Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 879
Filtrar
1.
Microbiol Spectr ; 12(7): e0025324, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38785429

RESUMEN

In nature, bacteria usually exist as mixed-species biofilms, where they engage in a range of synergistic and antagonistic interactions that increase their resistance to environmental challenges. Biofilms are a major cause of persistent infections, and dispersal from initial foci can cause new infections at distal sites thus warranting further investigation. Studies of development and spatial interactions in mixed-species biofilms can be challenging due to difficulties in identifying the different bacterial species in situ. Here, we apply CellTrace dyes to studies of biofilm bacteria and present a novel application for multiplex labeling, allowing identification of different bacteria in mixed-species, in vitro biofilm models. Oral bacteria labeled with CellTrace dyes (far red, yellow, violet, and CFSE [green]) were used to create single- and mixed-species biofilms, which were analyzed with confocal spinning disk microscopy (CSDM). Biofilm supernatants were studied with flow cytometry (FC). Both Gram-positive and Gram-negative bacteria were well labeled and CSDM revealed biofilms with clear morphology and stable staining for up to 4 days. Analysis of CellTrace labeled cells in supernatants using FC showed differences in the biofilm dispersal between bacterial species. Multiplexing with different colored dyes allowed visualization of spatial relationships between bacteria in mixed-species biofilms and relative coverage by the different species was revealed through segmentation of the CSDM images. This novel application, thus, offers a powerful tool for studying structure and composition of mixed-species biofilms in vitro.IMPORTANCEAlthough most chronic infections are caused by mixed-species biofilms, much of our knowledge still comes from planktonic cultures of single bacterial species. Studies of formation and development of mixed-species biofilms are, therefore, required. This work describes a method applicable to labeling of bacteria for in vitro studies of biofilm structure and dispersal. Critically, labeled bacteria can be multiplexed for identification of different species in mixed-species biofilms using confocal spinning disk microscopy, facilitating investigation of biofilm development and spatial interactions under different environmental conditions. The study is an important step in increasing the tools available for such complex and challenging studies.


Asunto(s)
Biopelículas , Colorantes Fluorescentes , Coloración y Etiquetado , Biopelículas/crecimiento & desarrollo , Colorantes Fluorescentes/metabolismo , Coloración y Etiquetado/métodos , Humanos , Bacterias/crecimiento & desarrollo , Bacterias/genética , Bacterias/clasificación , Microscopía Confocal/métodos , Citometría de Flujo/métodos , Bacterias Gramnegativas/fisiología , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/fisiología , Bacterias Grampositivas/crecimiento & desarrollo
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124324, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38676983

RESUMEN

Antibiotic-free therapies are highly needed due to the limited success of conventional approaches especially against biofilm related infections. In this direction, antimicrobial phototherapy, either in the form of antimicrobial photothermal therapy (aPTT) or antimicrobial photodynamic therapy (aPDT), have appeared to be highly promising candidates in recent years. These are local and promising approaches for antibiotic resistant bacterial infections and biofilms. Organic small photosensitizers (PSs) are extensively preferred in antimicrobial phototherapy applications as they offer a great opportunity to combine therapeutic action (aPTT, aPDT or both) with fluorescence imaging on a single molecule. In this study, the bactericidal effect of cationic chlorinated hemicyanine (Cl-Hem)-based type I PS, which can function as a dual aPDT/aPTT agent, was investigated on both planktonic cells and biofilms of different gram-positive (E. faecalis and S. epidermidis) and gram-negative bacteria (P. aeruginosa and K. pneumoniae) with and without 640 nm laser irradiation. Cl-Hem was shown to induce a selective phototheranostic activity against gram-positive bacteria (E. faecalis and S. epidermidis). Cl-Hem exhibited both dose and laser irradiation time dependent bactericidal effect on planktonic and biofilms of S. epidermidis. These results clearly showed that highly potent Cl-Hem can treat resistant microbial infections, while allowing fluorescence detection at the same time. High biofilm reduction observed with combined aPDT/aPTT action of Cl-Hem together with its non-cytotoxic nature points out that Cl-Hem is a promising PS for antibacterial and antibiofilm treatments.


Asunto(s)
Antibacterianos , Biopelículas , Bacterias Grampositivas , Halogenación , Pruebas de Sensibilidad Microbiana , Biopelículas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/fisiología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Carbocianinas/química , Carbocianinas/farmacología , Humanos
3.
Microbiol Res ; 282: 127655, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38402726

RESUMEN

Quorum sensing (QS), an integral component of bacterial communication, is essential in coordinating the collective response of diverse bacterial pathogens. Central carbon metabolism (CCM), serving as the primary metabolic hub for substances such as sugars, lipids, and amino acids, plays a crucial role in the life cycle of bacteria. Pathogenic bacteria often utilize CCM to regulate population metabolism and enhance the synthesis of specific cellular structures, thereby facilitating in adaptation to the host microecological environment and expediting infection. Research has demonstrated that QS can both directly or indirectly affect the CCM of numerous pathogenic bacteria, thus altering their virulence and pathogenicity. This article reviews the interplay between QS and CCM in Gram-positive pathogenic bacteria, details the molecular mechanisms by which QS modulates CCM, and lays the groundwork for investigating bacterial pathogenicity and developing innovative infection treatment drugs.


Asunto(s)
Bacterias Gramnegativas , Percepción de Quorum , Percepción de Quorum/fisiología , Bacterias Gramnegativas/fisiología , Bacterias , Bacterias Grampositivas/fisiología , Virulencia
4.
Fish Shellfish Immunol ; 147: 109451, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360193

RESUMEN

Fibrinogen-related proteins (FREPs) are a family of glycoproteins that contain a fibrinogen-like (FBG) domain. Many members of FREPs have been shown to play an important role in innate immune response in both vertebrates and invertebrates. Here we reported the immune functional characterization of ANGPT4, member of FREPs, in zebrafish Danio rerio. Quantitative real time PCR showed that the expression of zebrafish ANGPT4 gene is up-regulated by the challenge with lipoteichoic acid (LTA) or lipopolysaccharides (LPS), hinting its involvement in innate immune response. The recombinant ANGPT4 (rANGPT4) could bind to both gram-positive bacteria Staphylococcus aureus and Bacillus subtilis and the gram-negative bacteria Escherichia coli and Aeromonas hydrophila as well as the pathogen-associated molecular patterns (PAMPs) on the bacterial surfaces including LTA, LPS and peptidoglycan (PGN), suggesting it capable of identifying pathogens via LTA, LPS and PGN. In addition, rANGPT4 also displayed strong bacteriolytic activities against both gram-positive and -negative bacteria tested via inducing membrane depolarization and intracellular ROS production. Moreover, the bacterial clearance assay in vivo showed that the rANGPT4 could also accelerate the clearance of bacteria in zebrafish embryos/larvae. Finally, we showed that the eukaryotically expressed recombinant ANGPT4 maintained antibacterial activity and binding activity to bacteria and LTA, LPS and PGN. All these suggested that ANGPT4 could not only capable of recognizing pathogens via LTA, LPS and PGN, but also capable of killing the Gram-positive and Gram-negative bacteria, in innate immune response. This work also provides further information to understand the biological roles of FREPs and the innate immunity in vertebrates.


Asunto(s)
Proteínas Portadoras , Ácidos Teicoicos , Pez Cebra , Animales , Lipopolisacáridos/farmacología , Peptidoglicano/farmacología , Antibacterianos , Fibrinógeno , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Bacterias/metabolismo , Proteínas de Pez Cebra/genética
5.
J Microsc ; 295(2): 121-130, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38296824

RESUMEN

Biofilms are known to be present in tonsils, but little is known about their spatial location and size distribution throughout the tonsil. Studies of the location and distribution of biofilms in tonsil specimens have thus far been limited to either high-magnification methods such as electron microscopy, which enables high-resolution imaging but only from a tiny tissue volume, or lower magnification techniques such as light microscopy, which allow imaging of larger specimens but with poor spatial resolution. To overcome these limitations, we report the use of multimodal optical mesoscopy to visualise and quantify the number and spatial distribution of Gram-positive biofilms in fresh, excised paediatric tonsils. This methodology supports simultaneous imaging of both the tonsil host and biofilms in whole mounts of tissue up to 5 mm × 5 mm × 3 mm with subcellular resolution throughout. A quantitative assessment of 36 tonsil specimens revealed no statistically significant difference between biofilm presence on the tonsil surface and the interior of the tonsil. This new quantitative mesoscale imaging approach may prove useful in understanding the role of biofilms in tonsillar diseases and other infections.


Asunto(s)
Biopelículas , Tonsila Palatina , Tonsila Palatina/microbiología , Humanos , Bacterias Grampositivas/fisiología , Niño , Microscopía/métodos , Preescolar
6.
Fish Shellfish Immunol ; 142: 109093, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37722437

RESUMEN

C-type lectins (CTLs), a superfamily of Ca2+-dependent carbohydrate-recognition proteins, serve as pattern recognition receptors (PRRs) in the immune response of many species. However, little is currently known about the CTLs of the commercially and ecologically important bivalve species, blood clam (Tegillarca granosa). In this study, a CTL (designated as TgCTL-1) with a single carbohydrate-recognition domain (CRD) containing unique QPN/WDD motifs was identified in the blood clam through transcriptome and whole-genome searching. Multiple alignment and phylogenetic analysis strongly suggested that TgCTL-1 was a new member of the CTL superfamily. Expression analysis demonstrated that TgCTL-1 was highly expressed in the hemocytes and visceral mass of the clam under normal condition. In addition, the expression of TgCTL-1 was shown to be significantly up-regulated upon pathogen challenge. Moreover, the recombinant TgCTL-1 (rTgCTL-1) displayed agglutinating and binding activities against both the gram-positive and gram-negative bacteria tested in a Ca2+-dependent manner. Furthermore, it was found that the in vitro phagocytic activity of hemocytes was significantly enhanced by rTgCTL-1. In general, our results showed that TgCTL-1 was an inducible acute-phase secretory protein, playing crucial roles in recognizing, agglutinating, and binding to pathogenic bacteria as well as modulating phagocytic activity of hemocytes in the innate immune defense of blood clam.


Asunto(s)
Arcidae , Bivalvos , Animales , Inmunidad Innata/genética , Secuencia de Aminoácidos , Secuencia de Bases , Bacterias Gramnegativas/fisiología , Lectinas Tipo C , Filogenia , Antibacterianos , Bacterias Grampositivas/fisiología , Bivalvos/metabolismo , Arcidae/metabolismo , Carbohidratos
7.
Microbiol Spectr ; 9(3): e0163021, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34851151

RESUMEN

Streptococcus mutans, a dental pathogen, harbors at least three Clp ATPases (ClpC, ClpE, and ClpX) that form complexes with ClpP protease and participate in regulated proteolysis. Among these, the function of ClpE ATPase is poorly understood. We have utilized an isogenic clpE-deficient strain derived from S. mutans UA159 and evaluated the role of ClpE in cellular physiology. We found that loss of ClpE leads to increased susceptibility against thiol stress but not to oxidative and thermal stress. Furthermore, we found that the mutant displays altered tolerance against some antibiotics and altered biofilm formation. We performed a label-free proteomic analysis by comparing the mutant with the wild-type UA159 strain under nonstressed conditions and found that ClpE modulates a relatively limited proteome in the cell compared to the proteomes modulated by ClpX and ClpP. Nevertheless, we found that ClpE deficiency leads to an overabundance of some cell wall synthesis enzymes, ribosomal proteins, and an unknown protease encoded by SMU.2153. Our proteomic data strongly support some of the stress-related phenotypes that we observed. Our study emphasizes the significance of ClpE in the physiology of S. mutans. IMPORTANCE When bacteria encounter environmental stresses, the expression of various proteins collectively known as heat shock proteins is induced. These heat shock proteins are necessary for cell survival specifically under conditions that induce protein denaturation. A subset of heat shock proteins known as the Clp proteolytic complex is required for the degradation of the misfolded proteins in the cell. The Clp proteolytic complex contains an ATPase and a protease. A specific Clp ATPase, ClpE, is uniquely present in Gram-positive bacteria, including streptococci. Here, we have studied the functional role of the ClpE protein in Streptococcus mutans, a dental pathogen. Our results suggest that ClpE is required for survival under certain antibiotic exposure and stress conditions but not others. Our results demonstrate that loss of ClpE leads to a significantly altered cellular proteome, and the analysis of those changes suggests that ClpE's functions in S. mutans are different from its functions in other Gram-positive bacteria.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico/metabolismo , Streptococcus mutans/fisiología , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Endopeptidasa Clp/genética , Endopeptidasa Clp/metabolismo , Proteínas de Escherichia coli , Regulación Bacteriana de la Expresión Génica , Bacterias Grampositivas/genética , Bacterias Grampositivas/fisiología , Proteínas de Choque Térmico/genética , Pruebas de Sensibilidad Microbiana , Chaperonas Moleculares , Proteómica , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/genética
8.
Microbiol Spectr ; 9(3): e0051221, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34935418

RESUMEN

Acanthamoeba castellanii is a free-living, pathogenic ameba found in the soil and water. It invades the body through ulcerated skin, the nasal passages, and eyes and can cause blinding keratitis and granulomatous encephalitis. However, the mechanisms underlying the opportunistic pathogenesis of A. castellanii remain unclear. In this study, we observed that commensal bacteria significantly reduced the cytotoxicity of the ameba on mammalian cells. This effect occurred in the presence of both Gram-positive and Gram-negative commensals. Additionally, commensals mitigated the disruption of cell junctions. Ex vivo experiments on mouse eyeballs further showed that the commensals protected the corneal epithelial layer. Together, these findings indicate that A. castellanii is pathogenic to individuals with a dysbiosis of the microbiota at infection sites, further highlighting the role of commensals as a natural barrier during parasite invasion. IMPORTANCE Acanthamoeba castellanii, an opportunistic protozoan widely present in the environment, can cause Acanthamoeba keratitis and encephalitis in humans. However, only a few reports describe how the ameba acts as an opportunistic pathogen. Our study showed that the normal microbiota interfered with the cytotoxicity of Acanthamoeba, persevered during Acanthamoeba invasion, and reduced corneal epithelium peeling in the mouse eyeball model. This suggests that commensals may act as a natural barrier against Acanthamoeba invasion. In future, individuals who suffer from Acanthamoeba keratitis should be examined for microbiota absence or dysbiosis to reduce the incidence of Acanthamoeba infection in clinical settings.


Asunto(s)
Queratitis por Acanthamoeba/parasitología , Acanthamoeba castellanii/fisiología , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Queratitis por Acanthamoeba/microbiología , Animales , Córnea/microbiología , Córnea/parasitología , Epitelio/parasitología , Femenino , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos BALB C , Simbiosis
9.
Science ; 374(6568): eabe6723, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34735226

RESUMEN

A diverse group of antimicrobial proteins (AMPs) helps protect the mammalian intestine from varied microbial challenges. We show that small proline-rich protein 2A (SPRR2A) is an intestinal antibacterial protein that is phylogenetically unrelated to previously discovered mammalian AMPs. In this study, SPRR2A was expressed in Paneth cells and goblet cells and selectively killed Gram-positive bacteria by disrupting their membranes. SPRR2A shaped intestinal microbiota composition, restricted bacterial association with the intestinal surface, and protected against Listeria monocytogenes infection. SPRR2A differed from other intestinal AMPs in that it was induced by type 2 cytokines produced during helminth infection. Moreover, SPRR2A protected against helminth-induced bacterial invasion of intestinal tissue. Thus, SPRR2A is a distinctive AMP triggered by type 2 immunity that protects the intestinal barrier during helminth infection.


Asunto(s)
Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Microbioma Gastrointestinal , Bacterias Grampositivas/fisiología , Mucosa Intestinal/metabolismo , Intestinos/microbiología , Nematospiroides dubius , Infecciones por Strongylida/inmunología , Animales , Carga Bacteriana , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Proteínas Ricas en Prolina del Estrato Córneo/genética , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Células Caliciformes/metabolismo , Humanos , Inmunidad Innata , Mucosa Intestinal/microbiología , Listeria monocytogenes/fisiología , Listeriosis/microbiología , Ratones , Viabilidad Microbiana , Células de Paneth/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Infecciones por Strongylida/metabolismo , Infecciones por Strongylida/microbiología
10.
Molecules ; 26(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34641304

RESUMEN

The current research work illustrates an economical and rapid approach towards the biogenic synthesis of silver nanoparticles using aqueous Punica granatum leaves extract (PGL-AgNPs). The optimization of major parameters involved in the biosynthesis process was done using Box-Behnken Design (BBD). The effects of different independent variables (parameters), namely concentration of AgNO3, temperature and ratio of extract to AgNO3, on response viz. particle size and polydispersity index were analyzed. As a result of experiment designing, 17 reactions were generated, which were further validated experimentally. The statistical and mathematical approaches were employed on these reactions in order to interpret the relationship between the factors and responses. The biosynthesized nanoparticles were initially characterized by UV-vis spectrophotometry followed by physicochemical analysis for determination of particle size, polydispersity index and zeta potential via dynamic light scattering (DLS), SEM and EDX studies. Moreover, the determination of the functional group present in the leaves extract and PGL-AgNPs was done by FTIR. Antibacterial and antibiofilm efficacies of PGL-AgNPs against Gram-positive and Gram-negative bacteria were further determined. The physicochemical studies suggested that PGL-AgNPs were round in shape and of ~37.5 nm in size with uniform distribution. Our studies suggested that PGL-AgNPs exhibit potent antibacterial and antibiofilm properties.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Granada (Fruta)/química , Nitrato de Plata/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Nitrato de Plata/química
11.
Insect Biochem Mol Biol ; 139: 103669, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34666189

RESUMEN

In vertebrates and invertebrates, the insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) cascade is highly conserved and plays a vital role in many different physiological processes. Among the many tissues that respond to IIS in mosquitoes, the fat body has a central role in metabolism, lifespan, reproduction, and innate immunity. We previously demonstrated that fat body specific expression of active Akt, a key IIS signaling molecule, in adult Anopheles stephensi and Aedes aegypti activated the IIS cascade and extended lifespan. Additionally, we found that transgenic females produced more vitellogenin (Vg) protein than non-transgenic mosquitoes, although this did not translate into increased fecundity. These results prompted us to further examine how IIS impacts immunity, metabolism, growth and development of these transgenic mosquitoes. We observed significant changes in glycogen, trehalose, triglycerides, glucose, and protein in young (3-5 d) transgenic mosquitoes relative to non-transgenic sibling controls, while only triglycerides were significantly changed in older (18 d) transgenic mosquitoes. More importantly, we demonstrated that enhanced fat body IIS decreased both the prevalence and intensity of Plasmodium falciparum infection in transgenic An. stephensi. Additionally, challenging transgenic An. stephensi with Gram-positive and Gram-negative bacteria altered the expression of several antimicrobial peptides (AMPs) and two anti-Plasmodium genes, nitric oxide synthase (NOS) and thioester complement-like protein (TEP1), relative to non-transgenic controls. Increased IIS in the fat body of adult female An. stephensi had little to no impact on body size, growth or development of progeny from transgenic mosquitoes relative to non-transgenic controls. This study both confirms and expands our understanding of the critical roles insulin signaling plays in regulating the diverse functions of the mosquito fat body.


Asunto(s)
Anopheles/fisiología , Cuerpo Adiposo/metabolismo , Interacciones Huésped-Patógeno , Insulina/fisiología , Transducción de Señal , Animales , Anopheles/microbiología , Anopheles/parasitología , Femenino , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Interacciones Huésped-Parásitos , Plasmodium falciparum/fisiología
12.
Toxins (Basel) ; 13(9)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34564615

RESUMEN

Brevinins are a well-characterised, frog-skin-derived, antimicrobial peptide (AMP) family, but their applications are limited by high cytotoxicity. In this study, a wild-type des-Leu2 brevinin peptide, named brevinin-1OS (B1OS), was identified from Odorrana schmackeri. To explore the significant role of the leucine residue at the second position, two variants, B1OS-L and B1OS-D-L, were designed by adding L-leucine and D-leucine residues at this site, respectively. The antibacterial and anticancer activities of B1OS-L and B1OS-D-L were around ten times stronger than the parent peptide. The activity of B1OS against the growth of Gram-positive bacteria was markedly enhanced after modification. Moreover, the leucine-modified products exerted in vivo therapeutic potential in an methicillin-resistant Staphylococcus aureus (MRSA)-infected waxworm model. Notably, the single substitution of D-leucine significantly increased the killing speed on lung cancer cells, where no viable H838 cells survived after 2 h of treatment with B1OS-D-L at 10 µM with low cytotoxicity on normal cells. Overall, our study suggested that the conserved leucine residue at the second position from the N-terminus is vital for optimising the dual antibacterial and anticancer activities of B1OS and proposed B1OS-D-L as an appealing therapeutic candidate for development.


Asunto(s)
Proteínas Anfibias/farmacología , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias Grampositivas/efectos de los fármacos , Leucina/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ranidae , Proteínas Anfibias/química , Animales , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Bacterias Grampositivas/fisiología , Staphylococcus aureus Resistente a Meticilina/fisiología , Mariposas Nocturnas/microbiología
13.
Microbiol Spectr ; 9(1): e0055021, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34406812

RESUMEN

Bacterial bloodstream infection (BSI) represents a significant complication in hematologic patients. However, factors leading to BSI and progression to end-organ disease and death are understood only partially. The study analyzes host and microbial risk factors and assesses their impact on BSI development and mortality. A total of 96 patients with hematological malignancies and BSI were included in the study. Host-associated risk factors and all causes of mortality were analyzed by multivariable logistic regression at 30 days after BSI onset of the first neutropenic episode. The multidrug-resistant profile and biofilm production of bacterial isolates from primary BSI were included in the analysis. Median age was 60 years. The underlying diagnoses were acute leukemia (55%), lymphoma (31%), and myeloma (14%). A total of 96 bacterial isolates were isolated from BSIs. Escherichia coli was the most common isolate (29.2%). Multidrug-resistant bacteria caused 10.4% of bacteremia episodes. Weak biofilm producers (WBPs) were significantly (P < 0.0001) more abundant (72.2%) than strong biofilm producers (SBPs) (27.8%). Specifically, SBPs were 7.1% for E. coli, 93.7% for P. aeruginosa, 50% for K. pneumoniae, and 3.8% for coagulase-negative staphylococci. Mortality at day 30 was 8.3%, and all deaths were attributable to Gram-negative bacteria. About 22% of all BSIs were catheter-related BSIs (CRBSIs) and mostly caused by Gram-positive bacteria (79.0%). However, CRBSIs were not correlated with biofilm production levels (P = 0.75) and did not significantly impact the mortality rate (P = 0.62). Conversely, SBP bacteria were an independent risk factor (P = 0.018) for developing an end-organ disease. In addition, multivariate analysis indicated that SBPs (P = 0.013) and multidrug-resistant bacteria (P = 0.006) were independent risk factors associated with 30-day mortality. SBP and multidrug-resistant (MDR) bacteria caused a limited fraction of BSI in these patients. However, when present, SBPs raise the risk of end-organ disease and, together with an MDR phenotype, can independently and significantly concur at increasing the risk of death. IMPORTANCE Bacterial bloodstream infection (BSI) is a significant complication in hematologic patients and is associated with high mortality rates. Despite improvements in BSI management, factors leading to sepsis are understood only partially. This study analyzes the contribution of bacterial biofilm on BSI development and mortality in patients with hematological malignancies (HMs). In this work, weak biofilm producers (WBPs) were significantly more abundant than strong biofilm producers (SBPs). However, when present, SBP bacteria raised the risk of end-organ disease in HM patients developing a BSI. Besides, SBPs, together with a multidrug-resistant (MDR) phenotype, independently and significantly concur at increasing the risk of death in HM patients. The characterization of microbial biofilms may provide key information for the diagnosis and therapeutic management of BSI and may help develop novel strategies to either eradicate or control harmful microbial biofilms.


Asunto(s)
Bacteriemia/microbiología , Bacteriemia/mortalidad , Sistema Cardiovascular/microbiología , Bacterias Gramnegativas/aislamiento & purificación , Bacterias Grampositivas/aislamiento & purificación , Neoplasias Hematológicas/complicaciones , Adulto , Anciano , Bacteriemia/etiología , Femenino , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/genética , Bacterias Grampositivas/fisiología , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
14.
ACS Appl Mater Interfaces ; 13(34): 40325-40331, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34416106

RESUMEN

Biofilm infections caused by multidrug-resistant (MDR) bacteria are an urgent global health threat. Incorporation of natural essential oils into biodegradable oil-in-water cross-linked polymeric nanoemulsions (X-NEs) provides effective eradication of MDR bacterial biofilms. The X-NE platform combines the degradability of functionalized poly(lactic acid) polymers with the antimicrobial activity of carvacrol (from oregano oil). These X-NEs exhibited effective penetration and killing of biofilms formed by pathogenic bacteria. Biofilm-fibroblast coculture models demonstrate that X-NEs selectively eliminate bacteria without harming mammalian cells, making them promising candidates for antibiofilm therapeutics.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Cimenos/farmacología , Portadores de Fármacos/química , Emulsiones/química , Poliésteres/química , Animales , Portadores de Fármacos/toxicidad , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Emulsiones/toxicidad , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/fisiología , Ratones , Pruebas de Sensibilidad Microbiana , Células 3T3 NIH , Poliésteres/toxicidad
15.
ACS Appl Mater Interfaces ; 13(29): 33745-33755, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34278776

RESUMEN

Bacterial colonization on biomedical devices often leads to biofilms that are recalcitrant to antibiotic treatment and the leading cause of hospital-acquired infections. We have invented a novel pretreatment chemistry for device surfaces to produce a high-density three-dimensional (3-D) network of covalently linked S-nitrosothiol (RSNO), which is a nitric oxide (NO) donor. Poly(polyethylene glycol-hydroxyl-terminated) (i.e., PPEG-OH) brushes were grafted from an ozone-pretreated polyurethane (PU) surface. The high-density hydroxyl groups on the dangling PPEG-OH brushes then underwent condensation with a mercapto-silane (i.e., MPS, mercaptopropyl trimethoxysilane) followed by S-nitrosylation to produce a 3-D network of NO-releasing RSNO to form the PU/PPEG-OH-MPS-NO coating. This 3-D coating produces NO flux of up to 7 nmol/(cm2 min), which is nearly 3 orders of magnitude higher than the picomole/(cm2 min) levels of other NO-releasing biomedical implants previously reported. The covalent immobilization of RSNO avoids donor leaching and reduces the risks of cytotoxicity arising from leachable RSNO. Our coated PU surfaces display good biocompatibility and exhibit excellent antibiofilm formation activity in vitro (up to 99.99%) against a broad spectrum of Gram-positive and Gram-negative bacteria. Further, the high-density RSNO achieves nearly 99% and 99.9% in vivo reduction of Pseudomonas aeruginosa (P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) in a murine subcutaneous implantation infection model. Our surface chemistry to create high NO payload without NO-donor leaching can be applied to many biomedical devices.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Materiales Biocompatibles Revestidos/farmacología , Donantes de Óxido Nítrico/farmacología , Animales , Antibacterianos/síntesis química , Adhesión Bacteriana/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Línea Celular , Materiales Biocompatibles Revestidos/síntesis química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/fisiología , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Donantes de Óxido Nítrico/síntesis química , Polietilenglicoles/química , Poliuretanos/química , S-Nitrosotioles/síntesis química , S-Nitrosotioles/farmacología
16.
Sci China Life Sci ; 64(10): 1575-1589, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34319534

RESUMEN

Cell-cell communication is critical for bacterial survival in natural habitats, in which miscellaneous regulatory networks are encompassed. However, elucidating the interaction networks of a microbial community has been hindered by the population complexity. This study reveals that γ-butyrolactone (GBL) molecules from Streptomyces species, the major antibiotic producers, can directly bind to the acyl-homoserine lactone (AHL) receptor of Chromobacterium violaceum and influence violacein production controlled by the quorum sensing (QS) system. Subsequently, the widespread responses of more Gram-negative bacterial AHL receptors to Gram-positive Streptomyces signaling molecules are unveiled. Based on the cross-talk between GBL and AHL signaling systems, combinatorial regulatory circuits (CRC) are designed and proved to be workable in Escherichia coli (E. coli). It is significant that the QS systems of Gram-positive and Gram-negative bacteria can be bridged via native Streptomyces signaling molecules. These findings pave a new path for unlocking the comprehensive cell-cell communications in microbial communities and facilitate the exploitation of innovative regulatory elements for synthetic biology.


Asunto(s)
4-Butirolactona/metabolismo , Acil-Butirolactonas/metabolismo , Proteínas Bacterianas/metabolismo , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , 4-Butirolactona/química , 4-Butirolactona/genética , 4-Butirolactona/farmacología , Proteínas Bacterianas/genética , Chromobacterium/efectos de los fármacos , Chromobacterium/genética , Chromobacterium/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Indoles/metabolismo , Interacciones Microbianas , Estructura Molecular , Percepción de Quorum , Transducción de Señal , Streptomyces/genética , Streptomyces/metabolismo , Biología Sintética
17.
Chem Phys Lipids ; 239: 105115, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34252425

RESUMEN

The increase in antimicrobial resistance has created a crisis that has become top priority for global policy and public health. Antibiotics are constantly being rendered in-effective due to the emergence of bacterial resistance; therefore, novel strategies for improving therapeutic efficacies of existing drugs must be focused. Advancements in nanotechnology have opened up new avenues for enhancing therapeutic efficacy of existing drugs via construction of intelligent and efficient delivery systems. This study reports the synthesis of Dapsone based nonionic surfactant and its utilization as delivery system for Ceftriaxone sodium. The synthesized nonionic surfactant was characterized via mass spectrometry and 1H NMR and IR spectroscopic techniques. The drug loaded vesicles of newly synthesized sulfur based nonionic were formed through thin film hydration method and characterized for drug entrapment efficiency, vesicles size, zeta potential, morphology using UV-vis spectrometry, dynamic light scattering (DLS) and atomic force microscopic (AFM) techniques. The biocompatibility of newly synthesized surfactant was assessed using blood hemolysis and in-vitro cells cytotoxicity. Antibacterial potential of drug loaded vesicles was assessed in gram positive and gram negative bacterial cultures. The spectroscopic results confirm successful synthesis of novel sulfur based nonionic surfactant that formed spherical shaped drug loaded vesicles with an average size of 97.95 ± 3.45 nm and 56.3 ± 3.15 % entrapment of the model drug (Ceftriaxone sodium). The vesicles displayed negative surface charge of -16.8 ± 3.72 mV and released the entrapped drug in a controlled way in-vitro drug release. The drug loaded vesicular formulation showed enhanced cellular uptake and greater antibacterial potentials when compared with control. Results of this study show that the Dapsone based surfactant is safe, biocompatible, non-toxic and can be used as promising vesicular carrier for enhancing therapeutic efficacy of antibacterial drug, Ceftriaxone sodium.


Asunto(s)
Materiales Biocompatibles/química , Dapsona/química , Portadores de Fármacos/síntesis química , Tensoactivos/química , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/farmacología , Biopelículas/efectos de los fármacos , Dapsona/metabolismo , Dapsona/farmacología , Portadores de Fármacos/química , Liberación de Fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/fisiología , Hemólisis/efectos de los fármacos , Humanos , Micelas , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Azufre/química
18.
Microbiol Res ; 251: 126829, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34332222

RESUMEN

The Gram-positive and Gram-negative bacteria are attributable to matrix-enclosed aggregates known as biofilms. Biofilms are root cause of industrial biofouling and characterized by antimicrobial resistance during infections. Many biofilm studies examine specific Gram type cultures, whereas nearly all biofilm communities in nature comprise both Gram-negative and Gram-positive bacteria. Thus, a greater understanding of the conserved themes in biofilm formation is required for common therapeutics. We tried to focus on common components which exist at each stage of biofilm development and regulation. The Lipopolysaccharides (LPS) and cell wall glyco-polymers of Gram-negative and Gram-positive bacteria seem to play similar roles during initial adhesion. The inhibition of the polymerization of amyloid-like proteins might impact the biofilms of both Gram-type bacteria. Enzymatic degradation of matrix components by glycoside hydrolase and DNase (nuclease) may disrupt both Gram-type biofilms. An additional common feature is the presence of membrane vesicles, and the potential of these vesicles requires further investigation. Genetic regulation by c-di-GMP is prominent in Gram-negative bacteria. However, quorum sensing (QS) may play a common regulation during biofilms dispersal. These studies are significant not only for common therapeutic against mixed biofilms, but for better understanding of bacterial interactions within natural or host infection environment as well.


Asunto(s)
Biopelículas , Bacterias Gramnegativas , Bacterias Grampositivas , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología
19.
Microbiol Spectr ; 9(1): e0014121, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34259542

RESUMEN

Lytic bacteriophages are expected as effective tools to control infectious bacteria in human and pathogenic or spoilage bacteria in foods. Leaderless bacteriocins (LLBs) are simple bacteriocins produced by Gram-positive bacteria. LLBs do not possess an N-terminal leader peptide in the precursor, which means that they are active immediately after translation. In this study, we constructed a novel antimicrobial agent, an LLB-producing phage (LLB-phage), by genetic engineering to introduce the LLB structural gene into the lytic phage genome. To this end, lnqQ (structure gene of an LLB, lacticin Q) and trxA, an essential gene for T7 phage genome replication, were integrated in tandem into T7 phage genome using homologous recombination in Escherichia coli host strain. The recombinant lnqQ-T7 phage was isolated by a screening method using ΔtrxA host strain. lnqQ-T7 phage formed a clear halo in agar plates containing both E. coli and lacticin Q-susceptible Bacillus coagulans, indicating that lnqQ-T7 phage could produce a significant amount of lacticin Q. Lacticin Q production did not exert a significant effect on the lytic cycle of T7 phage. In fact, the production of lacticin Q enhanced T7 phage lytic activity and helped to prevent the emergence of bacterial populations resistant against this phage. These results serve as a proof of principle for LLB-phages. There are different types of LLBs and phages, meaning that in the future, it may be possible to produce any number of LLB-phages which can be designed to efficiently control different types of bacterial contamination in different settings. IMPORTANCE We demonstrated that we could combine LLB and phage to construct promising novel antimicrobial agents, LLB-phage. The first LLB-phage, lnqQ-T7 phage, can control the growth of both the Gram-negative host strain and neighboring Gram-positive bacteria while preventing the emergence of phage resistance in the host strain. There are several different types of LLBs and phages, suggesting that we may be able to design a battery of LLB-phages by selecting novel combinations of LLBs and phages. These constructs could be tailored to control various bacterial contaminations and infectious diseases.


Asunto(s)
Bacteriocinas/genética , Bacteriófago T7/genética , Escherichia coli/virología , Bacterias Grampositivas/virología , Bacteriocinas/metabolismo , Bacteriófago T7/fisiología , Escherichia coli/fisiología , Ingeniería Genética , Bacterias Grampositivas/fisiología , Replicación Viral
20.
Microbiol Spectr ; 9(1): e0010221, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34160272

RESUMEN

Burkholderia pseudomallei is an opportunistic pathogen that is responsible for the disease melioidosis in humans and animals. The microbe is a tier 1 select agent because it is highly infectious by the aerosol route, it is inherently resistant to multiple antibiotics, and no licensed vaccine currently exists. Naturally acquired infections result from contact with contaminated soil or water sources in regions of endemicity. There have been few reports investigating the molecular mechanism(s) utilized by B. pseudomallei to survive and persist in ecological niches harboring microbial competitors. Here, we report the isolation of Gram-positive bacteria from multiple environmental sources and show that ∼45% of these isolates are inhibited by B. pseudomallei in head-to-head competition assays. Two competition-deficient B. pseudomallei transposon mutants were identified that contained insertion mutations in the hmqA-G operon. This large biosynthetic gene cluster encodes the enzymes that produce a family of secondary metabolites called 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs). Liquid chromatography and mass spectrometry conducted on filter-sterilized culture supernatants revealed five HMAQs and N-oxide derivatives that were produced by the parental strain but were absent in an isogenic hmqD deletion mutant. The results demonstrate that B. pseudomallei inhibits the growth of environmental Gram-positive bacteria in a contact-independent manner via the production of HMAQs by the hmqA-G operon. IMPORTANCE Burkholderia pseudomallei naturally resides in water, soil, and the rhizosphere and its success as an opportunistic pathogen is dependent on the ability to persist in these harsh habitats long enough to come into contact with a susceptible host. In addition to adapting to limiting nutrients and diverse chemical and physical challenges, B. pseudomallei also has to interact with a variety of microbial competitors. Our research shows that one of the ways in which B. pseudomallei competes with Gram-positive environmental bacteria is by exporting a diverse array of closely related antimicrobial secondary metabolites.


Asunto(s)
Proteínas Bacterianas/genética , Burkholderia pseudomallei/fisiología , Bacterias Grampositivas/fisiología , Interacciones Microbianas , Antibacterianos/biosíntesis , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Burkholderia pseudomallei/genética , Bacterias Grampositivas/efectos de los fármacos , Mutagénesis Insercional , Operón , Metabolismo Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA