/genética
20.
PLoS One ; 19(6): e0303298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38885224

RESUMEN

Fourier transform infrared (FTIR) spectroscopy is a biophysical technique used for non-destructive biochemical profiling of biological samples. It can provide comprehensive information about the total cellular biochemical profile of microbial cells. In this study, FTIR spectroscopy was used to perform biochemical characterization of twenty-nine bacterial strains isolated from the Antarctic meltwater ponds. The bacteria were grown on two forms of brain heart infusion (BHI) medium: agar at six different temperatures (4, 10, 18, 25, 30, and 37°C) and on broth at 18°C. Multivariate data analysis approaches such as principal component analysis (PCA) and correlation analysis were used to study the difference in biochemical profiles induced by the cultivation conditions. The observed results indicated a strong correlation between FTIR spectra and the phylogenetic relationships among the studied bacteria. The most accurate taxonomy-aligned clustering was achieved with bacteria cultivated on agar. Cultivation on two forms of BHI medium provided biochemically different bacterial biomass. The impact of temperature on the total cellular biochemical profile of the studied bacteria was species-specific, however, similarly for all bacteria, lipid spectral region was the least affected while polysaccharide region was the most affected by different temperatures. The biggest temperature-triggered changes of the cell chemistry were detected for bacteria with a wide temperature tolerance such Pseudomonas lundensis strains and Acinetobacter lwoffii BIM B-1558.


Asunto(s)
Bacterias , Filogenia , Estanques , Regiones Antárticas , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Bacterias/clasificación , Bacterias/aislamiento & purificación , Estanques/microbiología , Temperatura , Microbiología del Agua , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA