Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 548
Filtrar
1.
Int J Biol Macromol ; 278(Pt 4): 134461, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153676

RESUMEN

Cellulose, as a biomass resource, has attracted increasingly attention and extensive research by virtue of its widely sources, ideal degradability, good mechanical properties and easy modification due to its rich hydroxyl groups. Nevertheless, it is still a challenge to attain high performance cellulose-based composite film materials with diverse functional combinations. In this work, we developed a multifunctional cellulose-based film via a facile impregnation-curing strategy. Here, benzoxazine resin (BR) is used as an optically functional component to endow the microfibrillated cellulose (MFC) film with powerful light management capabilities including UV and blue light double shielding, high transmittance, and high haze. Meanwhile, the introduction of tannic acid (TA) substantially enhanced the mechanical properties of the film, including tensile strength and toughness, by constructing energy-sacrificial bonds. An effective self-healing of the film was achieved by controlling the degree of BR curing. The final films exhibited 98.24 % UV shielding and 89.98 % blue light blocking, good mechanical properties including a tensile strength of 202.21 MPa and tensile strain of 7.1 %, as well as desirable thermal healing properties supported by incompletely cured BR. This work may provide new insights into the high-value utilization of biomass resources.


Asunto(s)
Benzoxazinas , Celulosa , Taninos , Resistencia a la Tracción , Rayos Ultravioleta , Celulosa/química , Taninos/química , Benzoxazinas/química , Luz , Fenómenos Mecánicos , Luz Azul , Polifenoles
2.
Bioorg Med Chem ; 111: 117849, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39068873

RESUMEN

The search for new agents targeting different forms of cell death is an important research focus for developing new and potent antitumor therapies. As a contribution to this endeavor, we have designed and synthesized a series of new substituted 3,4-dihydro-2H-1,4-benzoxazine derivatives. These compounds have been evaluated for their efficacy against MCF-7 breast cancer and HCT-116 colon cancer cell lines. Overall, substituting this heterocycle led to improved antiproliferative activity compared to the unsubstituted derivative 1. The most active compounds, 2b and 4b, showed IC50 values of 2.27 and 3.26 µM against MCF-7 cells and 4.44 and 7.63 µM against HCT-116 cells, respectively. To investigate the mechanism of action of the target compounds, the inhibition profile of 8 kinases involved in cell signaling was studied highlighting residual activity on HER2 and JNK1 kinases. 2b and 4b showed a consistent binding mode to both receptor kinases, establishing significant interactions with known and catalytically important domains and residues. Compounds 2b and 4b exhibit potent cytotoxic activity by disrupting cell membrane permeability, likely triggering both inflammatory and non-inflammatory cell death mechanisms. This dual capability increases their versatility in the treatment of different stages or types of tumors, providing greater flexibility in clinical applications.


Asunto(s)
Antineoplásicos , Benzoxazinas , Permeabilidad de la Membrana Celular , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Benzoxazinas/química , Benzoxazinas/farmacología , Benzoxazinas/síntesis química , Relación Estructura-Actividad , Permeabilidad de la Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Relación Dosis-Respuesta a Droga , Células HCT116 , Células MCF-7
3.
Chirality ; 36(8): e23704, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39034302

RESUMEN

In order to improve and replace the enantiomer method outlined in the olodaterol hydrochloride draft monograph (From the European Pharmacopoeia forum), one new, simple, and fast enantioselective normal phase high-performance liquid chromatography chiral method was developed on polysaccharide-based Chiral MX (2) (4.6 × 250 mm, 5 µm) column. n-Hexane, ethanol, and diethylamine in the ratio of 40:60:0.1 (V/V/V) were selected as mobile phase at a flow rate of 0.8 mL/min, and the detection was performed on a photodiode array detector at 225 nm with 5 µL injection volume. The column temperature was set at 40°C for better peak shape and sensitivity. The analysis time can be shortened to 15 min, whereas the resolution between enantiomer and olodaterol was found to be even more than 10.0, which was far better than that obtained with the reported method in this draft monograph. The developed chiral method was validated in accordance with ICH Q2 (R1), including specificity, LOD&LOQ, precision, linearity, accuracy, and robustness. Thereby, the proposed method was demonstrated to be suitable for the determination of enantiomer in olodaterol hydrochloride bulk drug and drug product. Besides, the thermodynamic parameters were evaluated on the basis of Van't Hoff plots that was used to explain correlative chiral recognition mechanisms with the chiral stationary phase.


Asunto(s)
Benzoxazinas , Termodinámica , Estereoisomerismo , Benzoxazinas/química , Benzoxazinas/análisis , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados , Límite de Detección
4.
Molecules ; 29(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999038

RESUMEN

This study focuses on synthesizing a new series of isoxazolinyl-1,2,3-triazolyl-[1,4]-benzoxazin-3-one derivatives 5a-5o. The synthesis method involves a double 1,3-dipolar cycloaddition reaction following a "click chemistry" approach, starting from the respective [1,4]-benzoxazin-3-ones. Additionally, the study aims to evaluate the antidiabetic potential of these newly synthesized compounds through in silico methods. This synthesis approach allows for the combination of three heterocyclic components: [1,4]-benzoxazin-3-one, 1,2,3-triazole, and isoxazoline, known for their diverse biological activities. The synthesis procedure involved a two-step process. Firstly, a 1,3-dipolar cycloaddition reaction was performed involving the propargylic moiety linked to the [1,4]-benzoxazin-3-one and the allylic azide. Secondly, a second cycloaddition reaction was conducted using the product from the first step, containing the allylic part and an oxime. The synthesized compounds were thoroughly characterized using spectroscopic methods, including 1H NMR, 13C NMR, DEPT-135, and IR. This molecular docking method revealed a promising antidiabetic potential of the synthesized compounds, particularly against two key diabetes-related enzymes: pancreatic α-amylase, with the two synthetic molecules 5a and 5o showing the highest affinity values of 9.2 and 9.1 kcal/mol, respectively, and intestinal α-glucosidase, with the two synthetic molecules 5n and 5e showing the highest affinity values of -9.9 and -9.6 kcal/mol, respectively. Indeed, the synthesized compounds have shown significant potential as antidiabetic agents, as indicated by molecular docking studies against the enzymes α-amylase and α-glucosidase. Additionally, ADME analyses have revealed that all the synthetic compounds examined in our study demonstrate high intestinal absorption, meet Lipinski's criteria, and fall within the required range for oral bioavailability, indicating their potential suitability for oral drug development.


Asunto(s)
Benzoxazinas , Inhibidores de Glicósido Hidrolasas , Simulación del Acoplamiento Molecular , alfa-Glucosidasas , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/síntesis química , Benzoxazinas/química , Benzoxazinas/farmacología , Benzoxazinas/síntesis química , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , alfa-Amilasas Pancreáticas/metabolismo , Reacción de Cicloadición , Estructura Molecular , Simulación por Computador , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/síntesis química , Humanos , Relación Estructura-Actividad , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/síntesis química , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , alfa-Amilasas/química , Intestinos/enzimología
5.
ACS Chem Biol ; 19(8): 1757-1772, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39017707

RESUMEN

The engineering of novel protein-ligand binding interactions, particularly for complex drug-like molecules, is an unsolved problem, which could enable many practical applications of protein biosensors. In this work, we analyzed two engineered biosensors, derived from the plant hormone sensor PYR1, to recognize either the agrochemical mandipropamid or the synthetic cannabinoid WIN55,212-2. Using a combination of quantitative deep mutational scanning experiments and molecular dynamics simulations, we demonstrated that mutations at common positions can promote protein-ligand shape complementarity and revealed prominent differences in the electrostatic networks needed to complement diverse ligands. MD simulations indicate that both PYR1 protein-ligand complexes bind a single conformer of their target ligand that is close to the lowest free-energy conformer. Computational design using a fixed conformer and rigid body orientation led to new WIN55,212-2 sensors with nanomolar limits of detection. This work reveals mechanisms by which the versatile PYR1 biosensor scaffold can bind diverse ligands. This work also provides computational methods to sample realistic ligand conformers and rigid body alignments that simplify the computational design of biosensors for novel ligands of interest.


Asunto(s)
Técnicas Biosensibles , Simulación de Dinámica Molecular , Unión Proteica , Técnicas Biosensibles/métodos , Ligandos , Morfolinas/química , Morfolinas/metabolismo , Benzoxazinas/química , Benzoxazinas/metabolismo , Naftalenos/química , Naftalenos/metabolismo , Pliegue de Proteína , Ingeniería de Proteínas , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química
6.
Int J Pharm ; 660: 124299, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38834109

RESUMEN

Enteral feeding tubes (EFTs) can be placed in children diagnosed with HIV which need nutritional support due to malnutrition. EFTs are the main route for medication administration in these patients, bringing up concerns about off label use of medicines, dose inaccuracy and tube clogging. Here we report for the first time the use of selective laser sintering (SLS) 3D printing to develop efavirenz (EFZ) dispersible printlets for patients with HIV that require EFT administration. Water soluble polymers Parteck® MXP and Kollidon® VA64 were used to obtain both 500 mg (P500 and K500) and 1000 mg printlets (P1000 and K1000) containing 200 mg of EFZ each. The use of SLS 3D printing obtained porous dosage forms with high drug content (20 % and 40 % w/w) and drug amorphization using both polymers. P500, K500 and K1000 printlets reached disintegration in under 230 s in 20 mL of water (25 ± 1 °C), whilst P1000 only partially disintegrated, possibly due to saturation of the polymer in the medium. As a result, the development of dispersible EFZ printlets using hydrophilic polymers can be explored as a potential strategy for drug delivery through EFTs in paediatrics with HIV, paving the way towards the exploration of more rapidly disintegrating polymers and excipients for SLS 3D printing.


Asunto(s)
Alquinos , Benzoxazinas , Ciclopropanos , Impresión Tridimensional , Comprimidos , Alquinos/química , Benzoxazinas/administración & dosificación , Benzoxazinas/química , Humanos , Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/química , Solubilidad , Nutrición Enteral/métodos , Niño , Excipientes/química , Polímeros/química , Intubación Gastrointestinal/métodos , Infecciones por VIH/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Porosidad
7.
J Environ Manage ; 360: 121200, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772233

RESUMEN

In this work, exfoliated graphite was used to adsorb antiretroviral drugs from river water and wastewater. The exfoliated graphite was prepared from natural graphite by intercalating it with the acids and exfoliating it at 800 °C. It was characterized using Fourier Transform Infrared Spectroscopy which showed phenolic, alcoholic, and carboxylic functional groups between 1000 cm-1 and 1700 cm-1. Energy-dispersive X-ray spectroscopy results showed carbon as the main element with splashes of oxygen. The Scanning Electron Microscopy images showed increased c-axis distance between graphene layers after intercalation, which further increased after the exfoliation. The exfoliation resulted in elongated distorted cylinders, which were confirmed by the lower density (0.0068 g/mL) of exfoliated graphite material compared to the natural graphite (0.54 g/mL). The X-ray diffraction pattern showed the characteristics of hexagonal phase graphitic structure by the diffraction plane (002) at 26.74°. Raman spectroscopy results showed the natural graphite, graphite intercalated, and exfoliated graphite contained the D, G, D', and G' peaks at about 1350 cm-1, 1570 cm-1, 2440 cm-1, and 2720 cm-1, respectively indicating that the material's crystallinity was not affected by the modification. The highest antiretroviral drugs removal (95-99%), from the water was achieved with a solution pH of 7, an adsorbent mass of 30 mg, and an adsorption time of 30 min. The kinetic model and adsorption isotherm studies showed that the experimental data fit well in pseudo-second-order kinetics and is well explained by Freundlich's adsorption isotherm. The maximum adsorption capacity of the exfoliated graphite for antiretroviral drugs ranges between 1.660 and 197.0, 1.660-232.5, and 1.650-237.7 mg/g for abacavir, nevirapine, and efavirenz, respectively. The obtained removal percentages were 100% in river water, 63-100% in influent and 70-100% in effluent wastewater unspiked samples.


Asunto(s)
Antirretrovirales , Grafito , Nevirapina , Ríos , Aguas Residuales , Grafito/química , Adsorción , Cinética , Aguas Residuales/química , Antirretrovirales/química , Ríos/química , Nevirapina/química , Contaminantes Químicos del Agua/química , Espectroscopía Infrarroja por Transformada de Fourier , Benzoxazinas/química , Alquinos , Ciclopropanos
8.
Chem Biol Drug Des ; 103(5): e14530, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725091

RESUMEN

Feline immunodeficiency virus (FIV) is a common infection found in domesticated and wild cats worldwide. Despite the wealth of therapeutic understanding of the disease in humans, considerably less information exists regarding the treatment of the disease in felines. Current treatment relies on drugs developed for the related human immunodeficiency virus (HIV) and includes compounds of the popular non-nucleotide reverse transcriptase (NNRTI) class. This is despite FIV-RT being only 67% similar to HIV-1 RT at the enzyme level, increasing to 88% for the allosteric pocket targeted by NNRTIs. The goal of this project was to try to quantify how well the more extensive pharmacological knowledge available for human disease translates to felines. To this end we screened known NNRTIs and 10 diverse pyrimidine analogs identified virtually. We use this chemo-centric probe approach to (a) assess the similarity between the two related RT targets based on the observed experimental inhibition values, (b) try to identify more potent inhibitors at FIV, and (c) gain a better appreciation of the structure-activity relationships (SAR). We found the correlation between IC50s at the two targets to be strong (r2 = 0.87) and identified compound 1 as the most potent inhibitor of FIV with IC50 of 0.030 µM ± 0.009. This compared to FIV IC50 values of 0.22 ± 0.17 µM, 0.040 ± 0.010 µM and >160 µM for known anti HIV-1 RT drugs Efavirenz, Rilpivirine, and Nevirapine, respectively. This knowledge, along with an understanding of the structural origin that give rise to any differences could improve the way HIV drugs are repurposed for FIV.


Asunto(s)
Transcriptasa Inversa del VIH , Virus de la Inmunodeficiencia Felina , Inhibidores de la Transcriptasa Inversa , Animales , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/química , Gatos , Virus de la Inmunodeficiencia Felina/efectos de los fármacos , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/metabolismo , Humanos , Relación Estructura-Actividad , Pirimidinas/química , Pirimidinas/farmacología , Alquinos/química , Alquinos/farmacología , VIH-1/efectos de los fármacos , VIH-1/enzimología , Ciclopropanos/farmacología , Ciclopropanos/química , Simulación del Acoplamiento Molecular , Benzoxazinas/química , Benzoxazinas/farmacología
9.
J Struct Biol ; 216(2): 108094, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653343

RESUMEN

This study synthesized and evaluated a series of benzotriazole derivatives denoted 3(a-j) and 6(a-j) for their anti-HIV-1 RT activities compared to the standard drug efavirenz. Notably, compound 3 h, followed closely by 6 h, exhibited significant anti-HIV-1 RT efficacy relative to the standard drug. In vivo oral toxicity studies were conducted for the most active compound 3 h, confirming its nontoxic nature to ascertain the safety profile. By employing molecular docking techniques, we explored the potential interactions between the synthesized compounds (ligands) and a target biomolecule (protein)(PDB ID 1RT2) at the molecular level. We undertook the molecular dynamics study of 3 h, the most active compound, within the active binding pocket of the cocrystallized structure of HIV-1 RT (PDB ID 1RT2). We aimed to learn more about how biomolecular systems behave, interact, and change at the atomic or molecular level over time. Finally, the DFT-derived HOMO and LUMO orbitals, as well as analysis of the molecular electrostatic potential map, aid in discerning the reactivity characteristics of our molecule.


Asunto(s)
Fármacos Anti-VIH , VIH-1 , Simulación del Acoplamiento Molecular , Triazoles , Triazoles/química , Triazoles/farmacología , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , VIH-1/efectos de los fármacos , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/metabolismo , Humanos , Simulación de Dinámica Molecular , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/toxicidad , Modelos Moleculares , Teoría Funcional de la Densidad , Relación Estructura-Actividad , Alquinos/química , Animales , Ciclopropanos/toxicidad , Benzoxazinas/química , Benzoxazinas/farmacología
10.
Environ Sci Pollut Res Int ; 31(22): 32282-32300, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649603

RESUMEN

This study focused on the efficacy of a calcined layered double hydroxide (CLDH) clay in adsorbing two antiretroviral drugs (ARVDs), namely efavirenz (EFV) and nevirapine (NVP), from wastewater. The clay was synthesized using the co-precipitation method, followed by subsequent calcination in a muffle furnace at 500 °C for 4 h. The neat and calcined clay samples were subjected to various characterization techniques to elucidate their physical and chemical properties. Response surface modelling (RSM) was used to evaluate the interactions between the solution's initial pH, adsorbent loading, reaction temperature, and initial pollutant concentration. Additionally, the adsorption kinetics, thermodynamics, and reusability of the adsorbent were evaluated. The results demonstrated that NVP exhibited a faster adsorption rate than EFV, with both reaching equilibrium within 20-24 h. The pseudo-second order (PSO) model provided a good fit for the kinetics data. Thermodynamics analysis revealed that the adsorption process was spontaneous and exothermic, predominantly governed by physisorption interactions. The adsorption isotherms followed the Freundlich model, and the maximum adsorption capacities for EFV and NVP were established to be 2.73 mg/g and 2.93 mg/g, respectively. Evaluation of the adsorption mechanism through computational analysis demonstrated that both NVP and EFV formed stable complexes with CLDH, with NVP exhibiting a higher affinity. The associated adsorption energies were established to be -731.78 kcal/mol for NVP and -512.6 kcal/mol for EFV. Visualized non-covalent interaction (NCI) graphs indicated that hydrogen bonding played a significant role in ARVDs-CLDH interactions, further emphasizing physisorption as the dominant adsorption mechanism.


Asunto(s)
Arcilla , Hidróxidos , Termodinámica , Adsorción , Arcilla/química , Cinética , Hidróxidos/química , Antirretrovirales/química , Contaminantes Químicos del Agua/química , Benzoxazinas/química , Aguas Residuales/química , Alquinos/química , Ciclopropanos
11.
Bioorg Med Chem Lett ; 106: 129735, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588785

RESUMEN

A series of 1,4-benzoxazin-3-one analogs were investigated to discover mode-selective TRPV1 antagonists, since such antagonists are predicted to minimize target-based adverse effects. Using the high-affinity antagonist 2 as the lead structure, the structure activity relationship was studied by modifying the A-region through incorporation of a polar side chain on the benzoxazine and then by changing the C-region with a variety of substituted pyridine, pyrazole and thiazole moieties. The t-butyl pyrazole and thiazole C-region analogs provided high potency as well as mode-selectivity. Among them, antagonist 36 displayed potent and capsaicin-selective antagonism with IC50 = 2.31 nM for blocking capsaicin activation and only 47.5 % inhibition at 3 µM concentration toward proton activation, indicating that more than a 1000-fold higher concentration of 36 was required to inhibit proton activation than was required to inhibit capsaicin activation. The molecular modeling study of 36 with our homology model indicated that two π-π interactions with the Tyr511 and Phe591 residues by the A- and C-region and hydrogen bonding with the Thr550 residue by the B-region were critical for maintaining balanced and stable binding. Systemic optimization of antagonist 2, which has high-affinity but full antagonism for activators of all modes, led to the mode-selective antagonist 36 which represents a promising step in the development of clinical TRPV1 antagonists minimizing side effects such as hyperthermia and impaired heat sensation.


Asunto(s)
Benzoxazinas , Canales Catiónicos TRPV , Urea , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo , Relación Estructura-Actividad , Benzoxazinas/química , Benzoxazinas/farmacología , Benzoxazinas/síntesis química , Urea/análogos & derivados , Urea/química , Urea/farmacología , Urea/síntesis química , Humanos , Estructura Molecular , Animales , Capsaicina/farmacología , Capsaicina/química , Descubrimiento de Drogas , Relación Dosis-Respuesta a Droga
12.
Angew Chem Int Ed Engl ; 63(21): e202401189, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38506220

RESUMEN

This study introduces a novel approach for synthesizing Benzoxazine-centered Polychiral Polyheterocycles (BPCPHCs) via an innovative asymmetric carbene-alkyne metathesis-triggered cascade. Overcoming challenges associated with intricate stereochemistry and multiple chiral centers, the catalytic asymmetric Carbene Alkyne Metathesis-mediated Cascade (CAMC) is employed using dirhodium catalyst/Brønsted acid co-catalysis, ensuring precise stereo control as validated by X-ray crystallography. Systematic substrate scope evaluation establishes exceptional diastereo- and enantioselectivities, creating a unique library of BPCPHCs. Pharmacological exploration identifies twelve BPCPHCs as potent Nav ion channel blockers, notably compound 8 g. In vivo studies demonstrate that intrathecal injection of 8 g effectively reverses mechanical hyperalgesia associated with chemotherapy-induced peripheral neuropathy (CIPN), suggesting a promising therapeutic avenue. Electrophysiological investigations unveil the inhibitory effects of 8 g on Nav1.7 currents. Molecular docking, dynamics simulations and surface plasmon resonance (SPR) assay provide insights into the stable complex formation and favorable binding free energy of 8 g with C5aR1. This research represents a significant advancement in asymmetric CAMC for BPCPHCs and unveils BPCPHC 8 g as a promising, uniquely acting pain blocker, establishing a C5aR1-Nav1.7 connection in the context of CIPN.


Asunto(s)
Alquinos , Benzoxazinas , Metano , Metano/análogos & derivados , Metano/química , Metano/farmacología , Alquinos/química , Benzoxazinas/química , Benzoxazinas/farmacología , Benzoxazinas/síntesis química , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/síntesis química , Humanos , Estereoisomerismo , Analgésicos/química , Analgésicos/farmacología , Analgésicos/síntesis química , Estructura Molecular , Catálisis , Descubrimiento de Drogas , Animales
13.
J Sci Food Agric ; 104(9): 5326-5337, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38319975

RESUMEN

BACKGROUND: Fluorine plays a significant role in agrochemical science because approximately 25% of herbicides licensed worldwide contain this element. In a pool of previously synthesized benzoxazinones, some compounds contained fluorine and demonstrated inhibitory activities against protoporphyrinogen IX oxidase (PPO). Therefore, three data sets of benzoxazinone derivatives with known inhibitory activity against PPO were employed to build a multivariate image analysis applied to a quantitative structure-activity relationships (MIA-QSAR) model to identify improved analogs with at least one fluorine substituent. RESULTS: The QSAR model was vigorously validated and demonstrated to be highly predictive (r2 = 0.85, q2 = 0.71, and r2 pred = 0.88); thus, the model can provide reliable estimations for the PPO inhibitory activity of unknown derivatives. From these compounds, a couple of N-substituted benzoxazinones that contained the -CH2CHF2 group were found with predicted pKi values larger than 8 (Ki in mol L-1) and higher lipophilicity than the most active data set compounds. In addition, we carried out a systematic investigation of the binding mode of PPO by performing computational docking followed by molecular dynamics simulations. The proposed binding mode was consistent with experimental studies, and several potential key residues were identified. CONCLUSION: Two new proposed benzoxazinones exhibited better performance than compounds of the data set, and fluorine substituents played pivotal roles in describing the biological activities. © 2024 Society of Chemical Industry.


Asunto(s)
Benzoxazinas , Inhibidores Enzimáticos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Protoporfirinógeno-Oxidasa , Relación Estructura-Actividad Cuantitativa , Protoporfirinógeno-Oxidasa/antagonistas & inhibidores , Protoporfirinógeno-Oxidasa/química , Protoporfirinógeno-Oxidasa/metabolismo , Benzoxazinas/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Herbicidas/química , Herbicidas/farmacología , Halogenación , Estructura Molecular , Diseño de Fármacos
14.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38396919

RESUMEN

High dose (S)-efavirenz (EFV) inhibits the HIV reverse transcriptase enzyme and is used to lower HIV load. Low-dose EFV allosterically activates CYP46A1, the key enzyme for cholesterol elimination from the brain, and is investigated as a potential treatment for Alzheimer's disease. Simultaneously, we evaluate EFV dihydroxymetabolites for in vivo brain effects to compare with those of (S)-EFV. We have already tested (rac)-8,14dihydroxy EFV on 5XFAD mice, a model of Alzheimer's disease. Herein, we treated 5XFAD mice with (rac)-7,8dihydroxy EFV. In both sexes, the treatment modestly activated CYP46A1 in the brain and increased brain content of acetyl-CoA and acetylcholine. Male mice also showed a decrease in the brain levels of insoluble amyloid ß40 peptides. However, the treatment had no effect on animal performance in different memory tasks. Thus, the overall brain effects of (rac)-7,8dihydroxy EFV were weaker than those of EFV and (rac)-8,14dihydroxy EFV and did not lead to cognitive improvements as were seen in treatments with EFV and (rac)-8,14dihydroxy EFV. An in vitro study assessing CYP46A1 activation in co-incubations with EFV and (rac)-7,8dihydroxy EFV or (rac)-8,14dihydroxy EFV was carried out and provided insight into the compound doses and ratios that could be used for in vivo co-treatments with EFV and its dihydroxymetabolite.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Anti-VIH , Infecciones por VIH , Femenino , Masculino , Ratones , Animales , Colesterol 24-Hidroxilasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Benzoxazinas/química , Alquinos/uso terapéutico , Ciclopropanos/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Inhibidores de la Transcriptasa Inversa/farmacología , Fármacos Anti-VIH/uso terapéutico
15.
Macromol Rapid Commun ; 45(2): e2300470, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37716013

RESUMEN

Herein, an evaluation of the initial step of benzoxazine polymerization is presented by mass spectrometry, with a focus on differentiating the phenoxy and phenolic products formed by distinct pathways of the cationic ring opening polymerization (ROP) mechanism of polybenzoxazine formation. The use of infrared multiple photon dissociation (IRMPD) and ion mobility spectrometry (IMS) techniques allows for differentiation of the two pathways and provides valuable insights into the ROP mechanism. The results suggest that type I pathway is favored in the initial stages of the reaction yielding the phenoxy product, while type II product should be observed at later stages when the phenoxy product would interconvert to the most stable type II phenolic product. Overall, the findings presented here provide important information on the initial step of the benzoxazine polymerization, allowing the development of optimal polymerization conditions and represents a way to evaluate other multifunctional polymerization processes.


Asunto(s)
Benzoxazinas , Fenoles , Polimerizacion , Benzoxazinas/química , Fenoles/química , Cationes
16.
J Agric Food Chem ; 71(39): 14221-14231, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37729497

RESUMEN

Protoporphyrinogen IX oxidase (PPO/Protox, E.C. 1.3.3.4) is recognized as one of the most important targets for herbicide discovery. In this study, we report our ongoing research efforts toward the discovery of novel PPO inhibitors. Specifically, we identified a highly potent new compound series containing a pyrimidinedione moiety and bearing a versatile building block-benzoxazinone scaffold. Systematic bioassays resulted in the discovery of compound 7af, ethyl 4-(7-fluoro-6-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)-3-oxo-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)butanoate, which exhibited broad-spectrum and excellent herbicidal activity at the dosage of 37.5 g a.i./ha through postemergence application. The inhibition constant (Ki) value of 7af to Nicotiana tabacum PPO (NtPPO) was 14 nM, while to human PPO (hPPO), it was 44.8 µM, indicating a selective factor of 3200, making it the most selective PPO inhibitor to date. Moreover, molecular simulations further demonstrated the selectivity and the binding mechanism of 7af to NtPPO and hPPO. This study not only identifies a candidate that showed excellent in vivo bioactivity and high safety toward humans but also provides a paradigm for discovering PPO inhibitors with improved performance through molecular simulation and structure-guided optimization.


Asunto(s)
Benzoxazinas , Herbicidas , Humanos , Benzoxazinas/farmacología , Benzoxazinas/química , Protoporfirinógeno-Oxidasa , Inhibidores Enzimáticos/química , Herbicidas/química , Nicotiana/metabolismo
17.
Molecules ; 28(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37446739

RESUMEN

In this work, a novel bio-based high-performance bisbenzoxazine resin was synthesized from daidzein, 2-thiophenemethylamine and paraformaldehyde. The chemical structure was confirmed using nuclear magnetic resonance spectroscopy (NMR) and Fourier-transform infrared spectroscopy (FT-IR). The polymerization process was systematically studied using differential scanning calorimetry (DSC) and in situ FT-IR spectra. It can be polymerized through multiple polymerization behaviors under the synergistic reaction of thiophene rings with benzopyrone rather than a single polymerization mechanism of traditional benzoxazines, as reported. In addition, thermogravimetric analysis (TGA) and a microscale combustion calorimeter (MCC) were used to study the thermal stability and flame retardancy of the resulting polybenzoxazine. The thermosetting material showed a high carbon residue rate of 62.8% and a low heat release capacity (HRC) value of 33 J/gK without adding any flame retardants. Based on its outstanding capability of carbon formation, this newly obtained benzoxazine resin was carbonized and activated to obtain a porous carbon material doped with both sulfur and nitrogen. The CO2 absorption of the carbon material at 0 °C and 25 °C at 1 bar was 3.64 mmol/g and 3.26 mmol/g, respectively. The above excellent comprehensive properties prove its potential applications in many advanced fields.


Asunto(s)
Benzoxazinas , Carbono , Benzoxazinas/química , Espectroscopía Infrarroja por Transformada de Fourier , Polimerizacion
18.
Org Lett ; 25(23): 4276-4280, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37272614

RESUMEN

2-(1,1-Difluoroethyl)-2H-1,3-benzoxazines were synthesized by (i) the regioselective ring opening of 1,1-difluorocyclopropanes bearing an aryloxy group and (ii) the Ritter reaction followed by a Friedel-Crafts-type ring closure. When 2-aryloxy-1,1-difluorocyclopropanes were treated with triflic acid, the C-C bond distal to the CF2 moiety was cleaved regioselectively via protonation to generate the corresponding oxocarbenium ions. These intermediates readily underwent nucleophilic attack by nitriles, followed by a carbocationic cyclization to afford the 2-difluoroethylated benzoxazines.


Asunto(s)
Benzoxazinas , Protones , Benzoxazinas/química , Ciclización
19.
Macromol Rapid Commun ; 44(10): e2200910, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37017474

RESUMEN

This work synthesizes a new bifunctional furan derivative (PDMS-FBZ) through a sequence of hydrosilylation of nadic anhydride (ND) with polydimethylsiloxane (PDMS), reaction of the product with p-aminophenol to form PDMS-ND-OH, and its subsequent Mannich reaction with furfurylamine and CH2 O. Then, the main chain-type copolymer PDMS-DABZ-DDSQ is prepared through a Diels-Alder (DA) cycloaddition of PDMS-FBZ with the bismaleimide-functionalized double-decker silsesquioxane derivative DDSQ-BMI. Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopy confirm the structure of this PDMS-DABZ-DDSQ copolymer; differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic mechanical analysis (DMA) reveal it to have high flexibility and high thermal stability (Tg = 177 °C; Td10 = 441 °C; char yield = 60.1 wt%); contact angle measurements reveal a low surface free energy (18.18 mJ m-2 ) after thermal ring-opening polymerization, because the inorganic PDMS and DDSQ units are dispersed well, as revealed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This PDMS-DABZ-DDSQ copolymer possesses reversible properties arising from the DA and retro-DA reactions, suggesting its possible application as a functional high-performance material.


Asunto(s)
Benzoxazinas , Polímeros , Reacción de Cicloadición , Benzoxazinas/química , Polímeros/química , Microscopía Electrónica de Rastreo , Dimetilpolisiloxanos
20.
ChemMedChem ; 18(5): e202200617, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36598081

RESUMEN

Benzoxazines and benzoxazepines are nitrogen and oxygen-containing six and seven-membered benzo-fused heterocyclic scaffolds, respectively. Benzoxazepines and benzoxazines are well-known pharmacophores in pharmaceutical chemistry, which are of significant interest and have been extensively studied because of their promising activity against various diseases including their wide range of anticancer activity. Several reports are known for synthesizing benzoxazine and benzoxazepine-based compounds in the literature. Herein this review provides a critical analysis of synthetic strategies towards benzoxazines and benzoxazepines along with various ranges of anticancer activities based on these molecules that have been reported from 2010 onwards. This review also focuses on the structure-activity relationship of the benzoxazine and benzoxazepine scaffolds containing bioactive compounds and describes how the structural modification affects their anticancer activity.


Asunto(s)
Antineoplásicos , Benzoxazinas , Benzoxazinas/química , Antineoplásicos/farmacología , Relación Estructura-Actividad , Farmacóforo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA