Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.684
Filtrar
1.
J Hazard Mater ; 477: 135404, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39098204

RESUMEN

Recently, the abundance of environmental microplastics (MPs) has become a global paramount concern. Besides the danger of MPs for biota due to their tiny size, these minute particles may act as vectors of other pollutants. This study focused on evaluating the toxicity of environmentally relevant concentrations of MPs (10 and 50 mg/kg sediment) and benzo[a]pyrene (B[a]P, 1 µg/kg sediment), alone and in mixture, for 3 and 7 days in marine polychaete Hediste diversicolor, selected as a benthic bioindicator model. The exposure period was sufficient to confirm the bioaccumulation of both contaminants in seaworms, as well as the potential capacity of plastic particles to adsorb and vehiculate the B[a]P. Interestingly, increase of acidic mucus production was observed in seaworm tissues, indicative of a defense response. The activation of oxidative system pathways was demonstrated as a strategy to prevent lipid peroxidation. Furthermore, the comprehensive Nuclear Magnetic Resonance (NMR)-based metabolomics revealed significant disorders in amino acids metabolism, osmoregulatory process, energetic components, and oxidative stress related elements. Overall, these findings proved the possible synergic harmful effect of MPs and B[a]P even in small concentrations, which increases the concern about their long-term presence in marine ecosystems, and consequently their transfer and repercussions on marine fauna.


Asunto(s)
Benzo(a)pireno , Metabolómica , Microplásticos , Poliquetos , Contaminantes Químicos del Agua , Poliquetos/efectos de los fármacos , Poliquetos/metabolismo , Animales , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Sedimentos Geológicos/química
2.
Dalton Trans ; 53(29): 12152-12161, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38989958

RESUMEN

Laccases (EC 1.10.3.2) are multicopper oxidases with the capability to oxidize diverse phenolic and non-phenolic substrates. While the molecular mechanism of their activity towards phenolic substrates is well-established, their reactivity towards non-phenolic substrates, such as polycyclic aromatic hydrocarbons (PAHs), remains unclear. To elucidate the oxidation mechanism of PAHs, particularly the activation mechanism of the sp2 aromatic C-H bond, we conducted a density functional theory investigation on the oxidation of two PAHs (anthracene and benzo[a]pyrene) using an extensive model of the T1 copper catalytic site of the fungal laccase from Trametes versicolor.


Asunto(s)
Antracenos , Benzo(a)pireno , Cobre , Lacasa , Oxidación-Reducción , Lacasa/metabolismo , Lacasa/química , Antracenos/química , Antracenos/metabolismo , Cobre/química , Cobre/metabolismo , Benzo(a)pireno/metabolismo , Benzo(a)pireno/química , Teoría Funcional de la Densidad , Modelos Moleculares , Polyporaceae/enzimología , Dominio Catalítico , Polyporales/enzimología , Polyporales/metabolismo , Trametes/enzimología
3.
Ecotoxicol Environ Saf ; 281: 116665, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964062

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs), notably benzo[a]pyrene (BaP), are environmental contaminants with multiple adverse ecological implications. Numerous studies have suggested the use of BaP biodegradation using various bacterial strains to remove BaP from the environment. This study investigates the BaP biodegradation capability of Pigmentiphaga kullae strain KIT-003, isolated from the Nak-dong River (South Korea) under specific environmental conditions. The optimum conditions of biodegradation were found to be pH 7.0, 35°C, and a salinity of 0 %. GC-MS analysis suggested alternative pathways by which KIT-003 produced catechol from BaP through several intermediate metabolites, including 4-formylchrysene-5-carboxylic acid, 5,6-dihydro-5,6-dihydroxychrysene-5-carboxylic acid (isomer: 3,4-dihydro-3,4-dihydroxychrysene-4-carboxylic acid), naphthalene-1,2-dicarboxylic acid, and 2-hydroxy-1-naphthoic acid. Proteomic profiles indicated upregulation of enzymes associated with aromatic compound degradation, such as nahAc and nahB, and of those integral to the tricarboxylic acid cycle, reflecting the strain's adaptability to and degradation of BaP. Lipidomic analysis of KIT-003 demonstrated that BaP exposure induced an accumulation of glycerolipids such as diacylglycerol and triacylglycerol, indicating their crucial role in bacterial adaptation mechanisms under BaP stress. This study provides significant scientific knowledge regarding the intricate mechanisms involved in BaP degradation by microorganisms.


Asunto(s)
Benzo(a)pireno , Biodegradación Ambiental , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidad , República de Corea , Proteómica , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Cromatografía de Gases y Espectrometría de Masas , Catecoles/metabolismo , Ríos/química , Ríos/microbiología , Multiómica
4.
Environ Geochem Health ; 46(8): 282, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963450

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent organic pollutants with carcinogenic, mutagenic and teratogenic effects. The white-rot fungi in the fungal group have significant degradation ability for high molecular weight organic pollutants. However, exogenous fungi are easily antagonized by indigenous microorganisms. Low molecular weight organic acids, a small molecular organic matter secreted by plants, can provide carbon sources for soil microorganisms. Combining organic acids with white rot fungi may improve the nutritional environment of fungi. In this study, immobilized Trametes versicolor was used to degrade benzo[a]pyrene in soil, and its effect on removing benzo[a]pyrene in soil mediated by different low molecular weight organic acids was investigated. The results showed that when the degradation was 35 days, the removal effect of the experimental group with citric acid was the best, reaching 43.7%. The degradation effect of Trametes versicolor on benzo[a]pyrene was further investigated in the liquid medium when citric acid was added, and the effects of citric acid on the biomass, extracellular protein concentration and laccase activity of Trametes versicolor were investigated by controlling different concentrations of citric acid. In general, citric acid can act as a carbon source for Trametes versicolor and promote its extracellular protein secretion and laccase activity, thereby accelerating the mineralization of benzo[a]pyrene by Trametes versicolor. Therefore, citric acid can be used as a biostimulant in the remediation of PAHs contaminated soil with Trametes versicolor.


Asunto(s)
Benzo(a)pireno , Biodegradación Ambiental , Ácido Cítrico , Contaminantes del Suelo , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Ácido Cítrico/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Lacasa/metabolismo , Microbiología del Suelo , Polyporaceae/metabolismo , Trametes/metabolismo , Biomasa
5.
J Hazard Mater ; 476: 134995, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38909468

RESUMEN

To address two current issues in evaluating the toxicity of microplastics (MPs) namely, conflicting results due to species specificity and the ecological irrelevance of laboratory data, this study conducted a 10-day exposure experiment using a microalgal community comprising three symbiotic species. The experiment involved virgin and Benzo[a]pyrene-spiked micron-scale fibers and fragments made of polyethylene terephthalate (PET) and polypropylene (PP). The results showed that, from a physiological perspective, environmentally relevant concentrations of micron-scale MPs decreased saccharide accumulation in microalgal cells, as confirmed by ultrastructural observations. MPs may increase cellular energy consumption by obstructing cellular motility, interfering with nutrient uptake, and causing sustained oxidative stress. Additionally, MPs and adsorbed B[a]P induced DNA damage in microalgae, potentially further disrupting cellular energy metabolism. Ecologically, MPs altered the species abundance in microalgal communities, suggesting they could weaken the ecological functions of these communities as producers and affect ecosystem diversity and stability. This study marks a significant advancement from traditional single-species toxicity experiments to community-level assessments, providing essential insights for ecological risk assessment of microplastics and guiding future mechanistic studies utilizing multi-omics analysis.


Asunto(s)
Metabolismo Energético , Microalgas , Microplásticos , Microplásticos/toxicidad , Microalgas/efectos de los fármacos , Microalgas/metabolismo , Metabolismo Energético/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Polipropilenos/toxicidad , Polipropilenos/química , Daño del ADN/efectos de los fármacos , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/toxicidad , Tamaño de la Partícula , Estrés Oxidativo/efectos de los fármacos
6.
Sci Total Environ ; 946: 174164, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38909798

RESUMEN

The global interest in edible insects as sustainable protein sources raises concerns about the bioaccumulation of contaminants, including polycyclic aromatic hydrocarbons (PAHs), to problematic levels. Understanding the accumulation dynamics of PAHs in edible insects is highly relevant due to the widespread sources and toxicological profiles; however, the bioaccumulative potential of PAHs in edible insects is unexplored. This study examined the uptake and elimination dynamics of benzo(a)pyrene (B(a)P), a representative and carcinogenic PAH, in yellow mealworm larvae (YMW, Tenebrio molitor). Larvae were exposed to feeding substrate with varying B(a)P concentrations (0.03, 0.3, and 3 mg kg-1), and uptake (21 days in B(a)P-contaminated substrate) and elimination (21 days in B(a)P-free substrate) kinetics were subsequently assessed. The results showed that YMW can eliminate B(a)P, revealing dose-dependent B(a)P bioaccumulation in these insects. Larvae fed on a substrate with 0.03 mg kg-1 accumulated B(a)P over 21 days, presenting values of 0.049 (Standard deviation - 0.011) mg kg-1 and a kinetic-based (BAFkinetic) of 1.93 g substrate g organism-1, exceeding the EU regulatory limits for food. However, with a B(a)P half-life (DT50) of 4.19 days in the larvae, an EU legislation safety criterion was met after a 13-day depuration period in clean substrate. Larvae exposed to substrates with 0.3 and 3 mg kg-1 showed B(a)P accumulation, with BAFkinetic values of 3.27 and 2.09 g substrate g organism-1, respectively, not meeting the current legal standards for food consumption at the end of the exposure to B(a)P. Although the B(a)P half-life values after 35 days were 4.30 and 10.22 days (DT50s), the larvae retained B(a)P levels exceeding permitted food safety limits. These findings highlight a significant oversight in regulating PAHs in animal feed and the need for comprehensive safety evaluations of PAH hazards in edible insects for improved PAH feeding guidelines.


Asunto(s)
Benzo(a)pireno , Larva , Tenebrio , Animales , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidad , Larva/efectos de los fármacos , Toxicocinética , Insectos Comestibles , Bioacumulación , Contaminación de Alimentos
7.
Chem Res Toxicol ; 37(8): 1364-1373, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38900731

RESUMEN

Chemicals often require metabolic activation to become genotoxic. Established test guidelines recommend the use of the rat liver S9 fraction or microsomes to introduce metabolic competence to in vitro cell-based bioassays, but the use of animal-derived components in cell culture raises ethical concerns and may lead to quality issues and reproducibility problems. The aim of the present study was to compare the metabolic activation of cyclophosphamide (CPA) and benzo[a]pyrene (BaP) by induced rat liver microsomes and an abiotic cytochrome P450 (CYP) enzyme based on a biomimetic porphyrine catalyst. For the detection of genotoxic effects, the chemicals were tested in a reporter gene assay targeting the activation of the cellular tumor protein p53. Both chemicals were metabolized by the abiotic CYP enzyme and the microsomes. CPA showed no activation of p53 and low cytotoxicity without metabolic activation, but strong activation of p53 and increased cytotoxicity upon incubation with liver microsomes or abiotic CYP enzyme. The effect concentration causing a 1.5-fold induction of p53 activation was very similar with both metabolization systems (within a factor of 1.5), indicating that genotoxic metabolites were formed at comparable concentrations. BaP also showed low cytotoxicity and no p53 activation without metabolic activation. The activation of p53 was detected for BaP upon incubation with active and inactive microsomes at similar concentrations, indicating experimental artifacts caused by the microsomes or NADPH. The activation of BaP with the abiotic CYP enzyme increased the cytotoxicity of BaP by a factor of 8, but no activation of p53 was detected. The results indicate that abiotic CYP enzymes may present an alternative to rat liver S9 fraction or microsomes for the metabolic activation of test chemicals, which are completely free of animal-derived components. However, an amendment of existing test guidelines would require testing of more chemicals and genotoxicity end points.


Asunto(s)
Benzo(a)pireno , Sistema Enzimático del Citocromo P-450 , Microsomas Hepáticos , Proteína p53 Supresora de Tumor , Microsomas Hepáticos/metabolismo , Animales , Ratas , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidad , Benzo(a)pireno/química , Sistema Enzimático del Citocromo P-450/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ciclofosfamida/metabolismo , Ciclofosfamida/toxicidad , Mutágenos/toxicidad , Mutágenos/metabolismo , Mutágenos/química , Masculino , Activación Metabólica , Humanos , Supervivencia Celular/efectos de los fármacos
8.
World J Microbiol Biotechnol ; 40(6): 180, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668960

RESUMEN

DNA adduction in the model yeast Saccharomyces cerevisiae was investigated after exposure to the fungicide penconazole and the reference genotoxic compound benzo(a)pyrene, for validating yeasts as a tool for molecular toxicity studies, particularly of environmental pollution. The effect of the toxicants on the yeast's growth kinetics was determined as an indicator of cytotoxicity. Fermentative cultures of S. cerevisiae were exposed to 2 ppm of Penconazole during different phases of growth; while 0.2 and 2 ppm of benzo(a)pyrene were applied to the culture medium before inoculation and on exponential cultures. Exponential respiratory cultures were also exposed to 0.2 ppm of B(a)P for comparison of both metabolisms. Penconazole induced DNA adducts formation in the exponential phase test; DNA adducts showed a peak of 54.93 adducts/109 nucleotides. Benzo(a)pyrene induced the formation of DNA adducts in all the tests carried out; the highest amount of 46.7 adducts/109 nucleotides was obtained in the fermentative cultures after the exponential phase exposure to 0.2 ppm; whereas in the respiratory cultures, 14.6 adducts/109 nucleotides were detected. No cytotoxicity was obtained in any experiment. Our study showed that yeast could be used to analyse DNA adducts as biomarkers of exposure to environmental toxicants.


Asunto(s)
Benzo(a)pireno , Aductos de ADN , Contaminantes Ambientales , Saccharomyces cerevisiae , Aductos de ADN/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/metabolismo , Mutágenos/toxicidad , Mutágenos/metabolismo , ADN de Hongos/genética , Fungicidas Industriales/toxicidad , Fungicidas Industriales/metabolismo
9.
Exp Dermatol ; 33(3): e15044, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38465766

RESUMEN

Polycyclic aromatic hydrocarbons with the key substance benzo[a]pyrene (B[a]P) are widespread pollutants in the environment and at working places. Nonetheless, the exact underlying mechanisms of toxicological effects caused by B[a]P especially in absence and presence of UV irradiation remain uncertain. This study examines variations in exposure conditions: low B[a]P (4 nM), low B[a]P + UV and high B[a]P (4 µM), selected based on pertinent cytotoxicity assessments. Following cell viability evaluations post-treatment with varied B[a]P concentrations and UV irradiation, the identified concentrations underwent detailed metabolomic analysis via gas chromatography-mass spectrometry. Subsequently, resulting changes in metabolic profiles across these distinct exposure groups are comprehensively compared. Chemometric analyses showed modest regulation of metabolites after low B[a]P exposure compared to control conditions. High B[a]P and low B[a]P + UV exposure significantly increased regulation of metabolic pathways, indicating that additional UV irradiation plus low B[a]P is as demanding for the cells as higher B[a]P treatment alone. Further analysis revealed exposure-dependent regulation of glutathione-important for oxidative defence-and purine metabolism-important for DNA base synthesis. Only after low B[a]P, oxidative defence appeared to be able to compensate for B[a]P-induced perturbations of the oxidative homeostasis. In contrast, purine metabolism already responded towards adversity at low B[a]P. The metabolomic results give an insight into the mechanisms leading to the toxic response and confirm the strong effects of co-exposure on oxidative defence and DNA repair in the model studied.


Asunto(s)
Benzo(a)pireno , Hidrocarburos Policíclicos Aromáticos , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Queratinocitos/metabolismo , Rayos Ultravioleta , Glutatión/metabolismo , Purinas/farmacología
10.
Sci Total Environ ; 923: 171349, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38438030

RESUMEN

Benzo(a)pyrene as a pervasive environmental contaminant is characterized by its substantial genotoxicity, and epidemiological investigations have established a correlation between benzo(a)pyrene exposure and the susceptibility to human lung cancer. Notably, much research has focused on the link between epigenetic alterations and lung cancer induced by chemicals, although circRNAs are also emerging as relevant contributors to the carcinogenic process of benzo(a)pyrene. In this study, we identified circ_0067716 as being significantly upregulated in response to stress injury and downregulated during malignant transformation induced by benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) in human bronchial epithelial cells. The observed differential expression of circ_0067716 in cells treated with BPDE for varying durations suggests a strong correlation between this circRNA and BPDE exposure. The tissue samples of lung cancer patients also suggest that a lower circ_0067716 expression is associated with BPDE-DNA adduct levels. Remarkably, we demonstrate that EIF4A3, located in the nucleus, interacts with the flanking sequences of circ_0067716 and inhibits its biogenesis. Conversely, circ_0067716 is capable of sequestering EIF4A3 in the cytoplasm, thereby preventing its translocation into the nucleus. EIF4A3 and circ_0067716 can form a double-negative feedback loop that could be affected by BPDE. During the initial phase of BPDE exposure, the expression of circ_0067716 was increased in response to stress injury, resulting in cell apoptosis through the involvement of miR-324-5p/DRAM1/BAX axis. Subsequently, as cellular adaptation progressed, long-term induction due to BPDE exposure led to an elevated EIF4A3 and a reduced circ_0067716 expression, which facilitated the proliferation of cells by stabilizing the PI3K/AKT pathway. Thus, our current study describes the effects of circ_0067716 on the genotoxicity and carcinogenesis induced by benzo(a)pyrene and puts forwards to the possible regulatory mechanism on the occurrence of smoking-related lung cancer, providing a unique insight based on epigenetics.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/metabolismo , Benzo(a)pireno/metabolismo , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/metabolismo , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/farmacología , Células Epiteliales , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/farmacología , Retroalimentación , Neoplasias Pulmonares/patología , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
11.
Environ Pollut ; 347: 123710, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38458518

RESUMEN

There is a lack of knowledge on the biodegradation mechanisms of benzene and benzo [a]pyrene (BaP), representative compounds of polycyclic aromatic hydrocarbons (PAHs), and benzene, toluene, ethylbenzene, and xylene (BTEX), under individually and mixed contaminated soils. Therefore, a set of microcosm experiments were conducted to explore the influence of benzene and BaP on biodegradation under individual and mixed contaminated condition, and their subsequent influence on native microbial consortium. The results revealed that the total mass loss of benzene was 56.0% under benzene and BaP mixed contamination, which was less than that of individual benzene contamination (78.3%). On the other hand, the mass loss of BaP was slightly boosted to 17.6% under the condition of benzene mixed contamination with BaP from that of individual BaP contamination (14.4%). The significant differences between the microbial and biocide treatments for both benzene and BaP removal demonstrated that microbial degradation played a crucial role in the mass loss for both contaminants. In addition, the microbial analyses revealed that the contamination of benzene played a major role in the fluctuations of microbial compositions under co-contaminated conditions. Rhodococcus, Nocardioides, Gailla, and norank_c_Gitt-GS-136 performed a major role in benzene biodegradation under individual and mixed contaminated conditions while Rhodococcus, Noviherbaspirillum, and Phenylobacterium were highly involved in BaP biodegradation. Moreover, binary benzene and BaP contamination highly reduced the Rhodococcus abundance, indicating the toxic influence of co-contamination on the functional key genus. Enzymatic activities revealed that catalase, lipase, and dehydrogenase activities proliferated while polyphenol oxidase was reduced with contamination compared to the control treatment. These results provided the fundamental information to facilitate the development of more efficient bioremediation strategies, which can be tailored to specific remediation of different contamination scenarios.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Benceno/metabolismo , Benzo(a)pireno/metabolismo , Tolueno/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Suelo , Contaminantes del Suelo/metabolismo , Microbiología del Suelo
12.
Chemosphere ; 353: 141637, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462177

RESUMEN

Polyaromatic benzo[a]pyrene (B[a]P) is a toxic carcinogenic environmental pollutant, and the use of microorganisms to remediate B[a]P contamination is considered to be one of the most effective strategies. However, there is still a gap in studying the metabolic remodeling of microorganisms under B[a]P stress. In this study, our systematically investigated the effects of B[a]P on the metabolism of Bacillus subtilis MSC4 based on transcriptomic, molecular and biochemical analyses. The results showed that in response to B[a]P stress, MSC4 formed more biofilm matrix and endospores, the structure of the endospores also was changed, which led to a reduction in their resistance and made them more difficult to germinate. In addition to an increase in glycolysis activity, the activities of tricarboxylic acid cycle, pentose phosphate pathway and the electron transport chain were decreased. B[a]P stress forced MSC4 to strengthen arginine synthesis, urea cycle, and urea decomposition, meanwhile, synthesize more ribonucleotides. The activity of DNA replication, transcription activities and the expression of multiple ribosomal protein genes were reduced. Moreover, all of the reported enzymes involved in B[a]P degradation showed decreased transcript abundance, and the degradation of B[a]P caused significant up-regulation of the gene expression of the acid inducible enzyme OxdC and the synthesis of acetoin. In addition, the cytotoxicity of B[a]P to bacteria was directly displayed in four aspects: increased intracellular level of reactive oxygen species (ROS), elevated cell membrane permeability, up-regulation of the cell envelope stress-sensing two-component system LiaRS, and downregulation of siderophores biosynthesis. Finally, B[a]P also caused morphological changes in the cells, with some cells exhibiting significant deformation and concavity. These findings provide effective research directions for targeted improvement the cellular activity of B[a]P-degrading strains, and is beneficial for further application of microorganisms to remediate B[a]P -contaminated soils.


Asunto(s)
Bacillus subtilis , Benzo(a)pireno , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Glucólisis , Perfilación de la Expresión Génica , Urea/metabolismo
13.
Sci Total Environ ; 927: 171966, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537831

RESUMEN

Benzo(a)pyrene (BaP) is posing serious threats to soil ecosystems and its bioremediation usually limited by environmental factors and microbial activity. Humic acid (HA), a ubiquitous heterogeneous organic matter, which could affect the fate of environmental pollutants. However, the impact of HA on bioremediation of organic contamination remains controversial. In the present study, the biodegradation of BaP by Paracoccus aminovorans HPD-2 with and without HA was explored. Approximately 87.4 % of BaP was biodegraded in the HPD-2 treatment after 5 days of incubation, whereas the addition of HA dramatically reduced BaP biodegradation to 56.0 %. The limited BaP biodegradation in the HA + HPD-2 treatment was probably due to the decrease of BaP bioavailability which induced by the adsorption of HA with unspecific interactions. The excitation-emission matrix (EEM) of fluorescence characteristics showed that strain HPD-2 was responsible for the presence of protein-like substances and the microbial original humic substances in the HPD-2 treatment. Addition of HA would result in the increase of soluble microbial humic-like material, which should ascribe to the biodegradation of BaP and probably utilization of HA. Furthermore, both the growth and survival of strain HPD-2 were inhibited in the HA + HPD-2 treatment, because of the limited available carbon source (i.e. BaP) at the presence of HA. The expression of gene1789 and gene2589 dramatically decreased in the HA + HPD-2 treatment, and this should be responsible for the decrease of BaP biodegradation as well. This study reveals the mechanism that HA affect the BaP biodegradation, and the decrease of biodegradation should ascribe to the interaction of HA and bacterial strain. Thus, the bioremediation strategies of PAHs need to consider the effects of organic matter in environment.


Asunto(s)
Benzo(a)pireno , Biodegradación Ambiental , Sustancias Húmicas , Paracoccus , Contaminantes del Suelo , Benzo(a)pireno/metabolismo , Paracoccus/metabolismo , Contaminantes del Suelo/metabolismo , Microbiología del Suelo
14.
Chemosphere ; 354: 141705, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494000

RESUMEN

Benzo[a]pyrene (BaP), as the typical representative of polycyclic aromatic hydrocarbons (PAHs), is a serious hazard to human health and natural environments. Though the study of microbial degradation of PAHs has persisted for decades, the degradation pathway of BaP is still unclear. Previously, Pontibacillus chungwhensis HN14 was isolated from high salinity environment exhibiting a high BaP degradation ability. Here, based on the intermediates identified, BaP was found to be transformed to 4,5-epoxide-BaP, BaP-trans-4,5-dihydrodiol, 1,2-dihydroxy-phenanthrene, 2-carboxy-1-naphthol, and 4,5-dimethoxybenzo[a]pyrene by the strain HN14. Furthermore, functional genes involved in degradation of BaP were identified using genome and transcriptome data. Heterogeneous co-expression of monooxygenase CYP102(HN14) and epoxide hydrolase EH(HN14) suggested that CYP102(HN14) could transform BaP to 4,5-epoxide-BaP, which was further transformed to BaP-trans-4,5-dihydrodiol by EH(HN14). Moreover, gene cyp102(HN14) knockout was performed using CRISPR/Cas9 gene-editing system which confirmed that CYP102(HN14) play a key role in the initial conversion of BaP. Finally, a novel BaP degradation pathway was constructed in bacteria, which showed BaP could be converted into chrysene, phenanthrene, naphthalene pathways for the first time. These findings enhanced our understanding of microbial degradation process for BaP and suggested the potential of using P. chungwhensis HN14 for bioremediation in PAH-contaminated environments.


Asunto(s)
Bacillaceae , Naftalenos , Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Humanos , Benzo(a)pireno/metabolismo , Biodegradación Ambiental , Hidrocarburos Policíclicos Aromáticos/metabolismo , Compuestos Epoxi
15.
Gen Physiol Biophys ; 43(1): 57-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38312035

RESUMEN

The most prevalent cause of lung cancer is smoking tobacco, but exposure to second hand smoke, air pollution, and certain chemicals and substances at work can also raise the risk of disease. In this study, we scrutinized the chemoprotective effect of the metformin and atorvastatin combination against benzo[a]pyrene (BaP)-induced lung cancer in mice of Swiss albino. BaP (50 mg/kg) was used for induction of lung cancer and mice were treated with metformin, atorvastatin or their combination. Metformin + atorvastatin combination significantly (p< 0.001) improved the body weight, liver weight, suppressed the lung weight and tumor incidence and altered the levels of immunocompetent cells, polyamines, lung tumor markers, lung parameters and antioxidant parameters, respectively. Metformin + atorvastatin combination also suppressed cytokines levels, inflammatory parameters and caspase parameters. On the basis of the results, we can conclude that metformin + atorvastatin combination remarkably suppressed lung cancer via the inflammatory pathway.


Asunto(s)
Neoplasias Pulmonares , Metformina , Ratones , Animales , Metformina/efectos adversos , Metformina/metabolismo , Atorvastatina/efectos adversos , Atorvastatina/metabolismo , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Transducción de Señal , Pulmón/patología
16.
Analyst ; 149(6): 1921-1928, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38375539

RESUMEN

The electrochemical detection method of cytotoxicity using intracellular purines as biomarkers has shown great potential for in vitro drug toxicity evaluation. However, no electrochemical detection system based on an in vitro drug metabolism mechanism has been devised. In this paper, electrochemical voltammetry was used to investigate the effect of the S9 system on the electrochemical behavior of HepG2 cells, and benzo[a]pyrene, fluoranthene, and pyrene were employed to investigate the sensitivity of electrochemical signals of cells to the cytotoxicity of drugs metabolized by the S9 system. The results showed that, within 8 h of exposure to the S9 system, the electrochemical signal of HepG2 cells at 0.7 V did not alter noticeably. The levels of xanthine, guanine, hypoxanthine, and adenine in the cells were not significantly altered. Compared with the absence of S9 system metabolism, benzo[a]pyrene and fluoranthene processed by the S9 system decreased the electrochemical signal of the cells in a dose-dependent manner, while pyrene did not change it appreciably. HPLC also revealed that benzo[a]pyrene and fluoranthene metabolized by the S9 system decreased the intracellular purine levels, whereas pyrene had no effect on them before and after S9 system metabolism. The cytotoxicity results of the three drugs examined by electrochemical voltammetry and MTT assay showed a strong correlation and good agreement. The S9 system had no effect on the intracellular purine levels or the electrochemical signal of cells. When the drug was metabolized by the S9 system, variations in cytotoxicity could be precisely detected by electrochemical voltammetry.


Asunto(s)
Benzo(a)pireno , Fenómenos Bioquímicos , Benzo(a)pireno/metabolismo , Benzo(a)pireno/toxicidad , Fluorenos/toxicidad , Guanina , Mutágenos
17.
Toxicol Lett ; 394: 46-56, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408587

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are major organic pollutants attached to fine particulate matter in the atmosphere. They induce lung inflammation, asthma, and other lung diseases. Exploring the toxic mechanism of PAHs on lung epithelial cells may provide a theoretical basis for the prevention and treatment of respiratory diseases induced by PAHs. In our study, 16 human bronchial epithelial (16HBE) cells were exposed to different concentrations of gypsum dust, Benzo(a)pyrene (BaP), and BaP-loaded gypsum dust for 24 hours. Gypsum dust loaded with BaP significantly increased the cytotoxicity of 16HBE cells, enhanced the production of lactate dehydrogenase (LDH), interleukin-6 (IL-6) and interleukin-8 (IL-8), induced cell apoptosis, and upregulate the expression of hsa_circ_0008500 (circ_0008500). The mechanism was studied with a BaP-loaded gypsum dust concentration of 1.25 mg/mL. StemRegenin 1 (SR1) pretreat significantly reduced the release of LDH, IL-6, and IL-8 and decreased the protein levels of Ahr、XAP2, C-myc, and p53. Second-generation sequencing indicated that circ_0008500 was highly expressed after 16HBE induced by BaP-loaded gypsum dust. Functional experiments confirmed that circ_0008500 promoted the inflammation and apoptosis of 16HBE cells induced by BaP-loaded gypsum dust by regulating the Ahr signaling pathway. Our study showed that fine particulate matter adsorption of BaP significantly increased the toxic effect of BaP on cells. By activating the Ahr/C-myc pathway, circ_0008500 promoted inflammation and apoptosis of 16HBE cells induced by BaP-loaded gypsum dust.


Asunto(s)
Benzo(a)pireno , Hidrocarburos Policíclicos Aromáticos , Humanos , Benzo(a)pireno/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Sulfato de Calcio/metabolismo , Sulfato de Calcio/farmacología , Interleucina-6/genética , Interleucina-6/metabolismo , Células Epiteliales , Inflamación/inducido químicamente , Inflamación/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Polvo , Apoptosis , Material Particulado/toxicidad
18.
Environ Sci Pollut Res Int ; 31(6): 9445-9460, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38191735

RESUMEN

The Caspian Sea has faced many environmental challenges, such as oil pollution. Heat shock proteins (HSPs) play a critical role in stress conditions and physiological changes caused by disease or injury. By evaluating the effects of various HSP inducers (HSPi), including Pro-Tex® (NOP: 800 mM), amygdalin (AMG: 80 mM), and a novel synthetic compound derived from pirano piranazole (SZ: 80 µm) on isolated cells from Sterlet Sturgeon (Acipenser ruthenus) treated with 75% IC50 PAH-benzo[a]pyrene (BaP; B75). This study examines whether there is a correlation between exposure to the BaP pollutant and HSPs in fish. In vitro, after culturing cells from the liver, kidney, and gills, they were treated with HSPi compounds in the presence and absence of BaP. Western blotting was used to assess HSP27, HSP70, and HSP90 expression patterns. A variety of enzyme activities were measured before (without treatment) and after treatment with HSPis and HSPi + B75, including cytochrome P450 (CYP450) activity, specific enzyme activity for acetylcholinesterase (AChE), antioxidant capacity, liver indicator enzymes, cortisol levels, and immunity parameters. When compared to the control group, cells treated with B75 showed the lowest AChE enzyme activity (p < 0.0001). CYP450 activity was highest in group B75, while HSPi caused the opposite effect (p < 0.0001). HSPi + B75 increased HSP levels and antioxidant parameters while decreasing cortisol and liver indicator enzymes (p < 0.0001). HSPi may be a powerful and reliable method for enhancing the resistance of A. ruthenus to BaP stresses before exposure. Treating cells with HSP-inducing compounds, such as NOP, AMG, and SZ, can assist them in managing stress and increase HSP (27, 70, and 90) protein expression. Furthermore, the study findings suggest that HSPis can also mitigate the adverse effects of stress, ultimately increasing cell survival and resistance.


Asunto(s)
Benzo(a)pireno , Branquias , Animales , Benzo(a)pireno/farmacología , Benzo(a)pireno/metabolismo , Antioxidantes/metabolismo , Supervivencia Celular , Acetilcolinesterasa/metabolismo , Hidrocortisona , Hígado , Proteínas de Choque Térmico/metabolismo , Riñón
19.
Environ Sci Pollut Res Int ; 31(8): 12019-12035, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38228951

RESUMEN

Aquatic animals are popular for their unique umami and high-quality protein. However, under the realistic background of increasing marine pollution, whether it affects the aquatic animal tastes, and what the interference mechanism is still remains unknown. Benzo[a]pyrene (B[a]P) is a typical Polycyclic aromatic hydrocarbons (PAHs) with high toxicity. In this study, we investigated the effects of B[a]P (0, 0.8, 4 and 20 µg/L) on the content and taste evaluation of Ruditapes philippinarum taste substances, and clarified the interference mechanism of B[a]P on taste substance metabolisms with transcriptome analysis. The results demonstrated that B[a]P significantly altered the contents and taste activity values (TAVs) of free amino acids (FAAs), 5'-nucleotides, organic acids, flavor peptides, organic bases, sugars and inorganic ions, as well as the gene expressions within their synthesis and decomposition, indicating that B[a]P affected these taste substance contents by interfering with their metabolisms, thereby changing the clam tastes (decreases of umami and sweetness, and increase of bitter taste). This study provided scientific basis for quality assurance of bivalve cultivation and control of marine pollution.


Asunto(s)
Bivalvos , Hidrocarburos Policíclicos Aromáticos , Animales , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Gusto , Perfilación de la Expresión Génica , Hidrocarburos Policíclicos Aromáticos/metabolismo
20.
Life Sci Alliance ; 7(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38167611

RESUMEN

Bulky DNA damages block transcription and compromise genome integrity and function. The cellular response to these damages includes global transcription shutdown. Still, active transcription is necessary for transcription-coupled repair and for induction of damage-response genes. To uncover common features of a general bulky DNA damage response, and to identify response-related transcripts that are expressed despite damage, we performed a systematic RNA-seq study comparing the transcriptional response to three independent damage-inducing agents: UV, the chemotherapy cisplatin, and benzo[a]pyrene, a component of cigarette smoke. Reduction in gene expression after damage was associated with higher damage rates, longer gene length, and low GC content. We identified genes with relatively higher expression after all three damage treatments, including NR4A2, a potential novel damage-response transcription factor. Up-regulated genes exhibit higher exon content that is associated with preferential repair, which could enable rapid damage removal and transcription restoration. The attenuated response to BPDE highlights that not all bulky damages elicit the same response. These findings frame gene architecture as a major determinant of the transcriptional response that is hardwired into the human genome.


Asunto(s)
Daño del ADN , Reparación del ADN , Humanos , Reparación del ADN/genética , Daño del ADN/genética , Benzo(a)pireno/farmacología , Benzo(a)pireno/metabolismo , Regulación de la Expresión Génica/genética , Genoma Humano/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA